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Abstract – Dark spots in the fleece area are often associated with dark fibres in wool,
which limits its competitiveness with other textile fibres. Field data from a sheep
experiment in Uruguay revealed an excess number of zeros for dark spots. We compared
the performance of four Poisson and zero-inflated Poisson (ZIP) models under four
simulation scenarios. All models performed reasonably well under the same scenario for
which the data were simulated. The deviance information criterion favoured a Poisson
model with residual, while the ZIP model with a residual gave estimates closer to their
true values under all simulation scenarios. Both Poisson and ZIP models with an error
term at the regression level performed better than their counterparts without such an
error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with
residuals. Parameter estimates were similar for both models. Although the posterior
distribution of the sire variance was skewed due to a small number of rams in the dataset,
the median of this variance suggested a scope for genetic selection. The main
environmental factor was the age of the sheep at shearing. In summary, age related
processes seem to drive the number of dark spots in this breed of sheep.
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1. INTRODUCTION

The presence of black-brown fibres in wool from Corriedale sheep is recogni-
sed as a fault [13,20]. This issue limits the competitiveness of wool with other
textile fibres and reduces its value by 15–18% when the number exceeds
300 fibresÆkg�1 top (FrankRacket, 1997, personal communication). InUruguayan
wool, this value can be as large as 5000 fibresÆkg�1 top, with most of the dark
fibres having an environmental origin, e.g. faeces and urine dyeing [3,18]. With
appropriate clip preparation, values ranging from 800 to 1000 fibres have been
found, and these probably have a genetic background. Skin spots with black-
brown fibres and isolated pigmented fibres are the probable origin of these fibres
[2,9,12,20].

With the aim of investigating factors involved in the development of pig-
mented fibres, an experiment was carried out in which fleeces of animals from
two experimental flocks were sampled yearly at shearing for laboratory analysis.
Each animal was inspected, and the number of black spots, their diameter and
the estimated percentage of dark fibres in each spot were recorded. While
genetic selection should focus on reducing the number of dark fibres, it is expen-
sive and cumbersome to record such a value for each animal on a routine basis.
Laboratory techniques are labour intensive and slow.

In this context, the number of dark spots in the fleece area of animals may be
a useful indicator trait, for several reasons. First, our empirical observations sug-
gest that dark fibres are associated with dark spots, hinting a positive correlation
between the two variables. Second, spots can be assessed easily and quickly, and
scoring is less subjective than for other candidate measures such as the percent-
age of spot area with dark fibres [1,10,11]. Third, we have observed that in spots
without or with dark fibres in young animals, the presence of dark fibres
increases with age. Hence, the presence of spots indicates dark fibres in adult
animals. If laboratory analyses confirm that black spots are positively correlated
with the number of dark fibres, recording on a nation-wide basis would be
straightforward.

Previous studies in Romney sheep [6] have addressed the occurrence of black
wool spots at weaning (BWSw) and at yearling age (BWSy). Enns and Nicoll [6]
used a threshold model for a binary response variable (the presence or absence
of pigmented spots), and their largest heritability estimates were 0.070 (0.018)
and 0.072 (0.014) for BWSw and BWSy, respectively. In contrast, in our
research, focus has been on modelling the number of dark spots in each animal,
irrespective of the presence of dark fibres. As a count variable, the number of
spots could plausibly follow a Poisson distribution. However, as shown in
Figure 1, there is an excess of zeros in the empirical distribution for field records,
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relative to their expected value under Poisson sampling with a homogeneous
parameter. If Y follows a Poisson distribution, then E(Y) = Var(Y), where E(Æ)
and Var(Æ) represent the mean and variance, respectively. In a Poisson distribu-
tion, the variance-to-mean-ratio (VTMR) is 1. In the observed data in Figure 1,
VTMR was 6.8. A zero-inflated Poisson model (ZIP) [17], may provide a better
description of the data. This model assumes that observations come from one of
two different components, a ‘‘perfect’’ state which produces only zeros with
probability h, and an ‘‘imperfect’’ one that follows a Poisson distribution, with
probability (1 � h) and Poisson parameter k. It can be shown that the mean and
variance of a ZIP variate are

EðY Þ ¼ ð1� hÞk ð1Þ

and

VarðY Þ ¼ EðY Þð1þ hkÞ; ð2Þ

respectively, which accounts for VTMR > 1 provided that overdispersion
arises from an excess of zeros. Zero-inflated models for count data in animal
breeding have been discussed by Gianola [15] and used by Rodrigues-Motta
and collaborators [27] in an analysis of the number of mastitis cases in dairy
cattle.

Figure 1. Distribution of the number of black spots in field data (n = 497). The solid
line represents the best fit of a Poisson distribution to the observed data, fitted with
package ‘‘gnlm’’ (http://popgen.unimaas.nl/~jlindsey/rcode.html) of R [26].
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From previous exploratory analysis [16,24], the age of animals appears to be
a main source of variability of the number of spots, with flock and year having
marginal effects. Modelling can proceed along the lines of generalised linear
models [21] or generalised linear mixed models [25] provided that the link func-
tion used is appropriate. However when mixture distributions are assumed, as in
the ZIP model, estimation is more involved, since indicator variables (e.g., from
which of the two states a zero originates) are not observed. However, imputation
of non-observed parameters given the data fits naturally in the Bayesian frame-
work [19]. In recent years, Bayesian Markov chain Monte Carlo (MCMC) meth-
ods have become widely used in animal breeding [28], as a powerful and
flexible tool. An advantage of the Bayesian MCMC framework is that it is rel-
atively easy to implement measures of model quality such as posterior predictive
ability (PPA) checks.

In this paper, four different candidate models for the number of spots were
compared. Poisson and ZIP models were considered, with the log of the Poisson
parameter of each of the models regressed on environmental and genetic effects.
The two models were extended further to include a random residual in the
regression, aimed to capture overdispersion other than that due to extra zeros.
Two of the models were selected and fitted to a sample of Corriedale sheep
to obtain estimates of population parameters.

2. MATERIALS AND METHODS

2.1. Simulation

Four different scenarios (H1–H4) were simulated as described in Table I. The
rationale underlying the models is that the observed number of spots in each ani-
mal follows a Poisson distributionwith the logarithm of its parameter expressed as
a linear model. The Poisson distribution does not accommodate well the overdis-
persion caused by excess zeros, so aZIPmodel is a reasonable competitor. Further-
more, the parameter of the Poisson distribution represents the expected propensity
of spots, so an additional error (residual) term at the regression level allows mod-
elling individual differences in propensity. The two models (Poisson and ZIP),
each with or without residuals, give the four models (P, Z, Pe and Ze) studied.

Data were generated from either ZIP (H1, H2) or Poisson (H3, H4) distribu-
tions; the log of the Poisson parameter contained (H2, H4) or did not contain
(H1, H3) a random residual. In all four models, the ram effects were assumed
to follow independent normal distributions with null mean and variance r2

ram;
the residual was independent and identically distributed as ei;j;k � Nð0;r2

eÞ
(H2, H4).
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In each scenario, 100 datasets (replicates) were randomly generated, with
1000 observations each. For each animal, the covariate age was randomly sam-
pled, resembling the distribution of the age in the observed data. Forty rams
(sires) were sampled in each dataset and randomly assigned to observations.
In each scenario, the true parameters were selected to resemble the observed dis-
tribution of spots.

2.2. Models fitted in the simulation

Four models were fitted to the simulated data (Z, Ze, P and Pe), each match-
ing a specific scenario, as shown in Table I. Models are connected as illustrated
in Figure 2. A path between two models involves fixing or adding a single
parameter. Preliminary analysis indicated that flock and year effects (and their
interaction) had minor importance, so these factors were not included in the sim-
ulations. However, when models were fitted to the real data, the regression mod-
els included flock and year effects.

2.3. Bayesian computation

Parameter inference was done using the OpenBUGS software [31]. Vague
priors were assigned to represent initial uncertainty. A normal distribution centred
at zero with precision 0.01 was used for location parameters, while a Gamma
(0.01, 0.01) distribution was assumed for each of the two variance parameters.
Several different hyper-parameter values were assigned in pilot runs, with the
only observable difference being the time needed to attain convergence. For each
scenario and model, the burn-in period was determined from preliminary runs,
based on four chains, starting at different points. Final runs were performed
with two chains each. The burn-in period was of 10 000 iterations, and samples
were obtained from the following 10 000 iterations, without thinning. An
exception was model Pe in scenario H4, where the required burn-in period
was 30 000 iterations.

Table I. Model label, simulated data distribution given the parameters, regression
function and name of each scenario (H1, H2, H3, H4).

Model Distribution Regression Scenario

Z yi;j;k � ZIPðh; ki;jÞ logðki;jÞ ¼ b0 þ b1 � agei þ ramj H1
Ze yi;j;k � ZIPðh; ki;j;kÞ logðki;j;kÞ ¼ b0 þ b1 � agei þ ramj þ ei;j;k H2
P yi;j;k � Poissonðki;jÞ logðki;jÞ ¼ b0 þ b1 � agei þ ramj H3
Pe yi;j;k � Poissonðki;j;kÞ logðki;j;kÞ ¼ b0 þ b1 � agei þ ramj þ ei;j;k H4

The b’s are unknown regressions.
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2.4. End points for model comparison

Models were contrasted first through simulated data (comparing true and esti-
mated parameter values) and by using the deviance information criterion (DIC),
estimates of marginal likelihoods with the method of Newton and Raftery [22]
and via PPA. The DIC [30] was obtained directly from OpenBUGS. PPA was
patterned after Sorensen and Waagepetersen [29]. Suppose that for a model
M, hðkÞM , k = 1, . . ., K, is drawn from the posterior distribution of the parameter
vector hM, and that, subsequently, replicate data yðkÞM are generated given hðkÞM as
true parameters. Given some univariate discrepancy statistic T ðy; hMÞ, it is pos-
sible to study the predictive ability of model M from samples drawn from the
posterior distribution of the difference T ðy; hðkÞM Þ � T ðyðkÞrep; h

ðkÞ
M Þ. For the Poisson

model we used

T y; hMð Þ ¼
XK
k¼1

y� kkffiffiffiffiffi
kk

p
� �2

ð3Þ

Figure 2. Graphical display of the four models considered. Distances depend on one
or two parameters. h is probability of the perfect state; r is the standard deviation of
the error term in the regression. Dashed lines connect models that need to incorporate
one parameter while fixing the other parameter to zero.
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as discrepancy statistic, where kk in the numerator is the mean, and
ffiffiffiffiffi
kk

p
in the

denominator is the standard deviation; for the ZIP model, the mean and stan-
dard deviation were replaced by their corresponding values.

2.5. Field data

Records were collected in 2002–2004 from two experimental flocks belong-
ing to the Universidad de la República, Uruguay. After edits, 497 records from
sheep with known sire (ram) were kept; 37, 182 and 278 records were from
2002, 2003 and 2004, respectively; 407 and 90 were from flocks 1 and 2,
respectively. Genetic connection was through two rams with progeny in both
flocks; a total of 19 rams had progeny. In our dataset 36 animals had records
in both 2002–2003, 71 in 2003–2004 and 27 animals had measures in all three
years. For simplicity, dependence between observations from the same animal
was ignored, so that the only source of correlation considered was that resulting
from a half-sib family structure. Clearly, the limited dataset precludes precise
estimation of genetic parameters, but this was not an objective of this study.

3. RESULTS

3.1. Simulations

For each scenario simulated, the results are presented for the ‘‘true’’ model
and for the other three models. Values of the DIC (highlighting pD, the ‘‘effec-
tive number of parameters’’) and of the difference statistic used for PPA are
shown in Table II.

3.1.1. DIC

In scenario H1, where Z is the true model, Pe performed better (lower DIC)
than the true model, in spite of the penalty resulting from a larger pD (number of
parameters). The value of nearly 400 effective parameters in 1000 observations
indicates that very few observations clustered under the same Poisson distribu-
tion. Models with residuals had a higher pD but lower deviance. Except for the
P model, the other specifications had similar DIC, at least in the light of the
between replicates standard deviation. Clearly the Poisson model was the worst
under the ‘‘true ZIP’’ scenario.

In scenario H2 (Ze is the true model), Pe was, again, better than the true
model and the picture with respect to pD was as in the H1 scenario, although
differences between models with residuals were smaller. Models without resid-
uals had the poorest performance; P had the worse DIC.
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Under H3 (P is the true model) all DIC values were similar. Models with
residuals had smaller pD than in scenarios H1, H2, probably due to the simpler
nature of this simulation scenario. Finally, in scenario H4, the true model (Pe)
was best under the DIC, followed by Ze.

The global picture is clearer when the number of times (in 100 simulations) in
which each model had the smallest DIC was considered (Tab. III). Model Pe
outperformed other models except under H3. Notably, DIC selected the right
model only in 172 out of 400 comparisons (43% of the time).

Table III. Times a given model was the best when selected by DIC (over
100 replicates).

Fractional numbers correspond to ties. The ‘‘true’’ models are in the diagonal while the
‘‘winner’’ model for each scenario is shown in boldface.

Model Z Ze P Pe

H1 0.5 0.5 0.0 99
H2 0 0 0 100
H3 2 3.5 77.5 17
H4 1 0 0 99

Table II. Averages and standard deviations of deviance information criterion (DIC),
effective number of parameters (pD) and difference statistic for the posterior
predictive ability (DPPA) for the four models in each scenario over 100 replicates.

Scenario Model DIC s.d. pD s.d. DPPA s.d.

H1 Z 2368.0 101.8 17.3 1.3 0.003 0.030
Ze 2368.9 101.5 34.1 6.8 �0.006 0.028
P 3138.5 196.6 17.8 0.8 1.204 0.137
Pe 2262.5 102.7 399.6 18.9 0.050 0.009

H2 Z 2645.1 117.4 18.1 1.0 0.175 0.055
Ze 2521.3 103.7 135.0 17.8 0.007 0.011
P 3579.9 222.3 18.2 0.6 1.878 0.239
Pe 2308.2 101.7 431.3 18.1 0.030 0.009

H3 Z 1768.4 77.8 16.8 1.1 �0.006 0.049
Ze 1769.9 77.5 31.9 6.3 �0.021 0.050
P 1766.6 77.9 16.7 1.0 0.007 0.052
Pe 1768.2 77.8 33.1 6.3 �0.007 0.046

H4 Z 1962.9 127.7 17.8 1.0 0.177 0.085
Ze 1848.2 84.3 125.1 20.1 �0.006 0.033
P 1958.4 107.5 17.3 1.0 0.276 0.101
Pe 1842.7 84.1 131.8 19.0 0.007 0.034

The model corresponding to each scenario is in boldface.
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3.1.2. PPA

Values of the PPA difference statistic close to zero indicate essentially no dif-
ferences between observed and predicted responses. In regard to the PPA results,
the true model always predicted best, and this was essentially true for all scenar-
ios (Tab. II). The pure Poisson model (P) performed badly in ZIP scenarios (H1
and H2), while Ze did reasonably well in all four scenarios. In H3, PPAwas sim-
ilar for all models. The problem with this criterion seems to be its low discrim-
inative power, relative to its high standard deviations over replications.
Alternatives to PPA are cross-validation techniques, but these were not consid-
ered due to computational expense.

3.1.3. Marginal likelihood

It was impossible to calculate the Bayes factor for several pairs of models,
given the huge differences in marginal likelihoods. For this reason, only esti-
mates of marginal log-likelihood are presented for each model and scenario
(Tab. IV). On the basis of this criterion, Pe was the best model in all scenarios.

3.1.4. Parameter inference

As expected, parameter estimates were in agreement with their ‘‘true’’ values
when a model matched its corresponding scenario (Tab. V). However, when
models pertained to a different scenario, their performances were markedly dif-
ferent. Regressions on age were well inferred, but estimated intercepts b0 were
severely understated when Poisson models were applied to ZIP scenarios. Model
Ze estimates were always in agreement with the ‘‘true’’ values, regardless of the
scenario. Pe model estimates of intercept and of the residual variance were
strongly biased in ZIP scenarios. Finally, models with residuals estimated the
sire (ram) variance well.

The ability of different models to predict breeding values is of interest. Given
that the ‘‘true’’ values of rams were known, their Spearman rank correlation with

Table IV.Mean and standard deviation (in 100 runs) of the harmonic mean of sampled
log-likelihoods for each model and scenario.

Model Z s.d. Ze s.d. P s.d. Pe s.d.

H1 �1184.1 50.5 �1180.2 50.6 �1569.1 98.3 �1007.7 44.8
H2 �1322.4 58.5 �1235.7 51.0 �1789.6 111.0 �1012.5 46.0
H3 �884.8 38.6 �881.4 38.5 �883.9 38.8 �880.2 38.8
H4 �974.5 53.0 �902.8 40.0 �979.4 53.7 �898.9 40.3
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the predicted values (posterior mean) was calculated for each combination of
scenarios and models. Ze was best in all scenarios, but differences were small
(Fig. 3). The ZIP model performed reasonably well in all scenarios, while pure
Poisson models did well only in their own scenarios, with median correlations
between 0.41 and 0.53.

Figure 3. Histograms of Spearman rank correlations between true and posterior
means of ram breeding values. H4 scenario for models Pe (a) and Ze (b).

388 H. Naya et al.



3.2. Field data

Given the simulation results, data were analysed using the two ‘‘best’’ mod-
els, Pe and Ze, including flock, year, flock · year and age effect as covariates,
and ram as a genetic effect. The effects were removed successively from each
main model and DIC was computed; full models were found to be the best.
Since the effects of flock, year and flock-year interaction were negligible, these
are not reported in Table VI. DIC (pD) was 1103 (200.6) and 1070 (201.8) for
the Ze and Pemodels, respectively. The number of spots increased with age, and
there was no strong evidence of inflation at zero (the estimate of the probability
of the perfect state, h, was 0.05). It seems that most of the overdispersion is due
to unaccounted for between-individual variability.

Table V. Parameter estimates for the four scenarios by model.

Model b0 s.d. bage s.d. r2ram s.d. r2e s.d. h s.d.

H1 �0.500 0.520 0.090 0.000 0.510
Z �0.503 0.097 0.521 0.017 0.104 0.042 0.504 0.022
Ze �0.525 0.102 0.523 0.018 0.102 0.042 0.022 0.010 0.500 0.023
P �1.236 0.123 0.524 0.038 0.169 0.072
Pe �1.869 0.142 0.493 0.044 0.103 0.057 1.666 0.177

H2 �0.550 0.520 0.090 0.250 0.480
Z �0.282 0.133 0.492 0.032 0.130 0.051 0.524 0.025
Ze �0.526 0.139 0.515 0.028 0.101 0.046 0.251 0.058 0.482 0.028
P �1.089 0.148 0.511 0.043 0.186 0.064
Pe �1.840 0.151 0.471 0.051 0.094 0.052 2.029 0.214

H3 �2.500 0.850 0.090 0.000 0.000
Z �2.477 0.102 0.845 0.017 0.102 0.041 0.014 0.006
Ze �2.485 0.108 0.845 0.017 0.099 0.040 0.018 0.009 0.014 0.005
P �2.497 0.104 0.848 0.017 0.102 0.039
Pe �2.511 0.107 0.849 0.016 0.100 0.038 0.019 0.009

H4 �2.500 0.810 0.090 0.250 0.000
Z �2.268 0.347 0.793 0.053 0.140 0.052 0.063 0.087
Ze �2.470 0.122 0.810 0.025 0.104 0.046 0.221 0.056 0.022 0.010
P �2.397 0.137 0.810 0.030 0.143 0.053
Pe �2.509 0.122 0.814 0.025 0.105 0.046 0.237 0.055

The ‘‘true’’ value of each parameter is given in the line corresponding to each scenario (H1–
H4). Estimates for which the ‘‘true value’’ is inside a 2 standard deviations region are in
boldface (see text for definition of parameters).
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In standard animal breeding theory, in a sire model, heritability is defined as:

h2 ¼ 4r2
ram

r2
ram þ r2

e

� ð4Þ

Estimates of heritability (in a log-scale) under the two models considered are
displayed in Table VI. Posterior medians were 0.25 and 0.17 for the Ze and Pe
model, respectively, but the distribution was very skewed due to the few rams
(19) used in the study.

4. DISCUSSION

While easier to measure than the number of dark fibres per animal, modelling
the number of spots poses several challenges in regard to standard methodology
of animal breeding. It is very difficult to obtain a good fit of the data with simple
linear models with normal distributions for the random effects. Frequently used
Box-Cox transformations (e.g., log or reciprocal) cannot be used, given the num-
ber of zeros. Additionally, there is the issue of an excess of zeros relative to
Poisson sampling. One attractive model for dealing with this is the ZIP. One
can think of a fraction h of ‘‘perfect’’ animals that will never develop spots,
whereas others only will develop spots at random, following a Poisson
distribution with parameter k. Moreover, variation in the k’s can be accounted
for by a model including environmental and genetic factors, such as age, flock,
year or ram.

We first compared the performance of four models (i.e., Poisson and ZIP with
and without an error term in the regression) using a simulation that resembled
the field data structure. Based on the end points considered, two ‘‘competitive’’

Table VI. Posterior median and quantiles (2.5% and 97.5%) of the distribution of
parameters, and difference in posterior predictive ability (DPPA) for Pe and Ze
models applied to field data.

Model Ze Pe

2.5% Median 97.5% 2.5% Median 97.5%

b0 �2.490 �1.692 �0.926 �2.622 �1.884 �1.185
bage 0.465 0.611 0.761 0.485 0.628 0.772
r2ram 0.008 0.092 0.474 0.008 0.086 0.460
r2e 1.308 1.854 2.567 1.513 2.026 2.736

h 0.002 0.050 0.173
Heritability 0.023 0.246 0.836 0.016 0.166 0.714

DPPA �0.471 �0.038 0.406 �0.500 �0.040 0.423
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models emerged, Pe and Ze, both including residuals. Fitting hierarchical mod-
els with an error term such as Pe and Ze can be viewed as a log-normal mixture
of Poisson and ZIP distributions, respectively [5]. This provides a very flexible
structure, which explains at least partially, the good performance of these two
models in the simulation results.

Using the DIC, the Pe model was best in most scenarios, in spite of a larger
pD, a term that penalises the likelihood and that is associated with the effective
number of parameters of the model. The results of the marginal likelihoods also
supported this interpretation (Tab. IV), while the difference statistic for the pos-
terior predictive ability (DPPA) displayed low discriminative power. However,
the Pe model did not produce good estimates of the intercept (number of spots
at age = 0, i.e. birth) and of the residual variance, when data were generated from
ZIP distributions (Tab. V). This suggests that even the results of DIC should be
viewed with some caution. Furthermore, as pointed out by several discussants in
Spiegelhalter et al. [30], the DIC may underpenalise model complexity. Several
alternative versions of DIC were proposed by Celeux et al. [4] to address models
with missing data or mixtures of distributions. However, despite important differ-
ences in performance, each alternative proposed has its own drawbacks and no
single solution emerges as unanimously appropriate.

On the contrary, Ze was robust across all situations, since it estimated the true
parameters well. A ‘‘stable model’’ is appealing under practical conditions. In
animal breeding, a stable model with good predictive ability is desired. All mod-
els produced a good agreement between ‘‘true’’ and predicted breeding values,
especially Ze, which maintained its ability across scenarios.

Based on the simulation, Pe and Ze were chosen to analyse the field dataset.
As expected, under the DIC Pe outperformed Ze. However, parameter estimates
were similar (Tab. VI). This may be explained by the fact that the estimate of h
in Ze was low, pointing to a relatively small effect of ‘‘perfect’’ individuals on
inference when the Poisson model includes a residual.

A series of environmental and genetic factors may be related to the number of
spots. Simple observation (even in humans) suggests that this number increases
with age and environmental stress factors (e.g., solar irradiation can be invoked
as causative agents [7,8,14,23]). Variability in the underlying genetic
mechanisms responsible for the spots is likely, at least in different races, as well
as in susceptibility to environmental stress factors.

The age of the animals was the main environmental factor to consider, con-
sistently. However, it is not known if this relationship arises from an intrinsic
ageing process independent of environmental factors, or if environmental stress-
ors such as sun irradiation drive the process. Anyhow, it is possible to envisage
management measures aiming to reduce incidence of dark fibres. If an intrinsic
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ageing process is the main factor, reducing the age at shearing could be a prac-
tice to take into consideration. This requires additional research.

In an animal breeding context, genetic and environmental variances are extre-
mely important since they define heritability, a key parameter used to select
among breeding strategies. The meaning of heritability in non-linear hierarchical
models, such as Pe or Ze, is not straightforward. However, the magnitude of her-
itability suggests scope for genetic selection. Different simulations indicated that
predicted breeding values (for log k) were in good agreement with ‘‘true’’ val-
ues, so these models are probably useful for selection purposes.

In summary, hierarchical models for count data were studied with the aim of
defining strategies for reducing incidence of dark fibres in wool from Corriedale
sheep. ZIP and Poisson models with random residuals performed better than
their counterparts without residuals. Ageing related processes seem to drive
the number of dark spots in sheep, and further research should be done to
address this underlying phenomenon.
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