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Abstract

Background: Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through
cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease
cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length
S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway
proteases.

Methodology/Principal Findings: Purified triSpike proteins were readily cleaved in vitro by three different airway proteases:
trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses
identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent
enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE.
Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of
arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did
not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A
SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment.

Conclusions/Significance: These results suggest that SARS S-protein is susceptible to airway protease cleavage and,
furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon
ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system
and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.
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Introduction

Proteolytic cleavage of the viral envelope glycoprotein into a
receptor binding and a fusogenic transmembrane subunit is
important to regulate virus entry and infectivity [1]. Previous
studies showed that viral glycoprotein activation is mediated by
secreted proteases recognizing either monobasic or multibasic
cleavage sites [2]. Cleavage of viral glycoprotein has been
demonstrated in retrovirus, ortho and paramyxoviruses to regulate
virus entry and fusion [3,4,5]. The extracellular processing of the
envelope glycoprotein has a major impact on the infectivity of
virulent or avirulent strains of influenza viruses, Sendai virus and
Newcastle disease virus [6,7,8]. A typical example is influenza A
virus, where virus-cell fusion activity is induced by post-translational
proteolytic cleavage of the envelope glycoprotein that is mediated by
trypsin-like protease in the bronchial epithelium and airway

secretion [9]. Several proteases such as tryptase clara, mini-plasmin,
ectopic anionic trypsin, mast-cell tryptase and tryptase TC30, which
have been isolated from airway epithelial, can selectivity cleave the
consensus cleavage motif of human influenza A virus envelope
glycoprotein [10,11,12,13] and determine the virus tropism and
infectivity. Recent advance of human genome studies identified a
large number of transmembrane serine protease (TMPRSS).
Various TMPRSS members with known airway localization have
been identified from the respiratory tract. TMPRSS11a, one of the
newly identified members of type II transmembrane serine
proteases, is expressed in upper respiratory tract (pharynx and
trachea) (unpublished data). However, less is known about
TMPRSS that activate pneumotropic virus under natural infection.
Although enhancement of virus infection has been demonstrat-

ed for bovine (BCoV) and rat (RCV) coronaviruses by treatment of
cells with trypsin [14,15], the precise role of trypsin during
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coronavirus infection is still unknown. Several members of
coronavirus possess a protease cleavage site, which is essential
for infectivity and virus-cell membrane fusion, and cleavage at
these sites yields two non-covalently linked subunits S1 and S2
[16,17]. The N-terminal S1 subunit is responsible for receptor
binding whereas the membrane-anchored S2 subunit is important
for fusion between viral and cellular membranes. Evidence from
mouse hepatitis virus (MHV) and BCoV suggested the importance
of S protein cleavage into two non-covalently linked S1 and S2
subunits that remain on the virus envelope surface during virus
maturation [18,19]. Uncleaved S protein is functional but cleavage
may enhance cell fusion activity and/or virus infectivity [20,21].
Susceptibility of S protein to cleavage depends on virus strains and
host cell types. Similar to group I coronaviruses, sequence analysis
suggests that S protein from SARS-CoV is not expected to be
cleaved since typical amino acid cleavage sites found in
coronavirus group II and III (RRFRR, RRSRR, RSRR, RARS
and RARR) are not located in the SARS S protein [22].
Recent findings have suggested the importance of trypsin

treatment in activating SARS spike glycoprotein mediated cell-cell
fusion [23]. Syncytia formation was observed between SARS spike
glycoprotein expressing 293T cells and VeroE6 cells after brief
trypsin treatment [24]; trypsin has been shown to induce cleavage of
monobasic cleavage site and activate influenza viruses in cell culture
system [4,25]. It is not known whether the functionality of spike
glycoproteins is dependent on the activity of trypsin inducing their
proteolytic cleavage. Nothing is known about the role of proteases
that cleave/modify SARS spike glycoprotein under natural infection.
Conformational reorganization of SARS spike glycoprotein has

been demonstrated from cryo-electron microscopic analysis whereby
structural transition of the spike glycoprotein has been observed when
irradiated SARS-CoV virion binds to the virus receptor, angiotensin-
converting enzyme (ACE2) [26]. These experiments showed that
receptor-binding and subsequent membrane fusion occur with
different phases of structural re-arrangements. Possibly, the prote-
ase-modified SARS spike glycoprotein is de facto the glycoprotein
responsible for virus entry. To address this possibility we have
investigated whether cleavage has any significant effect on SARS-
CoV entry into airway epithelial cells by using S-pseudotyped
lentiviral vectors (SARS-CoVpp) encoding a luciferase reporter gene
to mimic SARS-CoV entry. We observed that SARS-CoV spike
glycoprotein can be efficiently cleaved by several airway proteases
and that this processing enhances entry of SARS-CoVpp. Further-
more, we have identified the putative cleavage sites of airway
proteases and, by site-directed mutagenesis, have determined the role
of specific amino acid residue for proteolytic processing of the
envelope glycoprotein, and for SARS-CoVpp entry into human
airway epithelial cells (16HBE) in vitro. While this manuscript was still
in progress, one of the two natural cleavage sites described here, at
position 797, was reported in a separate independent study using only
trypsin for cleavage [27]. This study further supports and strengthens
the demonstration of the critical role of receptor-dependent cleavage
of spike protein by airway proteases, providing deeper insights into
the exact mechanism of virus entry enhancement.

Results

Susceptibility of Various Human Airway Epithelial Cells to
SARS-CoV S Mediated Infection
The respiratory tract has been shown to be the primary site for

SARS-CoV entry [28,29]. In order to study the effects of airway
protease on SARS-CoV entry mechanism, the susceptibility of
various human airway epithelial cell lines were tested for SARS-
CoV S-mediated infection. To monitor SARS-CoV entry, we

pseudotyped a lentiviral vector with the SARS-CoV Spike
glycoprotein (referred to herein as SARS-CoVpp). These recom-
binant viruses encoding the luciferase reporter gene and expressing
the SARS-CoV Spike glycoprotein at the virion surface have been
shown to faithfully mimic the SARS-CoV entry process [30].
Three different airway cell lines: 16HBE, BEAS-2B and A549
were analyzed for SARS-CoVpp infection. We observed that only
16HBE cells (human bronchial epithelial cells) were efficiently
infected by SARS-CoVpp, with levels of luciferase activity similar
to those measured in the positive control cell line VeroE6
(Figure 1A). By contrast, another human bronchial epithelial cell
line, BEAS-2B, and a human alveolar cell line, A549 were non-
permissive to SARS-CoVpp infection (Figure 1A). The suscepti-
bility to SARS-S mediated infection correlated well with ACE2
expression [31], which was indeed detected by RT-PCR only in

Figure 1. Susceptibility of various human airway epithelial cells
to SARS-CoV S-mediated infection. A, VeroE6 (10,000 cells/well),
16HBE, BEAS-2B and A549 (20,000 cells/well) cells were seeded onto 96-
well plates 24 h before SARS-CoVpp infection. Pseudotypes (SARS-
CoVpp) were collected from culture medium and concentrated as
described previously [33]. SARS-CoVpp were incubated with various cell
lines and transduction was measured by determination of the luciferase
activity expressed as luminescence counts per second (LCPS). VeroE6
cells were used as positive control. All experiments were performed in
triplicates and data are presented as means6SE of two or three
independent experiments. B, ACE2 expression from various mammalian
airway cell lines. Cell lysates were collected and ACE2 RNA molecules
were detected by RT-PCR. Amplified ACE2 cDNA products from 16HBE,
BEAS-2B and A549 are shown in lanes 2 to 4, respectively. VeroE6 cell
line (lane 1) was used as positive control for ACE2 expression. The
quantity of total RNA templates was normalized to b-actin expression as
shown from the lower panel. Lane M represents the DNA size marker
and the size of DNA bands are indicated on the right.
doi:10.1371/journal.pone.0007870.g001
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16HBE and VeroE6 but not in A549 and BEAS-2B cells
(Figure 1B). These results support previous data showing ACE2
is the functional cellular receptor for SARS-CoV and 16HBE cells
were therefore chosen for the subsequent protease cleavage study.

Proteolytic Modification of Immunopurified Trimeric-S
Glycoprotein (TriSpike)
The susceptibility of purified recombinant triSpike proteins to

protease cleavage was investigated with airway proteases because
SARS-CoV is pneumotropic. Protease cleavage on purified triSpike

protein was performed by treating the triSpike protein with airway
proteases followed by amino acid sequence analyses. Results
indicated that different airway proteases recognize amino acid
residues of Spike as cleavage sites (Figure 2A). We also observed
additional bands, migrating between 75 and 150 kDa, which may
represent either incomplete cleavage products or a contamination of
the immunopurified triSpike. Amino acid sequences corresponding
to the cleaved SARS spike were identified and sequenced
(Figure 2A). The efficiency of protease cleavage activity was also
studied by comparing the yields of cleavage products obtained from

Figure 2. Identification of airway protease cleavage site(s) along the amino acid sequence of SARS-CoV S glycoprotein. A, Purified
triSpike proteins (lane 1: detected by Western immunoblot, lane 2: silver staining) were incubated with 0.2 mU of trypsin (lane 3), plasmin (lane 4) or
TMPRSS11a (lane 5) identified and purified from lungs and bronchi. Cleavage products were visualized and prepared as described in Materials and
Methods. Amino acid sequences (T1, T2, P1, P2, N1, and N2) corresponding to the cleaved triSpike proteins are shown in the lower panel. B, Three
different types of airway proteases (trypsin, plasmin and TMPRSS11a) utilize the same amino acid residues for protein cleavage. A schematic diagram
representing the amino acid sequence of SARS-CoV S glycoprotein shows on top of the figure. A red circle indicates the location of potential cleavage
site along the Spike glycoprotein. Red dots represent the basic amino acids, potential protease cleavage sites (red letter) and two red arrows indicate
the cleavage sites identified. NTD – N-terminal domain, RBD – receptor-binding domain, RBM – receptor-binding motif, FP – fusion peptide, HR-N – N-
terminal of heptad-repeat, HR-C – C-terminal of heptad-repeat, IC – Intracellular tail.
doi:10.1371/journal.pone.0007870.g002
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the HPLC analysis using synthetic peptides corresponding to the
cleaved SARS spike sequence. Our results showed that trypsin
recognize and cleave peptides at both position R667 and R797
more efficiently than the other proteases. TMPRSS11a cleave
peptides at the position R667 more efficiently than R797 whereas
plasmin cleaves peptides at the position R797 more efficiently than
R667 (data not shown). Sequence analysis of cleavage products
showed that trypsin, plasmin and TMPRSS11a proteases cleave the
Spike glycoprotein at positions 667 and 797 (Figure 2B). Interest-
ingly, amino acid residue 667 has been previously proposed to be
the potential cleavage site in Spike generating the S1 and S2
subunits [32]. Because protease processing of coronaviruses surface
glycoproteins into S1 and S2 subunits is important to activate the
fusion between the viral envelope and the cellular membrane during
virus entry step [18,21], cleavage by trypsin, plasmin and
TMPRSS11a proteases at amino acid residue 667 suggests the

involvement of airway proteases during virus entry and fusion.
Amino acid residue 797 is also sensitive to cleavage by trypsin,
plasmin and TMPRSS11a proteases. This site, which lies within the
S2 subunit region, could be important for its further rearrangement,
possibly bringing the virus envelope and cellular membrane in close
proximity to facilitate virus-cell fusion. Altogether, we have
identified at least two amino acid residues which are sensitive to
airway protease cleavage in vitro and may be important for in vivo
virus entry and fusion.

Effect of Airway Proteases on SARS-S Mediated Virus Entry
We next investigated the effects of airway protease treatment on

SARS-CoVpp entry into human airway epithelial cells (16HBE
cells). Firstly, SARS-CoVpp was pre-treated with airway proteases
and then incubated with 16HBE cells. We observed that
proteolytic cleavage of Spike protein before virus attachment to

Figure 3. Effect of airway proteases treatment on SARS-CoVpp infectivity. A, SARS-CoVpp was pre-incubated with either trypsin (T) or
plasmin (P) (10 mg/ml) at 37uC for 20 min. Luciferase activity (LCPS) was measured from infected 16HBE cells. Asterisk (*) indicates a value of p,0.05
in two-tailed t tests. Experiments were performed in triplicates and values were expressed as means6SE from two independent experiments. SARS-
CoVpp entry into susceptible cell lines was enhanced with the presence of airway proteases. B & C, Equal amounts of SARS-CoVpp and empp
(normalized to p24 quantity) were pre-incubated with 16HBE cells on ice for 30 min. Cells were washed twice to remove any unbound pp. Cells were
incubated with 10 mg/ml of either trypsin (T), TMPRSS11a (N) or 100 mg/ml of plasmin (P) at room temperature for 40 min. Luciferase activity (LCPS)
was measured from infected 16HBE cells. Experiments were performed in triplicates and values were expressed as means6SE from two independent
experiments. D-F, Next, SARS-CoVpp was pre-incubated with 16HBE cells on ice for 30 min. Cells were washed twice to remove any unbound pp. Cells
were incubated with various concentrations of trypsin (T), plasmin (P) or TMPRSS11a (N) at room temperature for 40 min. Luciferase activity (LCPS)
was measured from infected 16HBE cells. Asterisk (**) indicates a value of p,0.01 in two-tailed t tests. Experiments were performed in triplicates and
values were expressed as means6SE from three independent experiments.
doi:10.1371/journal.pone.0007870.g003
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cells had no enhancing effects on virus entry (Figure 3A). On the
contrary, trypsin and plasmin treatment significantly reduced the
infectivity of SARS-CoVpp (Figure 3A). According to this
observation, it is most likely that protease treatment digested out
the S1 region which is crucial for ACE2 binding, thus resulting in
reduced infectivity of SARS-CoVpp.
Since attachment to virus receptor(s) may trigger critical

conformational changes for proteolytic cleavage, we reasoned that
it was necessary to investigate whether airway proteases would
alter SARS-CoVpp entry after virus-cell attachment. 16HBE cells
were pre-incubated with SARS-CoVpp (Figure 3B) or lentiviral
vector without surface glycoprotein (referred to herein as empp)
(Figure 3C) on ice, hence allowing virus attachment but not virus
entry. Unbound SARS-CoVpp or empp was washed away and
proteases were added. Under these conditions airway protease
treatment significantly enhanced the infection by triSpike
pseudotypes (Figure 3B). To verify if the concentration of airway
proteases had any enhancement effects on virus entry, unbound
SARS-CoVpp was washed away and various concentrations of
proteases were added. The enhancement of SARS-CoVpp entry
increased with higher concentration of the proteases (Figure 3D–
F). Taken together, these observations clearly demonstrate that

airway protease activity can modulate the efficiency of SARS-CoV
entry into human ACE2-expressing airway epithelial cells, in a
manner that is step-dependent on virus-cell attachment.

Mutant SARS-CoV Spike Glycoprotein Affects Virion
Incorporation
Multiple sequence alignments were done on different isolates of

the SARS-CoV spike glycoprotein to locate the airway protease
cleavage sites (Figure 4A). Clearly, the potential airway protease
cleavage motif is relatively conserved between the various isolates
with over 90% sequence identity. In order to study the functional
role of the protease cleavage site, 2 alanine substitutions (either
single or double mutation) were generated by site-directed
mutagenesis (Figure 4B) and tested by pseudotyping lentiviral
vectors with different mutants of SARS-CoV spike glycoprotein.
Expression of wild-type and mutant envelope proteins in

transfected cells was tested by Western blot analysis (Figure 4C).
Cell lysates expressing wild–type Spike showed the characteristic
doublet of SARS spike glycoprotein (upper panel, lane 1),
indicating that SARS spike glycoprotein is expressed and
processed to incorporate high mannose or complex sugars [33].

Figure 4. Differential expression of wild-type and mutant SARS S glycoprotein and SARS-CoV pseudotype production from 293T
cells. A, Different putative spike glycoprotein sequences from SARS-CoV isolates were obtained from NCBI. Name of SARS-CoV isolates and GenBank
accession numbers are listed. Potential airway protease cleavage residues are highlighted in green. B, Three mutant constructs were made from the
wild-type SARS-CoV Spike glycoprotein cDNA cloned in the vector pcDNA3.1 as described in Materials and Methods. C, Cell lysates were collected
from 293T cells 48 h post transfection. Pseudotypes were collected from culture medium and concentrated as described previously [33]. Samples (cell
lysates or pseduotypes) were denatured, reduced and analyzed by 4–12% Bis-Tris SDS-PAGE gel and Western Blot using M2 monoclonal antibody
against the FLAG peptide. Sizes of molecular weight markers are indicated on the right. Wild-type SARS spike (lane 1), R667A (lane 2), R797A (lane 3),
R797AR667A (lane 4) and pseudotype without envelope (lane 5). D, Analysis of various types of SARS-CoVpp for viral entry. SARS-CoVpp (wild-type or
mutant SARS S glycoprotein) were incubated with 16HBE cells and transduction was measured by determination of the luciferase activity (LCPS).
Experiments were performed in duplicates and data are presented as means6SE from two independent experiments.
doi:10.1371/journal.pone.0007870.g004

Cleavage of SARS Spike

PLoS ONE | www.plosone.org 5 November 2009 | Volume 4 | Issue 11 | e7870



In the case of the mutant plasmids, the expression levels and
doublet patterns of SARS spike glycoprotein (R667A or R797A) in
cell lysates suggest that envelope protein expression and post-
translational modifications have not been significantly affected by
any of the substitutions (Figure 4C; upper panel, lanes 2–3). By
contrast, double mutation (R797AR667A) plasmids exhibited
greatly reduced levels of complex-sugar linked envelope expression
in the cell lysates, without apparent altering the addition of high-
mannose sugars (Figure 4C; upper panel, lane 4). Possibly, the
double mutation could have affected proper folding and
oligomerization, which is important for the maturation of envelope
glycoproteins.
We then aimed to establish whether mutant SARS spike

glycoprotein can efficiently incorporate into SARS-CoVpp by
Western blot analysis of pseudotyped particles purified (20%
sucrose) from cells transfected with either wild-type or mutant
plasmids. Proper virion incorporation requires surface expression
of envelope glycoprotein, and is dependent upon correct folding
and oligomerization [34,35]. As shown in Figure 4C, assembly of
co-transfected foreign proteins into bona fide pseudoparticles was
tested by the presence of the HIV p24 protein of the lentiviral
vector backbone in the same samples. The wild-type pseudotypes
expressed the envelope glycoprotein as a single band (Figure 4C;
middle panel, lane 1), suggesting that the envelope glycoprotein
was incorporated into pseudotypes. The detection of complex-
sugar (but not high-mannose) linked envelope in purified
pseudotypes indicates that envelope glycoprotein incorporation
requires the completion of all the quality-control processes along
the secretory pathway [35]. In contrast, the double mutant
(R797AR667A) exhibited a complete lack of pseudotype incorpo-
ration of envelope glycoprotein (Figure 4C; middle panel, lane 4),
illustrated by the presence of p24 in the absence of mature
envelope glycoprotein (Figure 4C; lower panel, lane 4). Surpris-
ingly, the single mutants (R667A and R797A) exhibited differen-
tial patterns of envelope glycoprotein incorporation into pseudo-
types (Figure 4C; middle panel, lanes 2–3). Both constructs
displayed a band pattern similar to that of wild-type, suggesting
that the envelope glycoprotein was expressed in transfected cells.
However, only R667A was detected in purified pseudotypes. The
absence of R797A envelope glycoprotein incorporation into the
pseudotypes may be due to a disruption of folding and/or
oligomerization along the secretory pathway.
The mutational effect on virus entry into 16HBE cells was then

explored by measuring the activity of the luciferase reporter gene
(Figure 4D). The R667A mutant was functional and exhibited virus
entry activity similar to that induced by wild-type SARS-CoVpp,
albeit at a slightly lower level (Figure 4D). As expected, R797A and
R797AR667A mutants were unable to enter cells (Figure 4D, cf.
with the empty vector). This observation correlates with the absence
of envelope glycoprotein incorporation into the pseudotypes.

Mutation of a Protease Cleavage Site Abrogates Virus
Entry Enhancement
In an effort to directly demonstrate that airway protease

mediated virus entry enhancement is due to the presence of
cleavage site on the SARS spike glycoprotein, 16HBE cells were
pre-incubated with wild-type (SARS-CoVpp) or mutant
(R667App) pseudotypes on ice, which allowed virus attachment
but not entry. Unbound pseudotypes were washed away and
proteases were added. Our results showed that both the wild-type
and mutant spike glycoproteins were functional and mediated
virus entry into 16HBE cells (Figure 5A and 5B). Whereas airway
protease treatment significantly increased the entry of SARS-
CoVpp into susceptible cells (Figure 5A), this enhancing effect was

completely abrogated with R667App (Figure 5B). Our data
indicate that the arginine residue at position 667 is sensitive to
airway protease cleavage which, in turn, significantly increases
SARS-CoV infectivity. Airway proteases could cleave the SARS
spike glycoprotein following the virus-cell attachment stage,
thereby enhancing SARS-CoV entry into human ACE2-express-
ing airway epithelial cells in vitro.

Discussion

The spike glycoproteins of many enveloped viruses, including
various strain of human influenza viruses and Sendai virus are

Figure 5. Role of amino acid residue 667 enhances SARS-
CoVpp entry in the presence of airway proteases. SARS-CoVpp
(A) or R667App (B) was pre-incubated with 16HBE cells on ice for
30 min. Cells were washed twice to remove any unbound pp. Cells were
incubated with 10 mg/ml of either trypsin (T), TMPRSS11a (N) or 100 mg/
ml of plasmin (P) at room temperature for 40 min. Luciferase activity
(LCPS) was measured from infected 16HBE cells. Asterisk (*) indicates a
value of p,0.05 and (**) indicates a value of p,0.01 in two-tailed t
tests. Experiments were performed in triplicates and values were
expressed as means6SE from three independent experiments.
doi:10.1371/journal.pone.0007870.g005
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cleaved by host-derived proteases into two non-covalently linked
subunits [5,36]. Proteolytic modification of spike glycoproteins is
the major determinant of virus tropism and pathogenicity as
shown in pneumotropic viruses whose infectivity is determined by
airway proteases [5,36,37]. A monobasic cleavage site has been
identified in various viral glycoproteins and is recognized by
proteases secreted by epithelial cells [2]. Our data demonstrate
that SARS spike glycoprotein has two monobasic cleavage sites
that are susceptible to airway protease cleavage. We show here
that specific airway proteases secreted along the respiratory tract,
such as trypsin, plasmin and TMPRSS11a, recognize and cleave
the same two monobasic motifs on the SARS spike glycoprotein.
Furthermore, we have taken advantage of the flexibility of
pseudotyped particles to investigate the molecular mechanisms
underlying initial steps of virus entry following cell attachment. We
have observed that protease cleavage of spike glycoprotein greatly
enhances entry but only after receptor-binding interaction at the
cell surface. These observations suggest that proteolytic processing
of bound spike results in a conformational change that favors entry
of the virus. This is the first report which demonstrates the
functional impact of disrupting cleavage at position 667, which
had not been addressed before. More importantly, it clarifies the
mechanism of virus entry enhancement by several airway
proteases. Our data are in agreement with the recent study
showing that SARS-CoV S-mediated virus entry is dependent on
the sequential proteolytic cleavage of monobasic sites [27].
It has been shown in clinical observations from SARS-infected

patients’ samples that the respiratory tract is the major cellular
target for infection and replication [28,29]. Similar to other
coronaviruses, SARS-CoV utilizes the respiratory and gastroin-
testinal tract system as the primary entry site for infection.
However, unexpected findings from several studies indicated that
human airway epithelial cell lines were non-permissive to SARS-
CoV [30,38,39]. We found that the permissiveness of SARS-CoV
depended on ACE2 expression, further confirming earlier studies
which identified ACE2 as the functional cellular receptor for
SARS-CoV entry [40,41]. SARS-CoV was also detected from
lungs, gastrointestinal tract and kidney autopsy samples [42],
correlating tissue tropism with the pattern of ACE2 expression in
humans [43].
Interestingly, ACE2 expression on epithelial cell was found to

correlate with the levels of cellular differentiation [31], and
primary cells grown under air-liquid interface stimulated cellular
differentiation and apical surface expression of ACE2 [31].
Although 16HBE and BEAS-2B cells are derived from human
bronchial epithelium [44,45], they showed unique morphological
and biochemical characteristic according to their specific levels of
cellular differentiation [46,47]. Our study demonstrate another
unique characteristic within these two cell lines in terms of cell
surface protein expression, further establishing 16HBE cells, which
have ACE2 expression under normal culturing system, as an in
vitro model for SARS-CoV study.
Pseudotyped viruses have been useful for studying virus entry

mechanism, cell tropism, neutralizing antibody, and receptor
identification [48,49,50]. We have observed differential virion
incorporation, which is dependent on surface expression of
envelope glycoproteins, correlating with the proper folding and
post-translational modification of the envelope glycoprotein [35].
Our data is consistent with previous studies indicating that SARS
spike producing cells express both the high-mannose and complex-
sugar linked envelope glycoprotein [33], and showed that
complex-sugar linked SARS spike glycoprotein is solely incorpo-
rated into SARS-CoVpp. The SARS spike double mutant
(R797AR667A) had defects in virion incorporation, likely due to

the impaired post-translational modification of the envelope
glycoprotein. Surprisingly, even mutant R797A showed a lack of
virion incorporation. We postulate that the defect in this case is
due to the impaired oligomerization of envelope glycoprotein.
Amino acid residue 797 is located within the S2 region of SARS
spike glycoprotein, which is important for trimeric envelope
glycoprotein formation (unpublished observations). As a result, any
mutations at this residue might generate localized folding defects
of the envelope glycoprotein, and cause reduced levels of stable
surface expression that prevent efficient incorporation into
pseudotypes. A separate study has recently demonstrated the
incorporation of a similar mutant construct (R797N) into a murine
leukemia virus (MLV)-based pseudotyping vector [27]. The
difference in mutant envelope incorporation with respect to our
study might be attributed to the greater hydrophobicity of our
substituted amino acid, which disrupts the oligomerization
process. Clearly, further investigation will be required to assess
the role of this amino acid residue in SARS spike oligomerization.
Previous studies have demonstrated the effects of intracellular

proteases treatment (e.g. cathepsin L) in activating the membrane
fusion property of SARS spike [51,52]. For example, an important
role of R797 cleavage site has been shown by artificially inserting a
furin cleavage site, which resulted in the production of cleaved
spike glycoprotein pseudotype, and allowed the infection of cells in
the presence of protease inhibitors [52]. However, wild-type SARS
spike has no putative furin cleavage motif/site. In addition, SARS-
CoV has primarily respiratory tropism where a number of
extracellular proteases are secreted by the airway epithelium.
Therefore, our results suggest that, extracellular airway proteases
localized along the respiratory tract cleave and modify the wild-
type SARS spike during the very early stage of virus entry (viz.,
virus-cell attachment step). This modification enables the forma-
tion of a cleaved form of spike, and facilitates the activation of
membrane fusion by subsequent intracellular protease treatment.
It remains possible that the sequential activation of extracellular
and intracellular proteases facilitates SARS-CoV entry along the
respiratory tract. Another aspect which should be considered is
that the cleavage sites described in this report were identified using
soluble spike protein, and it is conceivable that additional sites may
be involved upon receptor binding. However, the impact of the
R667A mutation clearly indicates the functional importance of
cleavage at this position for virus entry.
One study also showed an effect of very large concentrations of

proteases in enhancing SARS-CoV infection on VeroE6 cells [24].
However, our data demonstrates that the effective concentrations
of airway proteases inducing SARS-CoV entry enhancement was
at least 100-fold less than that previously reported [24]. This
difference could be due to the duration of airway protease
treatment onto virus-adsorbed cells, the cleavage efficiency of
airway proteases or the sensitivity of the detection system used. Of
note, we found that the enhancing effect of airway proteases on
SARS-CoVpp entry is strictly dependent on the virus-cell
attachment step.
Our findings are in contrast with earlier studies done on

coronavirus MHV-A59 where proteolytic cleavage of envelope
glycoprotein on virion surface, before binding to its cellular
receptor, is necessary for entry and fusion process [18,21]. We
clearly observed that pre-treatment of SARS-CoVpp with airway
proteases dramatically reduced the infectivity of pseudotype
particles, whereas the addition of airway proteases after virus-cell
attachment enhanced virus-cell fusion. We postulate that receptor-
bound spike glycoprotein is required for cleavage mediated virus
entry enhancement, as the spike glycoprotein undergoes confor-
mational changes once it binds to the cellular receptor. It is
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believed that envelope glycoprotein undergoes multiple pro-
grammed conformational changes during cellular receptor inter-
action [53,54,55]. This process will expose the hydrophobic fusion
peptide and mediate fusion of the viral envelope with the host cell
membranes [56]. We have shown, however, that entry of SARS-
CoVpp could still complete without addition of airway proteases.
Several possibilities could account for this finding. First, SARS-
CoVpp could enter 16HBE cells through an endosomal pathway
as described previously [23]; alternatively, there could be a partial
switch of spike glycoprotein from inactive to active conformation
upon receptor binding. We hypothesize that, in the presence of
airway proteases, cleavage of receptor-bound spike glycoprotein
might reduce the threshold for conformational change of spike
glycoprotein into its fusogenic form, thus facilitating the exposure
of fusion peptide and its interaction with host cell membranes.
Current studies have suggested that SARS-CoV enters and exits

preferentially via the apical surface of the epithelium [31], and co-
localization of airway proteases with SARS-CoV along the
respiratory tract supports the positive feedback loop of virus
infection in vivo. To conclude, we have found that cleavage of the
receptor-bound spike glycoprotein by airway proteases enhances in
vitro virus entry and fusion. Therefore, identification of reagents
that are able to suppress in vivo activity of airway proteases might
provide additional antiviral strategy against SARS-CoV infection
[57], and possibly other viral respiratory infections such as human
influenza A virus in the face of the current flu epidemic threat.

Materials and Methods

Cell Lines and Expression Vectors
HEK293T and VeroE6 cell lines (ATCC) were cultured at

37uC, 5% CO2, in Dulbecco’s modified Eagle medium supple-
mented with 10% FBS, 100 U/ml penicillin, and 100 mg/ml
streptomycin. Transformed human alveolar basal epithelial A549
(ATCC) and transformed bronchial epithelial BEAS-2B [50] cell
lines were cultured at 37uC, 5% CO2, in F12K medium
supplemented with 10% FBS, 1% L-Glutamine, and 1%
antibiotic/antimycotic. Transformed bronchial epithelial 16HBE
cells [49] were cultured at 37uC, 5% CO2, in Dulbecco’s modified
Eagle medium supplemented with 10% FBS, 1% L-Glutamine
and 1% antibiotic/antimycotic. Complete medium was sterilized
using 0.22 mm filtering units (Corning). SARS-CoV Spike cDNA
and tagging with the C-terminal M2-FLAG peptide sequence (S-
FLAG) have been described previously [58]. For improved
expression yield, a codon-optimized SARS-S DNA containing a
FLAG sequence fused in-frame at the 39 end was produced using
GeneOptimizer Technology (Geneart). Codon-optimized S-FLAG
was subcloned into pcDNA3.1 expression vector resulting in the
expression plasmid pcDNA-S-FLAG.

Western Blot Analysis
Cell lysates were collected from 293T producing cells in lysis

buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM EDTA,
1% Triton X-100). Virus pellets were prepared by ultracentrifu-
gation on a 20% sucrose cushion at 140,000 x g for 3 h using a
Beckman SW32Ti rotor and resuspended in TNE buffer (50 mM
Tris-HCl, 100 mM NaCl, 0.5 mM EDTA; pH 7.4) before being
subjected to SDS-PAGE (4–12%). Proteins were transferred onto
nitrocellulose membranes, which were first incubated in blocking
solution (PBS, 0.1% Tween 20, 5% milk powder, 3% Normal
Goat serum), and then probed with anti-FLAG M2 monoclonal
antibody (Sigma). HIV-1 p24 was detected by HIV-1 p24
antibody (abcamH). Peroxidase-conjugated goat anti-mouse IgG
(H+L) (Zymed) was used as the secondary antibody. Bands were

visualized on X-ray films (Kodak) using chemiluminescence
(Amersham Biosciences).

ACE2 Expression by Reverse Transcriptase PCR (RT-PCR)
Total mRNA was isolated from VeroE6, 16HBE, BEAS-2B and

A549 cells using Qiagen RNEASY Midi total RNA extraction kit
according to the manufacturer’s instructions and dissolved in 60 ml
of RNAse free H2O. ACE2 cDNA was synthesized using the
ThermoScriptTM RT-PCR kit with ACE2 specific primers
(Forward primer: 59-gca ctc acg att gtt ggg act-39, Reverse primer:
59-att agc cac tcg cac atc ctc-39) and amplified using REDTaq
DNA Polymerase (Sigma). The quantity of total RNA templates
was normalized to b-actin expression (Forward primer: 59-gct cgt
cgt tcg aca acg gct c-39, Reverse primer: 59-caa aca tga tct ggg tca
tct tct c-39).

Cloning and Site-Directed Mutagenesis of SARS Spike
Glycoprotein
Airway protease cleavage site mutants were prepared from

plasmid pcDNA-S-FLAG with the Stratagene QuikChange site-
directed mutagenesis kit. Site-specific mutagenesis were carried
out by a single-step polymerase chain reaction using gene specific
primers encompassing the site to be mutated and carrying the
desirable mutated nucleotide(s). Methylated, non-mutated paren-
tal DNA template was removed by DpnI (10 U/ml) treatment and
plasmids carrying the mutated nucleotide(s) were transformed into
DH5a by electroporation. Positive clones carrying the mutated
plasmids were screened by digesting the mutagenized pcDNA-S-
FLAG sequences with unique restriction enzymes (MscI for
R667A; StuI for R797A; MscI and StuI for R797AR667A).
Mutations were verified by DNA sequencing.

Cleavage and Peptide Mapping of S Protein by Airway
Proteases
SARS spike glycoprotein (triSpike) was prepared as described

previously [33]. The amount and degree of purity of recombinant
triSpike protein was assessed by Western Blot and silver staining,
respectively, as described previously [28]. Trypsin was purified
from rat lung as described [11]. Plasmin was purchased from
Calbiochem. Recombinant TMPRSS11a was kindly provided
from Dr. Noboru Yamaji and Masako Kagoshima (Astellas
Pharma Inc). Protease cleavage on purified triSpike protein was
performed by treating the triSpike protein with airway proteases
followed by amino acid sequence analyses. Purified triSpike
protein was first incubated with various proteases including trypsin
(1 mg/ml), TMPRSS11a (0.1 mg/ml) and plasmin (0.1 mg/ml)
(equivalent to 0.2 mU of each proteases) in the presence of 0.1 M
Tris-HCl, pH 7.5 at 37uC for 2 h. Purified triSpike protein
incubated without proteases was included as control. Samples
were then subjected to SDS-PAGE, performed on gradient
acrylamide gels (2–15%) under reducing conditions according to
the method of Laemmli [59]. Proteins were then transferred to
PVDF membranes, which were stained with amino black or CBB
to visualize cleavage products. After staining, protein bands were
cored out and analyzed by N-terminal amino acid sequence
determination using the Applied Biosystems 492 gas-phase
sequencer/140C system, according to the manufacturer’s
instructions.

Susceptibility of Human Airway Epithelial Cell Lines to
SARS-CoV Infection
Protease cleavage assays were performed by treating SARS-

CoVpp with airway proteases during the infection steps.
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Recombinant SARS-CoVpp lentiviral vectors expressing a
luciferase reporter gene were produced from HEK293T cells as
described previously [60] using 10 mg of plasmid pNL4.3.Lu-
c.R-E-pro-viral genome [61,62] and 10 mg of plasmid pcDNA-S-
FLAG. For virus entry assays, VeroE6, 16HBE, BEAS-2B and
A549 cells were infected with SARS-CoVpp. VeroE6 cells were
seeded onto 96-wells plates at 10,000 cells/well in triplicates.
16HBE, BEAS-2B and A549 cells were seeded onto 96-wells plates
at 20,000 cells/well, in triplicates and, the following day, 40 ml of
SARS-CoVpp was added to each well. Cells were incubated for
1 h at 37uC in a 5% CO2 atmosphere, and then 160 ml of
complete medium was added to each well for an overnight
incubation. Medium was renewed 16 h later and incubation was
continued for additional 48 h, after which cells were washed and
lysed. Luciferase activity was measured by a MicroBeta Jet
Counter (Perkin Elmer) according to the instructions provided by
the supplier (Promega).

Role of Airway Proteases on Viral Entry
To test the effect of airway protease treatment on virus entry,

16HBE cells were used as the model cell line for SARS-CoVpp
infection. 16HBE cells were seeded onto 96-wells plates at 20,000
cells/well in triplicates. Before infection, cells were pretreated with
reaction buffer (DMEM supplemented with 0.1 M Tris-HCl,
pH 7.5) for 30 min on ice. SARS-CoVpp were added onto each

well and incubated with the cells for another 30 min on ice. The
mixture was removed and 100 ml of fresh reaction buffer was
added to cells. Diluted airway proteases were added into each well
and incubated for 40 min at room temperature. The mixture was
removed; cells were washed twice with complete DMEM medium
and incubated overnight at 37uC, in 5% CO2. Luciferase activity
measurements were performed as described above.

Statistical Analysis
Results are presented as means6SE of the specified number of

samples from 2-3 independent experiments. Comparisons between
two populations of data were made using the Student’s unpaired t-
test with a confidence limit for significance set at 0.05 or less.
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