

Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase.

Jimmy C C Lai, Wallace W L Chan, François Kien, John M Nicholls, J S Malik Peiris, Jean-Michel Garcia

▶ To cite this version:

Jimmy C C Lai, Wallace W L Chan, François Kien, John M Nicholls, J S Malik Peiris, et al.. Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase.. Journal of General Virology, 2010, 91 (Pt 9), pp.2322-30. 10.1099/vir.0.019935-0. pasteur-00543211

HAL Id: pasteur-00543211 https://riip.hal.science/pasteur-00543211

Submitted on 6 Dec 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

JGV Papers in Press. Published May 26, 2010 as doi:10.1099/vir.0.019935-0

1	Full title: Formation of virus-like particles from human cell lines exclusively expressing
2	Influenza neuraminidase.
3	
4	Running title: Influenza NA alone can form virus like particles.
5	
6	Authors: Jimmy C.C. Lai ¹ , Wallace W.L. Chan ¹ , François Kien ¹ , John M. Nicholls ² , J.S. Malik
7	Peiris ^{1,3} and Jean-Michel Garcia ^{1,*} .
8	
9	¹ HKU-Pasteur Research Centre, Hong Kong SAR, China
10	² Department of Pathology, The University of Hong Kong, Hong Kong SAR, China
11	³ Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
12	
13	* Corresponding author: Dr JM Garcia, HKU-Pasteur Research Centre, Dexter H.C. Man
14	Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR. Phone: (852) 2816-8460. Fax: (852)
15	2872-5782. E-mail: jmgarcia@hku.hk.
16	
17	<i>Text</i> : 5230 words;
18	Summary: 112 words;
19	Figures: 6
20	Tables: 0.

22 Summary:

23 The minimal viral requirements for the generation of influenza virus like particle (VLP) 24 assembly and budding was reassessed. Using neuraminidase from the H5N1 and H1N1 25 subtypes, it was found that the expression of neuraminidase (NA) alone was sufficient to 26 generate and release VLPs. Biochemical and functional characterization of the NA containing 27 VLPs demonstrated that they were morphologically similar to influenza virions. The NA 28 oligomerization was comparable to that of the live virus, and the enzymatic activity, while not 29 required for the release of NA-VLP, was preserved. Together, these findings indicate that NA 30 plays a key role in virus budding and morphogenesis and demonstrates that NA-VLPs 31 represent a useful tool in influenza research.

32

33

34 Introduction

Influenza A viruses are lipid enveloped members of the *Orthomyxoviridae* family.
They contain 8 negative-sense, single-stranded RNA segments encoding 10 viral proteins.
Influenza virions are pleomorphic although generally their shape is roughly spherical with a
diameter around <150 nm. However, larger [100-400 nm] influenza virions are also
generated, as are filamentous forms (Fujiyoshi *et al.*, 1994).

40

41 Influenza viruses derive their lipid envelope by budding from the plasma membrane of 42 the infected cells and progeny virions are normally not found inside the host cell. Therefore 43 assembly and budding are the final, but essential steps in the virus life cycle. M1 matrix 44 protein is the most abundant protein in the influenza virion and plays a critical role in both 45 virus assembly and budding (reviewed in Nayak et al., 2009). M1 affects virus assembly by 46 interacting with the core viral ribonucleocapsid (vRNP) and cytoplasmic tail of 47 transmembrane proteins, forming a bridge between the two layers, as well as recruiting the 48 internal viral proteins and vRNA to the plasma membrane in a cooperative manner (Noda et 49 al., 2006). In addition, M1 interacts with the lipid bilayer producing an outward bending of the 50 membrane and this has been postulated to be the major driving force of influenza budding 51 since cells expressing M1 protein alone assemble into virus-like particles (VLPs) (Gómez-52 Puertas *et al.*, 2000; Latham & Galaeza, 2001).

53

54 Haemagglutinin (HA) and neuraminidase (NA) are the two major surface 55 glycoproteins in the influenza viral membrane. HA binds to sialic acid receptors on the cell 56 surface and mediates the fusion process (Matrosovich et al., 2006); whereas NA cleaves the 57 terminal sialic acids from the cell surface glycans to facilitate release of the progeny virus 58 from the host cell and prevent aggregation of virus particles (Bucher & Palese, 1975; Air & 59 Laver, 1989). NA is also essential in the initial stage of virus infection by enhancing HA-60 mediated fusion (Su et al., 2009), helping the virus to penetrate the mucin barrier protecting 61 the airway epithelium (Matrosovich et al., 2004) and promoting virus entry (Ohuchi et al., 62 2006). Studies of mutant influenza viruses have previously shown that the cytoplasmic tails 63 of HA and NA contribute to control virus assembly (Zhang *et al.*, 2000) and virus morphology 64 (Jin et al., 1997). The specific role of HA and NA in virus budding is controversial. COS-1 65 cells expressing HA alone did not give rise to virus like particles (VLP) production (Gómez-66 Puertas et al., 2000), however assembly and budding of a NA-deficient virus mutant could be 67 rescued with exogenous bacterial NA to the level of wild-type virus (Liu et al., 1995). These 68 studies suggested that the presence of both viral proteins was not essential for virus budding. 69 Nevertheless, studies of cells expressing recombinant viral proteins from an H3N2 virus 70 demonstrated that both HA and NA were involved in the budding process (Chen et al., 2007).

71

In this study, using a plasmid-driven VLP production system in human embryonic kidney (HEK-293T) cells, we looked at the minimal viral requirements for influenza virus assembly and budding. We showed that both H5 HA and N1 NA can be the driving forces for virus budding, whereas M1 only had a limited contribution. In addition, we demonstrated that expression of NA alone could lead to the budding of particles. The influenza VLPs with NA (NA-VLPs) were morphologically similar to influenza virions and had an intact sialidase enzymatic activity. Comparable results in generating NA VLPs were found with NA from both
seasonal and pandemic H1N1 and avian H5N1 viruses.

80

81 Results

82 Determination of minimal viral requirement for VLP formation and release. In 83 order to determine which viral structural protein(s) is/are essential for VLP-formation and 84 release, HEK-293T cells were transfected with plasmids encoding for H5N1 proteins HA, NA 85 and M1 singly, or in combination. Protein composition of the VLPs released into the culture 86 medium was analyzed by western blotting (Fig.1a) and budding of VLPs from the transfected 87 cells was visualized by transmission electron microscopy (Fig. 2). None of the transfections 88 affected the protein expression system as indicated by analysis of the glyceraldehyde 3-89 phosphate dehydrogenase (GAPDH) housekeeping protein expression. Co-transfection of 90 genes coding for different viral proteins had a minimal impact on individual expression level 91 as shown in cell lysates (Fig. 1a). The expression of the HA, NA and M1 in the cytosol 92 appeared to be comparable. Release was quantified by densitometric analysis of the 93 Western blots and expressed as a percentage of overall production (cumulative both from 94 lysates and in supernatant). VLPs were not detected by western blot from the culture 95 medium of cells expressing HA alone unless exogenous bacterial NA was added (Fig. 1a, 96 lanes 1 vs. 2), suggesting that VLPs budding from HA-expressing cells could not be released 97 without exogenous NA as confirmed by VLP aggregation on the cell surface in TEM (Fig. 2a) 98 vs. 2c). When M1 was expressed alone, a small amount of the protein was detected in the 99 supernatant and no significant change was observed by addition of exogenous NA (Fig. 1a, 100 lanes 4 & 5). However, we were not able to find VLP structures from cells expressing M1 101 alone (Fig. 2e) When HA and M1 were co-expressed, VLPs were released into the 102 supernatant only in the presence of exogenous bacterial NA (Fig. 1a, lanes 7 & 8) with an 103 increase of HA and M1 content when compared to their single-expression. Interestingly, 104 release of both HA and M1 was significantly enhanced by the co-expression of NA (Fig. 1a, 105 lanes 3, 6 & 9). Also, VLPs containing NA were easily detected from the cells expressing NA

106 exclusively (Fig. 1a, lane 10) and could be widely observed by TEM (Fig. 2d & 2f). These 107 results confirmed the requirement of the NA enzymatic activity for the HA-containing VLP 108 release, but also suggested a role of NA in VLP budding. Comparison of protein expression 109 in the cell lysates as well as in the supernatant of infected or HA/NA/M1 transfected cells 110 showed that HA and NA had similar expression levels (Fig. 1b), however the amount of M1 111 released with the budding VLPs in the supernatant was approximately half of that found in 112 virus infected cells. This was compatible with previous reports that M1 requires interaction 113 with other viral proteins, such as the structural proteins HA/NA (Wang et al., 2010), as well 114 as with viral RNPs which are absent from VLPs. Using TEM, the VLPs were pleomorphic 115 with spherical or filamentous forms (Fig. 2b & 2f), similar to influenza virions.

116

117 Physical and functional characterization of NA-VLPs produced in cells 118 expressing influenza virus NA alone. NA from the H5N1 subtype and from seasonal H1N1 119 and pandemic H1N1 subtypes were included in this study. Culture medium of cells 120 expressing the NA protein alone was harvested for detection of released particles. FLAG-121 tagged NAs were used to allow the detection with anti-FLAG antibodies of the protein from 122 different viral origins at the same antibody binding affinity. No difference of VLP formation 123 efficiency was observed between tagged and non-tagged NA (data not shown). Furthermore, 124 similar particles were seen by TEM for all three subtypes we studied (Supplementary data 125 S1). Sucrose gradient (20-60 %) centrifugation analysis demonstrated the presence of NA-126 VLPs in the intermediate pellet fractions between 30-50 % sucrose (Fig. 3 b-d), which was 127 similar to the result observed with influenza A/WSN/33(H1N1) virions (Fig. 3a). In contrast, 128 purified NA proteins were only present in lighter fractions (~20 % sucrose) of the gradient 129 (Fig. 3e). In addition, NA proteins either purified or on the VLP surface or from the virus were 130 functionally active as shown using a neuraminidase activity assay (Fig. 3f). The apparent 131 shift of one fraction towards a higher concentration of sucrose for the virus versus the VLP 132 was probably due to the presence of nucleic acid in the virus (RNPs) decreasing slightly their 133 buoyancy.

Kinetic analysis of the NA-VLP production showed that it was continuous over at least 60 hours post-transfection with continuous accumulation of the NA-VLP in the supernatant (Fig. 4a) when using NA from both pandemic H1N1 or from H5N1. Cleavage of caspase-3 was not detected in all time-points indicating there was no evidence of apoptosis (Fig. 4b). Electron micrographs of transfected cells also failed to manifest features of apoptosis during the course of the experiment.

141

We found that sole expression of NA (from H5N1) was sufficient to promote release of NA-VLP (Fig. 5). A mutation of NA in position 262 (E to D) which abrogated the sialidase activity as well as treatment with Oseltamivir (sialidase inhibitor) failed to affect VLP formation. As expected, co-expression of HA (H5 from H5N1) increased the release of NA probably by the formation of heterochimeric VLP (HA/NA-VLP), but release of HA-containing VLP was then dependent on sialidase activity.

148

149 Immunoblotting analysis of VLPs showed that the NAs on the particle surface were in 150 multimeric form, including the monomer (~55 kDa), dimer (~110 kDa), trimer (~165 kDa) and 151 tetramer (~220 kDa) (Fig. 6). Multimeric NA complexes on the VLPs were denatured into 152 monomer by heating in SDS loading buffer with chaotropic agent (urea) or reducing agent 153 (DTT) (lanes 1 to 3). Upon pre-treatment of DTSSP before the denaturing step, multimeric 154 NA complexes were protected from SDS and urea, and partially from DTT (lanes 4 to 6). 155 Similar multimeric NA complexes were detected in the H1N1 virions but the detection failed 156 in the samples pre-treated with DTSSP (lanes 7 & 8), probably due to the inability of the 157 antibody to recognize cross-linked antigens. Samples from highly pathogenic H5N1 virus 158 could not be analyzed as protocols for inactivating the infectivity of the highly pathogenic 159 virus H5N1 so that these preparations could be taken out of bio-safety level-3 containment 160 for further analysis compromises oligomer integrity.

134

162 Desialylation of cell surface sialic acids in cells expressing NA was then studied by 163 lectin binding (Supplementary data S2). A weak SNA binding was observed in HEK-293T 164 cells, indicating low level of α -2,6 linked sialic acid on the 293T cells, and this disappeared in 165 cells expressing any of the NAs studied. Similar loss of cell-surface sialic acids was seen in 166 NA VLP expressing A549 or MDCK cells which express more α -2,6 sialic acid (data not 167 shown). MAA binding confirmed the presence of α -2,3 linked sialic acid on mock transfected 168 293T cells and this was significantly decreased in NA-expressing cells. Cleavage of sialic 169 acids by sialidase is expected to expose the underlying Gal-GalNAc and this was 170 demonstrated by the increased binding of PNA to NA-expressing cells.

171

172 Discussion

173 Influenza assembly, budding and release are the last but important steps in the 174 replication cycle. VLP production assays using different systems have been developed to 175 determine the viral proteins involved in the virus budding (Gómez-Puertas *et al.*, 2000; 176 Latham & Galaeza, 2001; Neumann *et al.*, 2000). Here we investigated the minimal viral 177 components required for assembly and budding of H5N1 influenza virus using a plasmid-178 driven VLPs formation system similar to that described in a previous study on H3N2 virus 179 (Chen *et al.*, 2007).

180

181 Previous findings about the major viral proteins responsible for the virus budding have 182 been contradictory. It was suggested that M1 plays the major role in driving virus budding 183 from the cellular membrane (Gómez-Puertas et al., 2000), whereas Chen and his colleagues 184 found that M1 is not essential for the process but that HA and NA were necessary (Chen et 185 al., 2007). A recent publication (Wang et al., 2010) confirmed that M1 by itself fails to form 186 virus-like particles, probably due to a lack of membrane-targeting signal and therefore 187 requires the interaction with other viral proteins to be incorporated in the budding virions. In 188 our study, although small amounts of M1 were released from the cells expressing M1 alone, 189 no budding particle was observed by electron microscopy (Fig. 2e). A similar finding was

recently reported in which it was suggested that M1 was only nonspecifically secreted into the supernatant rather than released in the form of VLP (Tscherne et al., 2010). Nevertheless, co-expression of M1 increased the level of both HA and NA incorporated into the VLPs (compare Fig. 1a, lanes 2 & 8; lanes 6 & 10), suggesting that M1 helps the virus budding, probably by pushing the inner side of the cellular membrane.

195

VLP formation in cells transfected with HA alone or HA/M1 was completely dependent on the addition of exogenous NA. In the absence of exogenous NA, HA-containing VLPs were aggregated on the cell surface and not released into the medium (Fig. 1 & 2). Exogenous NA cleaved the cell surface sialic acids allowing the VLPs to be released, therefore both HA and M1 became detectable in the medium. These results suggested that the expression of HA could provide a driving force to trigger the production of VLP, although exogenous NA was necessary for the release of the particles.

203

204 Previously it has been suggested that NA was important for virus morphogenesis. 205 Studies using influenza virus lacking cytoplasmic tails of HA or NA (HAt- /NAt-) demonstrated 206 that NAt- virus particles had an elongated morphology but not HAt- virus (Jin et al., 1997). 207 Introduction of mutations in both the transmembrane and cytoplasmic domains of NA 208 confirmed that NA is critical to control the virus shape, size and titer (Barman et al., 209 2004). Studies of mutant virus containing a large internal deletion in NA gene have shown 210 they can assemble and bud similarly to wild-type virus (Liu et al., 1995). However, our data 211 has shown for the first time that expression of NA alone in HEK-293T cells could provide a 212 driving force for the formation of extracellular NA-containing particles and this finding was 213 seen with NA from different influenza viruses of the N1 subtype and demonstrated in at least 214 two additional human cell-lines (A549 and HeLa, data not shown). It is also important to note 215 that the release of M1 and HA was greatly enhanced by the co-expression with NA to a level 216 which was not acquired by high concentration of exogenous NA, indicating that NA is likely to 217 be a major force in driving virus budding. However, whereas Chen et al. (2007) reported that only small amounts of NA were released when this glycoprotein was expressed on its own,
our data showed that a large amount of NA was released. This discrepancy is probably due
to the difference in influenza virus subtype used in the two studies (N2 in Chen et al., versus
N1 here). In fact we did observe that N2 subtype NA was expressed to much lower level than
N1 and that N1 from human seasonal H1N1 was expressed less than the highly pathogenic
avian H5N1 (Supplementary data S3).

224

Furthermore, using a potent sialidase inhibitor and a point mutation (E262D) in NA that inactivates the catalytic site of the sialidase (Huang et al., 2008), we could show that neuraminidase activity of the NA was not necessary for the release of NA-VLP in cells (Fig. 5).

229

230 To characterize the NA-VLPs, biochemical, physical, morphological and functional 231 studies were done, including sucrose gradient flotation profile, NA functional assay, detection 232 of multimeric NA, TEM study, as well as desialylation of surface sialic acid on the cells 233 producing NA-VLPs. The presence of both influenza virions and NA-VLPs in the middle 234 fractions of the sucrose gradient (Fig. 3a and b-d) indicates that VLPs have a buoyant 235 density equivalent to native influenza viruses. The enzymatic activity assay showed that NAs 236 on the particle surface were functionally active and the activity was in proportion to the 237 amount of protein (Fig. 3f). The morphology of the VLPs was found to resemble influenza 238 virions. Most of the VLP were spherical although elongated particles were also detected (Fig. 239 2b & 2f). No morphological difference was observed in NA-VLPs from high pathogenic avian 240 influenza H5N1, seasonal H1N1, and pandemic swine-origin H1N1 (Supplementary data S1).

241

It is conceivable that exosomes or vesicles arising from apoptotic bodies may be mistaken as VLPs. However, electron microscopy failed to reveal either apoptosis or the formation of intracellular vesicles (such as the multivesicular bodies of exosomes).
Furthermore, we also monitored for apoptosis in transfected cells by attempting to

246 demonstrate the expression and cleavage of caspase-3 in the course of the experiment. Only 247 the uncleaved form of caspase-3 could be detected for the first 60 hours post-transfection 248 suggesting that VLP-producer cells were not undergoing apoptosis (Fig. 4b). Cross-sections 249 of membrane protrusions such as filopodia (Fig. 2a, arrowhead B) do occur and these may 250 be mistaken as budding of VLP. However, they can be distinguished from the "typical VLP" 251 by electron microscopy because VLPs (Fig. 2a, arrowhead A) have a more electron dense 252 outline which is distinguishable from the cell membrane, except at the budding sites of virus 253 or VLPs (Fig. 2). Taken together, these data indicate that the particles observed in the EM 254 are true viral like particles.

255

256 NAs on the particle surface were found to be tetrameric in the influenza virions, which 257 is important for some of the NA functions. Using the cross-linker DTSSP, multimeric NA were 258 protected from urea and we were able to detect NA multimeric complexes comparable to that 259 found on fully infectious H1N1 virions. This result was expected as maturation of the NA has 260 been described to take place in the endoplasmic reticulum (ER) where the NA-tetramers 261 form before going through the Golgi network to the assembly site at the plasma membrane 262 (Saito et al., 1995). Therefore, budding of the NA-VLPs (or virus) from the cell surface will be 263 expected to incorporate only mature tetrameric NA proteins with similar oligomerization as 264 would the influenza virus. Failure to detect NA from virions after DTSSP treatment may be 265 caused by conformational changes of the protein upon conjugation. The cross-linker may 266 also modify or hide the residues (such as lysine) involved in the antibody binding site. Our 267 data indicated that NA on the VLP surface was in oligomeric form although the technique 268 used did not allow us to quantify the ratio between the monomer, dimer, trimer and tetramer 269 (Fig. 6).

270

All three neuraminidases included in the study were able to cleave cell surface sialic acids in both α -2,3 and α -2,6 linkage. As the technique used is qualitative rather than quantitative, we could not quantify a preference in the cleavage activity to sialic acid with α - 274 2,3 linkage (Supplementary data S2), as mentioned in previous findings using H1N1 and 275 H3N2 virus NA (Mochalova *et al.*, 2007; Franca de Barros *et al.*, 2003). We detected a 276 significant increase of β -Gal-GalNAc in NA-expressing cells by the PNA binding. This 277 supports the role of NA enzymatic activity during the initial stage of infection by helping the 278 virus to penetrate through the mucus layer where sialic acid is mainly linked to Gal-GalNAc in 279 α -2,3 configuration.

280

281 Neuraminidase is an important viral component of influenza viruses and the most 282 effective anti-influenza drugs in the market are NA inhibitors. Although NA has been studied 283 for decades, most of the data were obtained from purified virion which requires access to a 284 high bio-containment laboratory when dealing with highly pathogenic avian influenza viruses. 285 Purified NA proteins were also widely used for NA study but these isolated NA may not have 286 the same properties as NA on viral surface. It was in fact reported that substrate specificities 287 of sialidase activity from purified NA and their original viruses were not identical (Nagai et al., 288 1995). NA-VLPs produced in our study, though non-infectious, were multivalent, antigenic, 289 enzymatically active and morphologically similar to native influenza viruses. Therefore they 290 could be a preferable alternative to recombinant NA peptides or proteins as immunogen to 291 produce antibodies against neuraminidase or as antigens for ELISA type assays. In addition, 292 because NAs on the VLPs surface were not only functionally active but also presented in 293 multimeric form, these VLPs are a useful tool to investigate NA interactions with the host 294 cells, as well as neuraminidase inhibitor drugs.

295

296 Methods

297 Plasmids. Plasmids pcDNA-HA, pcDNA-NA(H5), and pcDNA-M1 respectively 298 corresponding to DNA sequences of HA (GI:126361929), NA (GI: 126361907) from influenza 299 A/Cambodia/JP52a/2005 (H5N1) and M1 (GI: 81975893) from influenza 300 A/Goose/Guangdong/1/96 (H5N1) were cloned into the mammalian expression vector 301 pcDNA3.1 (Invitrogen). Both non-tagged and FLAG-tagged HA and NA proteins in the C-

302 terminus were used. For the study of neuraminidase from different viral subtypes, plasmids 303 pcDNA-NA(H1) and pcDNA-NA(pdmH1) encoding the FLAG-tagged NA of influenza 304 A/Gansu/Chenguan/1129/2007 (seasonal H1N1; GI:194140557) and A/California/04/2009 305 (swine origin pandemic H1N1; GI:227977118) were prepared respectively. Enzymatically 306 inactive pcDNA-NA(E262D) was prepared from pcDNA-NA(H5) by point mutation using 307 QuikChange® II Site-Directed Mutagenesis Kit (Stratagene) according to manufacturer's 308 instructions and post-sequencing selection of clones based on NA-Star chemoluminescent 309 assay (Applied Biosystems).

310

Cells and viruses. HEK-293T and MDCK cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10 % fetal bovine serum (FBS) and 1 % penicillin-streptomycin at 37 °C with 5 % CO₂. Influenza A/WSN/33 (H1N1) virus was propagated in MDCK cells with culture medium supplemented with 0.5 μ g.mL⁻¹ TPCK-treated trypsin. Highly pathogenic avian influenza (HPAI) A/Hong Kong/483/97 H5N1 virus was propagated in MDCK in MEM culture medium.

317

318 Antibodies and Western blotting. Vaccinated chicken sera containing anti-HA 319 antibodies (haemagglutination inhibition titer >256) and polyclonal antibodies from rabbit 320 hyper-immunized with avian Influenza A neuraminidase (Abcam) were used to detect non-321 tagged HA and NA proteins respectively. Anti-FLAG monoclonal mouse antibody (Sigma) 322 was used to detect FLAG-tagged HA and NA. Monoclonal mouse antibody GA2B (Abcam) 323 was used for the detection of influenza M1 protein. For western blotting, samples were 324 resolved in 4-12 % SDS-PAGE (Invitrogen), electroblotted to polyvinylidene fluoride 325 transfer membrane, hybridized with appropriate antibodies and detected with ECL Western 326 Detection Reagent (Amersham). Protein size was estimated using the Novex® Sharp Pre-327 stained Protein Standard (Invitrogen). The fraction of protein released in supernatant (SN) 328 was expressed as a percentage of overall expressed protein both in lysates and in SN 329 adjusted to the respective volumes followed by normalization relative to GAPDH housekeeping protein expression detected with anti-GAPDH Mouse Monoclonal (6C5) antibody (Abcam). Quantification was performed by densitometry on scanned images obtained using Scion Image Beta 4.0.3 (Scion Corporation). Each quantification was associated with a calibration curve using a range of BAP-flag protein (Sigma) covering the range of concentration measured. The exposure times were chosen in order to quantify the signal intensity within the linear range of the calibration curve below saturation of the signal as monitored by the image analysis.

337

338 Detection of VLP production in cells expressing influenza HA, NA and M1 339 **proteins.** HEK-293T cells were transfected with different combinations of plasmids using 340 CalPhos Mammalian Transfection Kit (Clontech) according to the manufacturer's instructions. 341 The amount of plasmids pcDNA-HA, pcDNA-NA(H5) and pcDNA-M1 in the transfection 342 mixture was 5 µg each, and empty vector was used to replace the omitted plasmids when 343 appropriate. At 12 hours post-transfection, the medium was replaced with fresh DMEM-10% 344 FBS, and exogenous bacterial neuraminidase (Vibrio cholerae, Roche; 6.25 mU.mL⁻¹) was 345 added to the medium when appropriate. At 60 hours post-transfection, supernatant was 346 collected and cell debris were removed by filtration through 0.45 µm filters. Filtered culture 347 medium was then layered onto a 30 % sucrose-HEPES buffer (2 mM HEPES, 125 mM NaCl, 348 0.9 mM CaCl₂, 0.5 mM MgCl₂, pH 7.4) cushion and centrifuged at 28,000 rpm for 2.5 hours at 349 4 C and the pellet was resuspended in HEPES buffer. Cell lysates were collected at the 350 same time by the addition of lysis buffer (20 mM Tris-HCl, 1 mM EDTA, 150 mM NaCl, 0.1 % 351 SDS, 1 % Triton-X, protease inhibitor mixture (Roche Diagnostics) followed by centrifugation 352 at 13,000 rpm for 10 minutes. Samples were mixed with 4X LDS sample buffer (Invitrogen) 353 and dithiothreitol (DTT, 100 mM), boiled for 8 minutes and analyzed by western blotting as 354 described above.

355

356 **H5N1 virion preparation and analysis.** MDCK cells, plated the day before, were 357 inoculated for 1 h at 37 °C with H5N1 virus at multiplicity of infection of 1. After washing with 358 phosphate buffer saline (PBS), infected cells were incubated at 37 °C overnight. Twenty 359 hours post-infection, the supernatant was harvested, clarified by centrifugation before 360 concentration on 100 kDa pore filter Amicon system (Millipore) and finally resuspended in 361 lysis buffer (50 mM KCI, 1 % NP-40, 25 mM HEPES (pH 7.4), 1 mM DTT, protease inhibitor 362 mixture (Roche Diagnostics)). Cell lysates were also collected after addition of lysis buffer to 363 the infected cells. In each sample, loading buffer (prepared from 6X: 62.5 mM Tris-HCI (pH 364 6.8), 25 % Glycerol, 2 % SDS, 0.01 % bromophenol blue, 5 % β -mercaptoethanol) was 365 added, boiled for 10 minutes so they can be taken out from the biosafety level 3 laboratory 366 (BSL-3).

367

368 NA-VLP and H1N1 virion preparation and analysis. For NA-VLP production, HEK-369 293T, HeLa, and A549 cells were transfected with 10 µg of pcDNA-NA(H5), pcDNA-NA(H1) 370 or pcDNA-NA(pdmH1) as indicated above. Transfection with equal amount of empty vector 371 was carried out as a mock control. After ultracentrifugation of clarified supernatant (as 372 described above), the pellet was resuspended in NTE (100 mM NaCl, 10 mM Tris (pH 7.4), 1 373 mM EDTA), put onto a sucrose gradient (20-60 %) and centrifuged at 35,000 rpm for 2 hours 374 at 4 °C. Twenty fractions were manually collected from the top to bottom.

375

Influenza A/WSN/33 (H1N1) virions were purified from infected MDCK cultures at 72 hours post-infection. The supernatant was harvested and clarified by centrifugation at 4,000 rpm for 15 min. Virions were then pelleted, put onto sucrose gradient (20-60 %) and centrifuged as described above for VLPs. Recombinant NA proteins purified from transfected cell lysates by immunoprecipitation using anti-FLAG M2-agarose affinity gel (Sigma), were layered onto sucrose gradient as above, as additional control.

382

All the upper-mentioned sucrose fractions of VLPs, virions and purified proteins were boiled in LDS loading buffer with DTT, and analyzed by western blotting (see above). Sialidase activities of the NA-VLPs and purified proteins were measured by NA-Star chemoluminescent assay (Applied Biosystems). Oligomerization of NA on the VLP surface
was studied using the cross-linker 3,3´-dithio-bis(sulfosuccinimidylpropionate) (DTSSP,
Thermo Scientific). NA-VLPs were mixed with DTSSP (5 mM) to stabilize the multimeric NA
complexes, prior to the addition of LDS loading buffer followed by addition of urea (8 M) or
DTT (100 mM) when appropriate. DTSSP pre-treated VLPs were directly analyzed by
western blotting as described above.

392

Electron microscopy (EM). Transfected HEK-293T cells were fixed with 2.5 % glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) and post-fixed with 1 % osmium tetroxide. The fixed cells were then pelleted in 1 % agar, dehydrated in increasing concentration of ethanol, and embedded in epoxy resin. Ultra-thin sections of the samples were visualized with Philips EM208s electron microscope after staining with 2 % aqueous uranyl acetate and Reynold's lead citrate.

399

Kinetics of NA-VLP release. HEK-293T cells were transfected with pcDNA-NA(H5) or pcDNA-NA(pdmH1) as mentioned above. At 12 hours post-transfection, the culture medium was replaced with fresh DMEM-10% FBS. Supernatant and cell lysates were collected at 20, 28, 36 and 60 hours post-transfection as described above. Samples were boiled with LDS loading buffer and DTT for 8 minutes and were analyzed by western blotting.

Effect of neuraminidase enzymatic activities on production of VLP. A single amino acid change E262D in the NA is known to abrogate the sialidase activity of the NA molecule (Huang et al., 2008). HEK-293T cells were transfected with pcDNA-NA(H5) or pcDNA-NA(E262D), with or without pcDNA-HA. At 12 hours post-transfection, the culture media were refreshed and sialidase inhibitor (Oseltamivir carboxylate, 50 µM) was added to the medium as indicated. Supernatant and cell lysates were collected at 60 hours posttransfection and protein levels in VLPs were analyzed by western blotting. Sialidase activities 413 of the supernatant were measured by NA-Star chemoluminescent assay (Applied414 Biosystems).

415

416 Lectin staining for cells surface sialic acid. Lectin histochemistry analysis was 417 performed as previously described (Nicholls et al., 2007). Briefly, HEK-293T cell lines stably 418 or transiently expressing N1 from seasonal H1N1 (HuN1) or pandemic H1N1 (pdmN1) or 419 avian influenza H5N1 (AvN1) were fixed with 4 % paraformaldehyde (PFA). After washing 420 with PBS, lectin staining was performed with Sambucus Nigra agglutinin (SNA-I, Roche) and 421 *Maackia amurensis* agglutinin (MAA-II, Vector) to detect α -2,6 or α -2,3 linked sialic acid (SA) 422 respectively. Peanut agglutinin (PNA, Roche) was used to identify the terminal Gal-GalNAc. 423 Biotin conjugated lectins were used with avidin-peroxidase counterstaining (Vector).

424

425 Acknowledgements

This work was supported by the Area of Excellence Scheme of the University Grants Committee (grant AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the University Grants Committee project HKU 10208924 and HKU 4774109, the French Ministry of Health, RESPARI Pasteur network and the Li Ka Shing Foundation. We would like to thank Dr K. Y. Hui (Department of Microbiology, the University of Hong Kong) for carrying out the bio-safety level-3 work on H5N1.

432

433 **References**

434 Air, G.M. & Laver, W.G. (1989). The neuraminidase of influenza virus. *Proteins* 6, 341-356.

435

Barman, S., Adhikary, L., Chakraborti, A.K., Bernas, C., Kawaoka, Y. & Nayak, D.P.
(2004). Role of transmembrane domain and cytoplasmic tail amino acid sequences of
influenza A virus neuraminidase in raft-association and virus budding. *J Virol* 78, 5258-69.

439

440 Bucher, D. & Palese, P. (1975). The biologically active proteins of influenza virus:

- 441 neuraminidase. In *The influenza viruses and influenza*, pp. 83-123
 442 Edited by E *Kilbourne*, Academic Press, New York.
- 443
- Chen, B.J., Leser, G.P., Morita, E. & Lamb, R.A. (2007). Influenza virus hemagglutinin and
 neuraminidase, but not the matrix protein, are required for assembly and budding of plasmidderived virus-like particles. *J Virol* 81, 7111-23.
- 447
- França de Barros, J. Jr., Sales Alviano, D., da Silva, M.H., Dutra Wigg, M., Sales
 Alviano, C., Schauer, R. & dos Santos Silva Couceiro, J.N. (2003). Characterization of
 sialidase from an influenza A (H3N2) virus strain: kinetic parameters and substrate specificity. *Intervirology* 46, 199-206.
- 452
- 453 Fujiyoshi, Y., Kume, N.P., Sakata, K. & Sato, S.B. (1994). Fine structure of influenza A
 454 virus observed by electron cryo-microscopy. *EMBO J* 13, 318-26.
- 455
- 456 **Gómez-Puertas, P., Albo, C., Perez-Pastrana, E., Vivo, A. & Portela, A. (2000).** Influenza 457 virus matrix protein is the major driving force in virus budding. *J Virol* **74**, 11538-47.
- 458
- Huang, I.C., Li, W., Sui, J., Marasco, W., Choe, H. & Farzan, M. (2008). Influenza A virus
 neuraminidase limits viral superinfection. *J Virol.* 82, 4834-43.
- 461
- Jin, H., Leser, G.P., Zhang, J. & Lamb, R.A. (1997). Influenza virus hemagglutinin and
 neuraminidase cytoplasmic tails control particles shape. *EMBO J* 16, 1236-47.
- 464
- Latham, T. & Galaeza, J.M. (2001). Formation of wild-type and chimeric influenza virus-like
 particles following simultaneous expression of only four structural proteins. *J Virol* 75, 615465.
- 468

469	Liu, C., Eichelberger, M.C., Compans, R.W. & Air, G.M. (1995). Influenza type A virus
470	neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol 69,
471	1099-106.

472

473 Matrosovich, M.N., Klenk, H.D. & Kawaoka, Y. (2006). Receptor specificity, host range and
474 pathogenicity of influenza viruses. In *Influenza virology: current topics*, pp 95-137. Edited by
475 Y *Kawaoka*, Caister Academic Press, Wymondham, England.

476

477 Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A. & Klenk, H.D. (2004).
478 Neuraminidase is important for the initiation of influenza virus infection in human airway
479 epithelium. *J Virol* 78, 12665-7.

480

481 Mochalova, L., Kurova, V., Shtyrya, Y., Korchagina, E., Gambaryan, A., Belyanchikov, I.

482 & Bovin, N. (2007). Oligosaccharide specificity of influenza H1N1 virus neuraminidases.
483 Arch Virol 152, 2047-57.

484

Nagai, T., Suzuki, Y. & Yamada, H. (1995). Comparison of substrate specificities of
sialidase activity between purified enzymes from influenza virus A (H1N1 and H3N2
subtypes) and B strains and their original viruses. *Biol Pharm Bull* 18, 1251-1254.

488

Nayak, D.P., Balogun, R.A., Yamada, H., Zhou, Z.H. & Barman, S. (2009). Influenza virus
morphogenesis and budding. *Virus Research* 143, 147-61.

491

492 Neumann, G., Watanabe, T. & Kawaoka, Y. (2000). Plasmid-driven formation of influenza
493 virus-like-particles. *J Virol* 74, 547-551.

495	Nicholls, J.M., Bourne, A.J., Chen, H., Guan, Y. & Peiris, J.S. (2007). Sialic acid receptor
496	detection in the human respiratory tract: evidence for widespread distribution of potential
497	binding sites for human and avian influenza viruses. Respir Res 8, 73.
498	

Noda, T., Sagara, H., Yen, A., Takada, A., Kida, K., Cheng, R.H. & Kawaoka, Y. (2006).
Architecture of ribonucleoprotein complexes in influenza A virus particles. *Nature* 439, 490492.

502

503 Ohuchi, M., Asaoka, N., Sakai, T. & Ohuchi, R. (2006). Roles of neuraminidase in the initial
504 stage of influenza virus infection. *Microbes Infect* 8, 1287-93.

505

Saito, T., Taylor, G. & Webster, R.G. (1995). Steps in maturation of influenza A virus
neuraminidase. *J Virol* 69, 5011-7.

508

Shaw, M.L., Stone, K.L., Colangelo, C.M., Gulcicek, E.E. & Palese, P. (2008). Cellular
proteins in influenza virus particles. *PLoS Pathog* 4,e1000085.

511

- 512 Su, B., Wurtzer, S., Rameix-Welti, M.A., Dwyer, D., van der Werf, S., Naffakh, N., Clavel,
- 513 F. & Labrosse, B. (2009). Enhancement of the influenza A hemagglutinin (HA)-mediated

cell-cell fusion and virus entry by the viral neuraminidase (NA). *PLoS One* **4**, e8495.

515

516 **Tscherne**, **D.M.**, **Manicassamy**, **B. & Garcia-Sastre**, **A. (2010)**. An enzymatic virus-like 517 particle assay for sensitive detection of virus entry. *J Virol Methods* **163**, 336-43.

518

519 Wang, D., Harmon, A., Jin, J., Francis, D.H., Christopher-Hennings, J., Nelson, E.,

520 Montelaro, R.C. & Li, F. (2010). The Lack of an Inherent Membrane Targeting Signal is

- 521 Responsible for the Failure of the Matrix (M1) Protein of Influenza A Virus to Bud into Virus-
- 522 Like-Particles. *J Virol* **84**, 4673-81.

524 Zhang, J., Pekosz, A. & Lamb, R.A. (2000). Influenza virus assembly and lipid raft
525 microdomains: a role for the cytoplasmic tails of the spike glycoproteins. *J Virol* 74, 4634-44.

527 Figures legends:

528

529 Figure 1. Detection of viral proteins from transfected HEK-293T cells. (a) Evaluation of 530 the contribution of different viral structural proteins HA, NA, and M1 from H5N1 expressed in 531 HEK-293T cells in combinations as indicated and comparison with H5N1 whole virus (b). 532 Exogenous bacterial NA (exoNA) was added to the medium when indicated. VLPs released 533 in the culture medium were harvested at 60 hr post-transfection and pelleted through a 30 % 534 sucrose cushion. Samples were analyzed by SDS-PAGE followed by immunoblotting to 535 detect different viral proteins together with the lysates of transfected cells. Percentages of 536 protein released were calculated as fraction detected in the supernatant from the overall 537 protein detected both in lysates (Lys) and supernatants (SN). Apparent sizes of the HA, M1 538 and NA were ~27 kDa (HA2), ~28 kDa and ~55 kDa respectively.

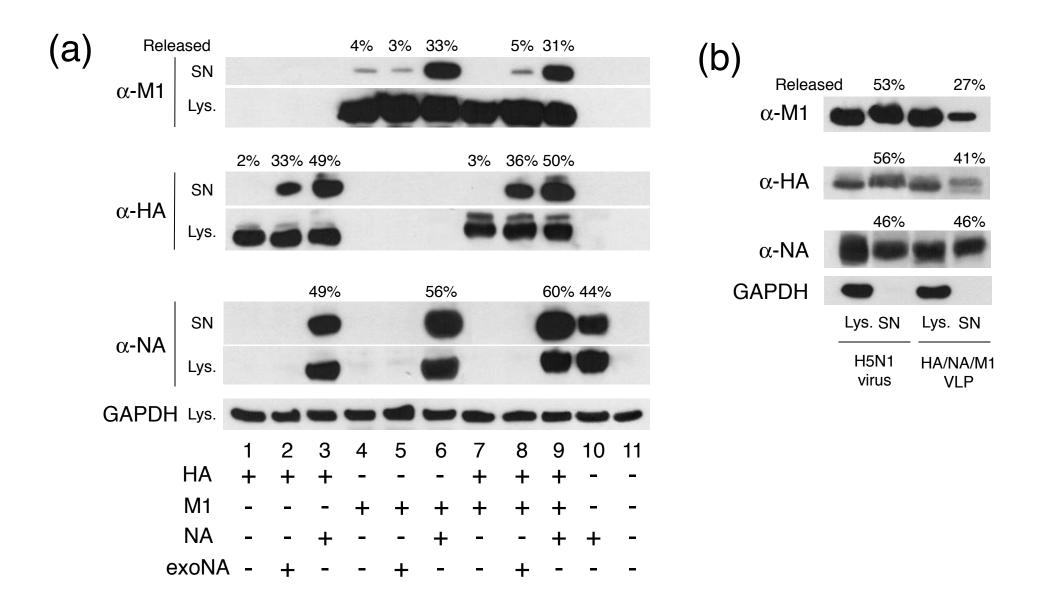
539

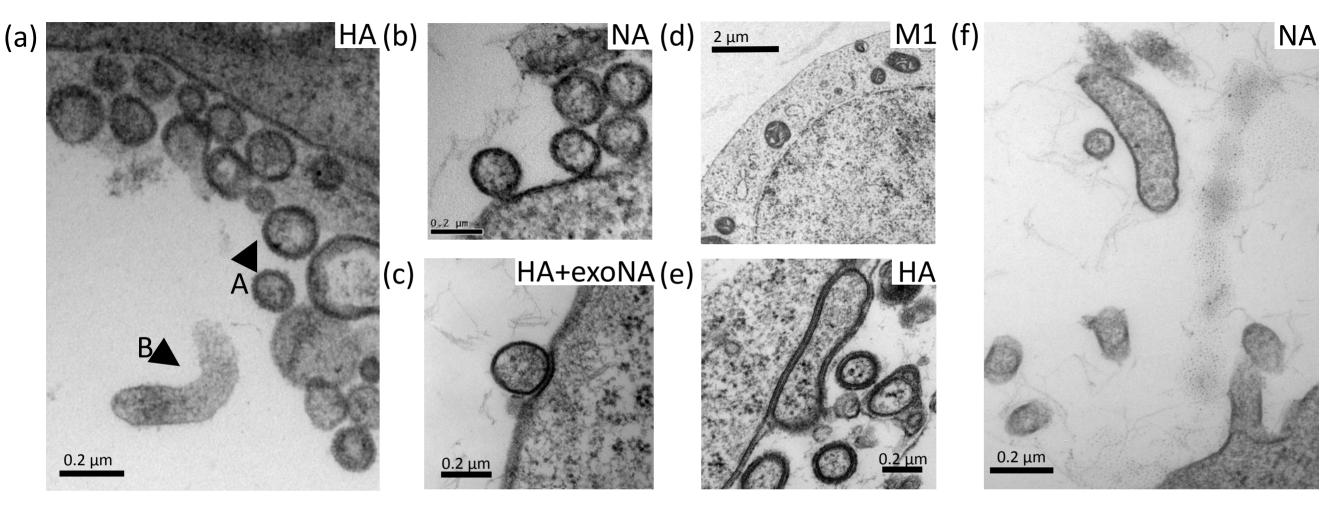
Figure 2. Transmission Electron Microscopy of cells expressing HA, NA and M1 from A/Cambodia/JP52a/2005 (H5N1). HEK-293T cells were processed for electron microscopy at 36 h post-transfection. VLP budding was observed in cell expressing HA without exogenous NA treatment (a & b) or with the addition of exogenous NA (c) or when NA was expressed alone (d & f), but not when M1 was expressed alone. (e). Arrowheads : A: VLP; B: filopodia.

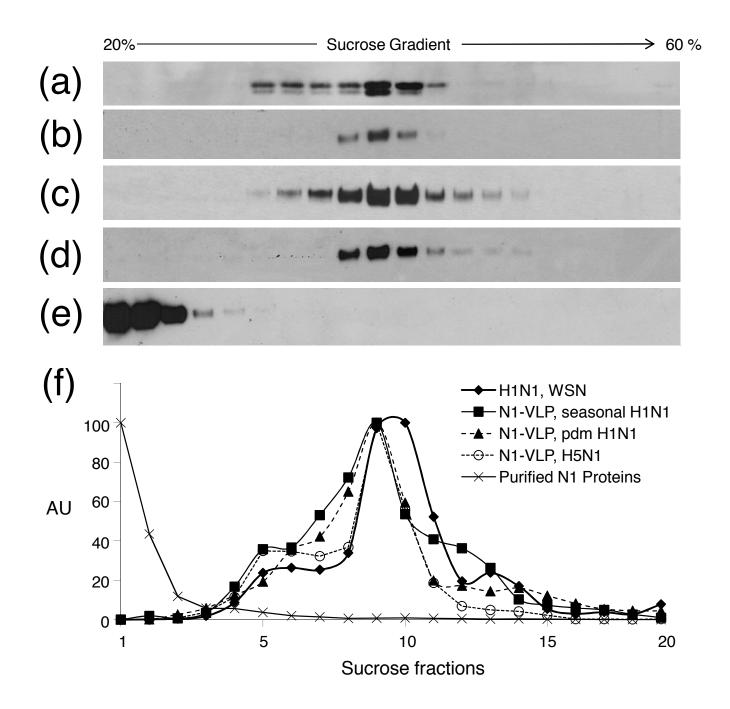
546

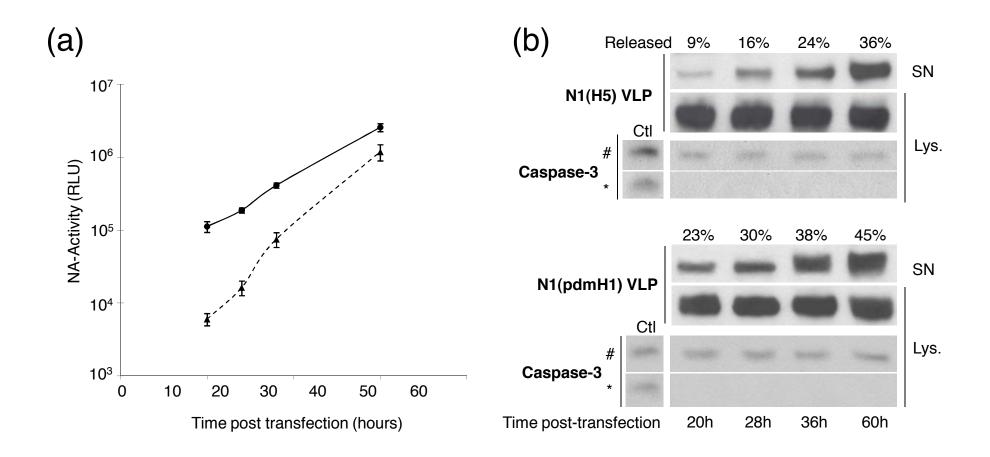
547 Figure 3. Physical and functional characterization of NA-VLPs. Western blot analysis of 548 fractions from sucrose gradient from 20 % (fraction 1) to 60 % (fraction 20) sucrose of 549 A/WSN/33 (H1N1) virions collected from infected MDCK cells (a), from supernatant of HEK-550 293T cells transfected with NA plasmid from seasonal H1N1 (b), pandemic H1N1 (c), HPAI 551 H5N1 (d) or from immuno-purified N1 protein (e). Neuraminidase enzymatic activity of the 552 corresponding sucrose fractions were tested with NA-Star chemoluminescent assay (f) and 553 expressed in arbitrary unit (AU) defined as the percentage of the fraction with the highest 554 signal.

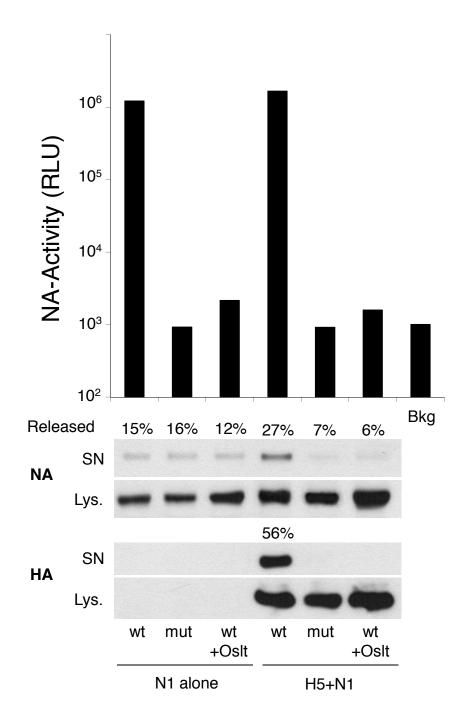
556 Figure 4. Kinetics of N1-VLP release. (a) Neuraminidase enzymatic activity (expressed in 557 relative luminescence unit, RLU) from the supernatant of HEK-293T cells transfected with NA 558 from either pandemic H1N1 (plain line) or H5N1 (broken line) tested with NA-Star 559 chemoluminescent assay. Experiment performed in triplicate. (b) Evaluation of percentage of 560 NA released by western blot analysis of supernatant and transfected cell lysates; and 561 monitoring of Caspase-3 cleavage (uncleaved (#) and cleaved (*) forms). The percentage of 562 release was calculated as indicated in Methods section. Lysate from H5N1 virus-infected 563 cells was used as positive control (Ctl) for cleaved form of caspase-3.


564


Figure 5. Influence of NA sialidase activity on NA-VLP release. Neuraminidase enzymatic activity (expressed in relative luminescence unit, RLU) from the supernatant of HEK-293T cells transfected with NA (either from H5N1 wild-type (wt), or with mutation E262D (mut)) alone or co-expressed with HA; in absence or presence of Oseltamivir (Oslt). Evaluation of percentage of NA released by western blot analysis of supernatant (SN) and transfected cell lysates (Lys) (2X). Percentage of NA release was calculated as indicated in Methods section. Bkg: background level.


572


573 Figure 6. Detection of multimeric NA complexes on VLPs. N1-VLPs were resolved in 4-574 12 % SDS-PAGE after heating in SDS loading buffer (lane 1), and with the addition of urea 575 or DTT (lanes 2 and 3 respectively). Similar treatments were done on NA-VLPs pre-treated 576 with cross-linker DTSSP (lanes 4 to 6). Samples from SDS-PAGE were then transfer to 577 PVDF membrane and immunoblotted with monoclonal anti-FLAG antibodies. H1N1 virions 578 were included for comparison and NA were detected using anti-NA antibodies. Apparent 579 sizes of NA monomer, dimer, trimer and tetramer were ~55 kDa, ~110 kDa, ~165 kDa, and 580 ~220 kDa respectively.


581

