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Abstract

Background: K+ and Na+ channel toxins constitute a large set of polypeptides, which interact with
their ion channel targets. These polypeptides are classified in two different structural groups.
Recently a new structural group called birtoxin-like appeared to contain both types of toxins has
been described. We hypothesized that peptides of this group may contain two conserved structural
motifs in K+ and/or Na+ channels scorpion toxins, allowing these birtoxin-like peptides to be active
on K+ and/or Na+ channels.

Results: Four multilevel motifs, overrepresented and specific to each group of K+ and/or Na+ ion
channel toxins have been identified, using GIBBS and MEME and based on a training dataset of 79
sequences judged as representative of K+ and Na+ toxins.

Unexpectedly birtoxin-like peptides appeared to present a new structural motif distinct from those
present in K+ and Na+ channels Toxins. This result, supported by previous experimental data,
suggests that birtoxin-like peptides may exert their activity on different sites than those targeted by
classic K+ or Na+ toxins.

Searching, the nr database with these newly identified motifs using MAST, retrieved several
sequences (116 with e-value < 1) from various scorpion species (test dataset). The filtering process
left 30 new and highly likely ion channel effectors.

Phylogenetic analysis was used to classify the newly found sequences. Alternatively, classification
tree analysis, using CART algorithm adjusted with the training dataset, using the motifs and their
2D structure as explanatory variables, provided a model for prediction of the activity of the new
sequences.

Conclusion: The phylogenetic results were in perfect agreement with those obtained by the
CART algorithm.

Our results may be used as criteria for a new classification of scorpion toxins based on functional 
motifs.
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Background
The most-studied components of scorpion venom are
polypeptides that recognize ion channels and receptors in
excitable membranes, which are harmful to a variety of
organisms including human. Two families of toxins that
interact specifically with K+, and Na+ ion channels, respec-
tively [1] are the subject of intensive work in drug design
and development [2-4].

These toxins have been classified according to species-spe-
cificity (mammals, insects, and crustaceans), receptor tar-
gets (K+ and Na+), their lengths (short or long chain),
disulfide bonds arrangements [5,6], mechanism of action,
and binding site: α or β-like toxins [7,8].

Toxins that affect (modulate) Na+ channels which account
for 1 to 10% of raw venom, are long polypeptides with
60–76 amino acid residues [7], reticulated, and stabilized
by four disulphide bonds (S-S) [9-11]. Three S-S are
located in the molecular core and are conserved across the
family while the fourth one is exposed on the molecular
surface and varies in position. Considering this character-
istic, this disulfide bridge has been named wrapper
disulfide bridge [12].

K+ channels toxins are short-chain peptides (22–41 amino
acid residues) which are reticulated and stabilized by
three or four S-S [13], represent a minor component of the
raw venom with the order from 0.05 to 0.1% [14]. In
addition, these toxins have particular affinities and specif-
icities for various K+ channel subfamilies [15].

Despite the great variation in the primary structures of
many short and long toxins, they share a common struc-
tural three-dimensional (3D) conformation [7,14,16,17].

The current available online databases contain up to 800
records of native and mutant toxin sequences enriched
with binding affinity, toxicity information, and about 650
3D structures. Scorpion2 [18] and Tox-Prot [19] are two
examples of comprehensive database available on the
Web.

Recently, a new structural group of toxins with 53–59
amino acids and only 3 S-S, called birtoxin-like peptides
have been characterized [5,6,12,20-24]. This structural
group contains peptides with similar sequences that show
differences in activity. Some peptides are active on Na+

channels [20,23], while others are active or putatively
active on both (K+ and Na+) channels [5,6,22].

Given the above characteristics of this new group of tox-
ins, it is clear that classification of K+ or Na+ ion channels
effector toxins, based on their lengths and the number of
S-S is not fully adequate, to identify correctly the activity

of a given toxin. The objectives of this study are:1) identi-
fication of signatures (motifs) associated with a given
activity on the K+ and/or Na+ channels; 2) verifying the
presence of these motifs in the birtoxin-like family.

Within this framework, we planned to perform the fol-
lowing steps: sampling of toxins active on K+ and/or Na+

ion channels and determination of the structural signa-
ture corresponding to each type of the channels (K+ and
Na+) effectors. A statistical model (classification model)
that uses these motifs and their secondary (2D) structure
to predict the function of a given toxin was built.

Methods
Sequences preparation and highly similar sequences 

elimination

Key words "K+, Na+, channel, scorpion toxin" were used to
search the NCBI database [25] which is linked to swissprot,
pdb and embl among other databases, for existing K+ and
Na+ channel effectors (toxin sequences). Whole length
and fragment sequences were included to insure maxi-
mum coverage of these toxins with sequence information.

All sequences were gathered according to their activities.
Sequences that belong to the same group were put in the
same file in FASTA format. Three groups were obtained:
the first contains toxins active on the Na+ channels; the
second contains toxins active on the K+ channels, and the
third contains birtoxin-like peptides. A perl script was used
to conduct batch PSI-BLAST [26] against the nr (non-
redundant protein) database to search for similarity and
to characterize these toxins.

Multiple sequence alignment

Multiple sequences alignment was performed using Clus-
talW [27] version 2 [28]. Multiple alignments of
sequences for each group of toxins and for all sequences
pooled together, were carried out in order to characterize
potential conserved and variable areas for each sequence
partition as well as consensus sequences (centroides). To
date, ClustalW is still the most popular alignment tool.
However, recent methods, in some cases, offer signifi-
cantly better alignment quality. Thus, this same stage was
carried out by another multiple alignments software:
CHAOS & DIALIGN [29], which is based on a combina-
tion of local and global alignment methodologies. The
obtained results were compared with the former ones.

In order to keep random noise at its lowest level, all qual-
ified sequences contained three or four S-S pattern. Based
on these results, highly similar sequences were removed
to reduce potential bias on the motifs search (motifs con-
served in each group). A subset of the originally found
sequences, judged representative of the K+ and/or Na+ ion
channel effectors, were used as training dataset. This sub-
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set reflects a trade-off between sequences that cover most
of scorpion species, and sequences that are centroide in the
multiple alignments. However, for the birtoxin-like group,
all sequences were sampled.

Motifs search

Using the training dataset composed of the selected toxins
representative of the ion channels blockers for K+ and Na+,
GIBBS [30,31] version 2.05 and MEME [32,33] version
3.5.4 which is part of the Meta-MEME [34] package, were
used to dig out conserved motif information, for all con-
sidered sequence partitions.

We used GIBBS to discover the conserved motif(s) (with
pre-fixed length, which can contain(s) gaps) specific to
each group of ion channel effectors. This same stage was
performed by MEME, which determines un-gapped mul-
tilevel motifs (with no pre-fixed length). The most signif-
icant results were compared and retained.

Database search for new K+ and Na+ channel effector 

toxins

The output of these programs (GIBBS and MEME) was
thoroughly investigated, and then used as input in the
next step of the analysis.

A profile using these motifs was systematically formed,
and used to search for sequences with this profile. For that
purpose, MAST, which is also part of the Meta-MEME
package, was used to search for new K+ and Na+ channel
effector sequences (test dataset) against nr database. The
e-value for a qualified sequence was set to 1. A perl script
was used to eliminate replications (identical to the
sequences of the training dataset).

Interproscan

InterPro [35] is an integrated resource for protein families,
domains and functional sites, which also integrates a
number of protein signature databases as well as the
appropriate search tools for them. The motifs found were
then searched for in the InterPro database using InterPro-
Scan.

2D-structure determination

The distribution of the 2D structure in the motif region for
each sequence was studied in order to propose a relation
linking 2D structure to the function for each group of tox-
ins. The 2D structure of all the sequences (training and
test datasets) was determined based on the program PHD
[36-38] using neural network approach, and the Soft-
berry's software PSSfinder [39], which uses Markov chains
probabilistic model.

Phylogenetic analysis

Phylogenetic analysis was carried out to:1) study the
potential evolutionary relations between the new

sequences and already known toxins, 2) infer potential
common functions, and 3) classify the new ones (with
unknown functions) with respect to the other toxins with
known activities.

Since multiple-alignment is at the base of any phylogeny,
alignments obtained from ClustalW results were used as
entry for program PHYLIP [40] version 3.6 used to build
phylogenetic trees. Distances were generated using Jones-
Taylor-Thornton model. Phylogenetic trees were con-
structed using the neighbor-joining algorithm [41].

A construction of the phylogenetic trees for each of
sequence group considered was also performed. Consen-
sus trees were determined using the bootstrap method
[42].

Statistical analysis

Correspondence analysis was performed, and biplot [43]
was drawn, to illustrate the association between the
motifs found and the activities of the toxins from the
training dataset. To test the strength of this association, aχ2 test of independence of factors was used where p-value

was computed using Monte-Carlo simulation [44]. This
procedure is implemented in the R software version 2.7
[45], and used in case where large sample theory is not
valid (many cell having values less than 5). The same testχ2 was used to measure association between the distribu-
tion of the 2D structure (determined by PHD and PSS-
finder) of the motifs, and the toxins' activities. In order to
arrange the toxins according to their activities (dependent
variable) and the motifs determined and their 2D struc-
tures (structural variables), classification and regression
trees (CART) [46] were built using the procedures imple-
mented in the software Splus version 6.2 [47]. The built
classification trees (for each 2D program results) were
then used to predict the classes of the new sequences (test
dataset), in a purely statistical way independent of the
phylogeny results.

Results
Using the key words "K+, Na+ channel inhibitor toxin",
about 700 sequences were found from the NCBI server.
Among them 495 are confirmed experimentally. No ini-
tial filtering was performed to avoid losing any potential
signals. All the 495 sequences were used to conduct batch
PSI-BLAST one search iteration against the nr database.
The E-value threshold required for sequence inclusion was
set to 10-5. After elimination of identical sequences, and
those that do not have the S-S pattern, all information on
each individual sequence of these potential channels tox-
ins were retrieved. Non-fragment sequences were dug out
from the nr database, and placed in an Excel file. To pre-
pare for the conserved region search by ClustalW, all
sequence partitions were placed in FASTA format in sepa-
rate files. Based on preliminary ClustalW results, highly
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similar sequences were removed to reduce bias on con-
served, and functionally overrepresented motifs search.

After careful examination of the resulting data, 79
sequences judged as representatives of the class of toxins
active on K+ and/or Na+ channels, and confirmed experi-
mentally, were sampled. These 79 toxins (training data-
set) covered 18 scorpion species and distributed as follow:
27 toxins active on K+ channels, 38 active on the Na+ chan-
nels and 14 toxins belonging to the birtoxin-like group.
ClustalW re-applied on this training dataset, revealed the
following:

1) Eight cysteine residues implicated in the formation of
S-S in long toxins were conserved in all Na+ channel effec-
tors except for: CsI, CsvI, and CsvII (probably because of
their loop between the second and third β strands, which
is longer than the one for other Na+ channel scorpion tox-
ins [48]). 2) Three cysteine residues were conserved in all
K+ channel effectors. 3) Five cysteine residues were con-
served in the birtoxin-like group toxins. 4) One motif:
ADVPGNYPL was conserved in this group. 5) For all
sequences pooled together, only 3 cysteine residues were
conserved, and there is no conserved region (substring).

However, Chaos/Dialign did not reveal any conserved
region for all sequence partitions.

Motifs search results

The training dataset, in its different partitions, was used as
input to GIBBS and MEME to conduct motif search. While
GIBBS provides gapped or un-gapped motifs, MEME iden-
tifies only un-gapped motifs.

GIBBS results

Because of the variable and the relatively small length of
the considered sequences, we opted for a motif length of
10 and 20. Analysis of GIBBS output revealed that there
was one motif conserved in all Na+ channel effectors
except for CsV, which is considered as structurally inter-
mediate homologous to α and β toxins [49]. A motif con-
served for all K+ channel effectors except for two sequences
(TsKapa, and TsTxK-α). For the new group of birtoxin-like
peptides, one motif was conserved. For all sequences
pooled together, GIBBS did not identify any particular
motif of interest (present in all type of sequences). Similar
results were obtained with motif of length 20. However,
the motifs obtained using length 10 and 20 respectively
were not nested, and they did not overlap (Table 1).

MEME results

Using MEME and considering the relative diversity among
K+ and Na+ channel effectors and the length range of these
toxins, the maximum motif number was set to 6 (varied
from 1 to 6) and maximum motif length was set to 20.

Four motif runs were reasonable and provided the best
and the most significant distribution of motifs among the
groups of toxins. Therefore, we used this run as input to
the MAST and Meta-MEME programs. These multilevel
motifs are in PSSM format and the consensus (most prob-
able) strings are shown in the Table 2 and Figure 1.

Motif-1 was conserved in 32 sequences, all of them are α-
type Na+ channel blockers. Motif-2 was conserved in 5
sequences, all of them are β-type Na+ channel blockers.
Motif-3 was observed in 15 sequences among them 14
toxins belong to the birtoxin-like group, and only one is
Na+ channel effector: CsvII. Motif-4 was observed in 16
sequences where 14 of them are active on the K+ channels
and 2 are birtoxin-like peptides (birtoxin and ikitoxin). The
remaining 14 sequences, (1 Na+ channel effector, and 13
K+ channel effectors) did not report statistically significant
matches to any of the consensus motifs described in table
2. However, these results do not exclude that these
sequences may contain other probabilistic variants of the
motifs found. Indeed, 11 among the 13 K+ channel effec-
tors were reported by GIBBS to have a conserved motif of
length 20, that overlap with the one identified by MEME
(motif4). The comparison of the results obtained by
MEME with those obtained by GIBBS, showed that the
motifs of length 20 determined by GIBBS were either
included in the motifs determined by MEME or signifi-
cantly overlapped with them. However, the results
obtained by GIBBS are less significant in probabilistic
terms and in the ability of differentiating among the
groups of toxins. Therefore, only motifs obtained by
MEME will be adopted for the rest of this work.

Identification of new K+ and Na+ channel effectors

Using motifs obtained by MEME, we conducted a MAST
search against the nr database and we analyzed the results.
To avoid missing any signal, we have set the maximum
motif number to 6, which may lead to an increase in the
number of false positives due to model over fitting. There-

Table 1: GIBBS Results.

Motif Length Group Most Probable Motif

10 K+ AKCMNGKC-CY

10 Na+ ACYC--LPE-V-IW

10 birtoxin-like ADVPGNYPLD

20 K+ VPCT-SPQCI-PCK-A-M--GKCMNR

20 Na+ Q-LGRWGNACYC--LPD-VPIR--G-C

20 birtoxin-like VPGNYPLDKDGNTY-LELGEN
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fore, as a remedy, the e-value for a qualified sequence was
set to 1, which may minimize type-I error (false positives).
One hundred and seventeen sequences of various scor-
pion species were retrieved. Not only all the identical
sequences but also the ones used as input (training data-
set) from the search results were removed. Thus, 72
sequences remained (test dataset). Then, known K+ and
Na+ channel effector sequences in the returned test dataset
were removed (42 sequences removed). In total, 30 strong
candidates as potential new K+ or/and Na+ channel effec-
tor toxins were found among five scorpion species. Details
are listed in Table 3.

Pattern and domain analysis

Pattern and domain analysis were further used to filter the
results. All these 30 new K+ and Na+ channel effector
sequences have at least one of the 4 conserved motifs pre-
viously found in this study. We aligned these 30
sequences and other known K+ and Na+ channel effectors.
These motifs were overrepresented among all these
sequences (newly identified and known toxins), thus,
indicating that the identified motifs in the study are useful
for searching potential new K+ and Na+ channel effectors
from scorpions or plants.

InterPro results

Searching InterPro for the identified motifs showed that
motif-1 corresponded to 2 hits: PD000908 characteristic

of long chain scorpion toxins, and PF00537 correspond-
ing to Toxin_3 domain characteristic of Na+ channel
inhibitors from scorpion or plants. Motif-2 and motif-3
did not correspond to any match. Motif-4 corresponded
to 2 hits: PD003586 characteristic of short chain scorpion
toxins, and PF00451 corresponding to Toxin_2 domain.
The fact that 2 motifs among the 4 identified overlap with
other already reported in InterPro is a corroboration of
our approach.

2D results

Using PHD and PSSfinder, all 2D structures of the
sequences were determined. PHD results showed that the
2D structures displayed by motif-1, motif-2, motif-3, and
motif-4 were mainly β-sheet, α-helix, β-sheet, and α-helix,
respectively. Using PSSfinder, the 2D structure motif-1,
motif-3, and motif-4 were mainly β-sheet, β-sheet, α-
helix, or β-sheet, respectively. The 2D structure displayed
by motif-2 was unidentified.

Phylogenetic analysis results

All 152 sequences (training and/or test datasets) includ-
ing known and newly identified K+ and/or Na+ channel
toxins, found in our analysis, were used to build phyloge-
netic consensus trees. Using the training dataset only (79
sequences), the consensus phylogenetic tree obtained
revealed 3 major groups or clusters (figure 2a):

Group G1; contains all sequences of α-type Na+ channel
toxins. Group G2 contains toxins having some activities
on K+ channel. This group can be further subdivided into
two subgroups: S1 containing toxins active on K+ channel
only, and S2 involving birtoxin-like peptides. Group G3
contains β-type Na+ channel toxins. The group S2 of bir-

toxin-like peptides was situated between clusters S1 and
G3, where S1 contains sequences active on K+ channel and
G3 contains β-type Na+ channel toxins. Therefore, S2 can
be considered as a transition group from toxins active on
K+ channel to those β-type active on Na+ channel (figure
2b). This consensus tree presents the classical divergence
between α and β Na+ channel toxins, and it is consistent
with previous phylogenetic constructions made by
[14,49] even though, they did not use the same set of
toxin sequences.

Table 2: MEME Results.

Motif Number Group Length Consensus (Most Probable) Motif

1 Na+ 20 GNACWCIELPDNVPIRIPGK
2 Na+ 11 THLYEQAVVWP
3 birtoxin-like 20 NYPLDSSDDTYLCAPLGENP
4 K+ 20 KDAGMRFGKCMNRKCHCTPK

MEME motifs in logo formatFigure 1
MEME motifs in logo format.

Motif-1 Motif-2

Motif-3 Motif-4
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Table 3: Result of the activity prediction of the newly identified sequence using phylogenetic analysis, and probabilities of classification 
by CART tree models adjusted with the motifs and their 2D structure.

Access Number Inferred Activity by Phylogeny Classification Probability by CART: PSSfinder (PHD)

Na+ K+ birtoxin-like

gb|AAF31297.1 Na+ 1 0 0

gb|AAA69557.1 Na+ 1 0 0

gb|AAT36746.1 Na+ 1 0 0

prf||0804800B Na+ 1 0 0

gb|AAD47376.1 K+ 0 1 0

gb|AAG39641.1 Na+ 1 0 0

prf||0804800A Na+ 1 0 0

pdb|1LQI| Na+ 1 0 0

gb|AAF34872.1 Na+ 1 0 0

gb|AAK06898.1 Na+ 1 0 0

gb|AAF31477.1 Na+ 1 0 0

gb|AAA69558.1 Na+ 1 0 0

gb|AAT36745.1 Na+ 1 0 0

gb|AAG00580.1 Na+ 1 0 0

gb|AAP33620.1 Na+ 1 0 0

gb|AAP34332.1 Na+ 1 0 0

gb|AAG09657.1 Na+ 1 0 0

gb|AAG39643.1 Na+ 1 0 0

gb|AAV64254.1 Na+ 1 0 0

gb|AAT52203.1 Na+ 1 0 0

emb|CAD60540.1 Na+ 1 0 0

gb|AAF29465.1 Na+ 1 0 0

gb|AAR08045.1 Na+ 1 0 0

pdb|1SEG|A Na+ 1 0 0

gb|AAR08044.1 Na+ 1 0 0

gb|AAB31528.1 Na+ 1 0 0

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAF31297.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAA69557.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAT36746.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAD47376.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAG39641.1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1LQI|
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAF34872.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAK06898.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAF31477.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAA69558.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAT36745.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAG00580.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAP33620.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAP34332.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAG09657.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAG39643.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAV64254.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAT52203.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAF29465.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAR08045.1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SEG|A
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAR08044.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAB31528.1
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To infer the function of the test dataset toxins (72
sequences), all sequences from training and test datasets
were used to build a consensus phylogenetic tree, see fig-
ure 2. We examined the whereabouts of the sequences
from the test dataset with respect to the clusters (groups)
defined by the training dataset. Thus, to perform a final
check on the reliability of the results obtained, we exam-
ined the whereabouts of the 42 sequences of the test data-
set with known function in the output of PHYLIP with
respect to the clusters defined by the training dataset (79
sequences). The results show that these sequences (42)
with known activities fall within compatible functionally
defined clusters (clusters defined by toxins of the training
dataset), thus, supporting our results.

The activities of the remaining 31 sequences were inferred
in the same manner, see table 3 and figure 1. We can see
that most newly identified peptides were grouped with
sequences with known function toxins.

Statistical analysis results

The association between generated motifs and the toxins
activities was very significant, simulated p-value < 0.0001.
See biplot figure 3

Similarly, and while the majority of the motifs displayed
a β-sheet structure, the association between motifs 2D
structure distribution, and the protein classes was evalu-
ated with the same χ2 test, and simulated p-value < 0.001.
Therefore, 2D structures of the motifs were incorporated
as explanatory variables in the CART model.

Classification trees were adjusted using the training data-
set of 79 sequences. Misclassification error rates for PHD
and PSSfinder 2D based trees were less of 0.05, indicating
good classifications. The same models were used to pre-
dict the activities of the 72 sequences identified by MAST.
The 42 sequences with known activities were correctly
classified, while the remaining 30 new sequences of the
test dataset were assigned activities using CART model.
The predicted activities were in perfect concordance with
the results of the phylogeny. This fact confirms the classi-
fication tree models built using the training dataset as well
as the results of the phylogeny.

Discussion and conclusion
Due to the relative stability of K+ and Na+ channel effec-
tors provided by 3 or 4 S-S, they are used as tools for bio-
logical investigation of the ion channel structure [50,51],
and represent potential candidates for use in medical and
pharmacological applications.

Toxins from certain structural family generally target the
same receiver with varied intensity. However, in general,
each K+ and Na+ channel effector is slightly different from
each other, which makes it possible to find suitable toxins
for a specific application [52]. This underlines the regular
need to identify new K+ and Na+ channel effector toxins.

The analysis of the protein structures based on the con-
served motifs is largely used, and it is proven useful in the
prediction of the protein functions [53-55].

While no single motif was conserved in all K+ and Na+

channel effector sequences, this approach has permitted
the identification of 4 motifs overrepresented and specific
to each sequence function/class. Therefore, these motifs
may be used as a criteria for the classification of these
toxin types, in addition to the usual classification based
on sequence length and number of S-S.

Due to the complex nature of the voltage gated Na+ chan-
nel, there are many regions of the protein that can be
attacked, and therefore it is not surprising that we found
two overrepresented motifs in Na+ channel toxins. Inter-
estingly, both motifs (motif-1 and motif-2 for α and β tox-
ins respectively) for Na+ channel toxins found in this
study overlap with sites (Hydrophobic face, C-terminal
region and β2–β3 strands) described as essential for Na+

channels binding [56-60]. Motif-4 contains amino-acids
that are important in K+ toxin activity [61-63].

It was expected that the birtoxin-like group (new group)
would include both or at least one of the motifs character-
istic of K+ and Na+ channel effectors (motif-1, motif-2, or
motif-4). However, this was not the case, and toxins of
this new group, did exhibit another overrepresented motif
(motif-3). This finding suggests that toxins of the birtoxin-

like group do not interact with the same functional sites as

emb|CAD60541.1 Na+ 1 0 0

gb|AAB21461.1 Na+ 1 0 0

gb|AAG39640.1 Na+ 1 0 0

gb|AAB21462.1 Na+ 1 0 0

PSSfinder based tree and (PHD based tree when different).

Table 3: Result of the activity prediction of the newly identified sequence using phylogenetic analysis, and probabilities of classification 
by CART tree models adjusted with the motifs and their 2D structure. (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAB21461.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAG39640.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAB21462.1
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Consensus phylogenetic tree built using all sequences (training dataset and test dataset)Figure 2
Consensus phylogenetic tree built using all sequences (training dataset and test dataset). (a) A Simplified phyloge-
netic tree that displays three major clades labeled G1, G2, and G3. G2 is further subdivided into two groups S1 and S2. (b) Indi-
vidual clades; G1, S1, S2, and G3. Symbols: – Training dataset sequences: black circle active on Na+ channel, black square active 
on K+ channel, black triangle birtoxin-like. – Test dataset sequences with known activity: (_Na+): active on Na+ channel, (_K+): 
active on K+ channel, birtoxin-like: _birtoxin-like.
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other long or short chains toxins. This hypothesis is sup-
ported by competitive binding experiments showing that
although KAaH1 (a member of the birtoxin-like group) is
active on Kv1 channels, it did not displace iodinated α-
DTx, sKTX, and CTx (Kv1 channels blockers) from rat
brain synaptosomes (Abid, unpublished data). Similarly,
AaBTX-L1 which is active on Na+ channel (and also a
member of the birtoxin-like group), did not compete with
125I-CssIV (Na+ channel blocker). Moreover, no competi-
tion was observed either with 125I-sKTX (K+ blocker) or
with 125I-Apamine (SKCa channels blocker) on their recep-
tor sites on rat brain synaptosomes [23]. Moreover, bir-

toxin, ikitoxin, dortoxin and alitoxin do not enhance the
binding of ["H"]BTX to rat brain synaptosomes, which is
not consistent with their action on voltage-gated Na+ cur-
rent [20].

birtoxin and ikitoxin were found to contain 2 motifs: motif-
3 specific to birtoxin-like peptides group and motif-4
which is overrepresented in K+ channel toxins. This sug-
gests that birtoxin and ikitoxin could interact with K+ chan-
nel through this motif. However, this hypothesis needs to
be verified by testing these toxins on K+ channels.

The result obtained by the CART algorithm based on the
identified motifs and their 2D structures provided an
identical classification to that obtained by the phylogeny.
Therefore, the knowledge about the motifs and their 2D
are sufficient to infer the activity of a given toxin. This con-

clusion is supported by the fact that binding sites of toxins
to their channels target are generally situated on the α-
helix or β-sheet 2D structures [22,60,61].

The search for conserved motifs and the phylogenetic
analyses enabled us to find common characteristics to
each protein family and thus to predict the structure and
the function of the new protein sequences. These motifs
allowed us to find sequences that we were not able to find
with the classical criteria of toxin length and S-S number.

All 30 identified potential K+ and Na+ channel effector tox-
ins possess the overrepresented motifs specific to each
group of K+ and/or Na+ channel effector and the S-S
domain. While the e-value set for MAST was equal to one,
which is a quite stringent criterion, it led to the discovery
of very significant motifs with potential biological func-
tion (modulating specific ion channels), and provided
high sensitivity, and minimized the false positives, with
respect to MAST use.

Moreover, the phylogeny has shown that all the newly
identified potential K+ and Na+ channel effectors were
closely grouped to other known toxins. The new
sequences were situated inside the groups limited by tox-
ins with known functions.

In addition, the birtoxin-like peptides (S2) were located
between cluster containing toxins active on K+ channels
(S1) and cluster containing Na+ channel β-type toxins.
Therefore, S2 sequences can be considered as a transition
group putatively active on both channels (K+, and Na+).
Indeed, this fact explains the presence of both types (K+,
and Na+) of toxins in this group. The challenge will be to
find in the birtoxin-like (growing in size) group, which are
the signatures responsible for K+ or Na+ channel modula-
tion. Unfortunately, this group does not contain till now
sufficient sequences, and was not fully characterized with
respect to K+ and Na+ channels activities to make a consist-
ent conclusion.

Future work will deal with a finalization of the identified
motifs as to discern the exact number of residues, loca-
tion, and implication for the toxin activities. Docking
Study and building biophysical models that incorporate
these motifs, and model the interaction with their targets,
will be of great use.
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