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Abstract

Background: Sand fly saliva has been postulated as a potential vaccine or as a vaccine component within multi

component vaccine against leishmaniasis. It is important to note that these studies were performed using long-

term colonized Phlebotomus papatasi. The effect of sand flies colonization on the outcome of Leishmania infection

is reported.

Results: While pre-immunization of mice with salivary gland homogenate (SGH) of long-term colonized (F5 and

beyond) female Phlebotomus papatasi induced protection against Leishmania major co-inoculated with the same

type of SGH, pre-immunization of mice with SGH of recently colonized (F2 and F3) female P. papatasi did not

confer protection against L. major co-inoculated with the same type of SGH. Our data showed for the first time

that a shift from lack of protection to protection occurs at the fourth generation (F4) during the colonization

process of P. papatasi.

Conclusion: For the development of a sand fly saliva-based vaccine, inferences based on long-term colonized

populations of sand flies should be treated with caution as colonization of P. papatasi appears to modulate the

outcome of L. major infection from lack of protection to protection.

Background

Leishmaniasis is a neglected tropical disease affecting

two million people per year worldwide [1]. Sand flies are

the main vector of Leishmania, the etiologic agent of

leishmaniasis. Depending on the sand fly and Leishma-

nia species, different clinical forms of the disease from

cutaneous, muco-cutaneous, and visceral occur. Control

of leishmaniasis is based largely on chemical therapy

and vector control measures. However, these methods

have met with variable success [2,3]. To date no effec-

tive vaccine is available [4].

During blood meals, sand flies salivate into the host’s

skin. Beyond the functions associated with overcoming

vertebrate homeostasis, sand fly saliva modulates the

inflammatory response of the host and displays many

immunomodulatory properties [5]. Sand fly saliva con-

tains an array of bioactive molecules that allow the vec-

tor to successfully obtain a blood meal and enhance

transmission of Leishmania promastigotes into a verte-

brate host [5]. Among some of the most abundant

molecules are anticlotting, antiplatelet, and vasodilatory

compounds that increase the hemorrhagic pool where

sand flies feed [5].

Sand fly saliva was shown to exacerbate Leishmania

infection [6,7]. Several studies reported that pre-immu-

nization with salivary gland homogenates (SGH), salivary
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component, or pre-exposition to uninfected bites of

Phlebotomus papatasi provided significant protection

against infection with Leishmania major, the etiologic

agent of zoonotic cutaneous leishmaniasis (ZCL) [8-10].

All these studies were performed with long-term colo-

nized female P. papatasi. Recent data by our group

demonstrated that pre-immunization with SGH of wild-

caught or with SGH of recently colonized (F1) female P.

papatasi did not confer protection against L. major com-

pared to a significant protection obtained with SGH of

long-term colonized ones (F29) [11]. Therefore, during

the colonization process, the effect of SGH shifts from

lack of protection towards protection. As most studies

conducted on sand fly biology rely on colonized sand

flies, our principal objective was to determine at which

generation this shift from lack of protection to protection

against lesion development and parasite load occurs.

Materials and methods

Sand flies, parasites and animals

Wild sand flies were collected using CDC light traps

from an animal shelter located in the village of Felta

(governorate of Sidi Bouzid), a highly endemic focus of

ZCL [12]. Phlebotomus papatasi was found to be the

most abundant sand fly species caught in this area [12].

A new colony of P. papatasi (Tunisian strain) was

initiated at the Vector Ecology Laboratory of the Institut

Pasteur de Tunis [13]. Six generations of P. papatasi

(F2, F3, F4, F5, F6 and F14) were used in this study.

Since the number of protein components in SGH of P.

papatasi increases with age and produces a typical elec-

trophoretic pattern within three to five days after emer-

gence [14], sand flies were dissected at three to seven

days after emergence. Salivary glands were removed

under a stereo microscope in cold phosphate-buffer sal-

ine (PBS) (8 mM Na2HPO4, 1.75 mM KH2PO4, 0.25

mM KCl, 137 mM), (pH 7.4), and stored in groups of

20 pairs in 20 μl of PBS (pH 7.4) at -70°C. Immediately

before use, 20 pairs of salivary glands were disrupted in

100 μl of PBS buffer by three cycles of freezing-thawing.

A highly virulent strain of L. major MHOM/TN/95/

GLC94, isolated from a Tunisian patient was used in

this study [15]. Amastigotes were obtained after passage

in BALB/c mice in the footpad and harvested from skin

lesions by differential centrifugation. Promastigotes were

grown on NNN medium at 26°C and then progressively

adapted to RPMI 1640 medium (Sigma, St Louis, Mo.)

containing 2 mM L-glutamine, 100 U of penicillin/ml,

100 μg of streptomycin/ml, and 10% heat-inactivated

foetal calf serum (complete medium). Promastigotes

were collected while in the stationary growth phase

(enriched metacyclic) by centrifugation (3000 × g, 10

min, 14°C), washed three times in PBS and re-suspended

to the appropriate concentration.

BALB/c mice were bred in the animal facility the

Institut Pasteur de Tunis under pathogen-free condi-

tions. Female mice aged between six and eight weeks

were used in this study. All experiments involving

BALB/c mice were performed in accordance with proto-

cols approved by the Institutional Animal Care and Use

Committee of Pasteur Institute of Tunis.

Immunizations with SGH and challenge

Mice were anaesthetized by subcutaneous injection of

200 μl of ketamine (10 mg/ml) (Merial, Lyon, France),

and immunized intradermally in the right ear with the

equivalent of two pairs of salivary glands in 10 μl of

PBS. Six groups of 10 mice each were pre-immunized

with SGH obtained from sand fly generations F2, F3, F4,

F5, F6, and F14, once a week for two weeks. In the

fourth week, the groups were challenged with 106 L.

major promastigotes co-inoculated with the same type

of the SGH used in pre-immunizations. Six control

groups of 10 mice each were injected with PBS instead

of SGH and challenged with promastigotes co-inocu-

lated with each of the six types of SGH. Female BALB/c

mice pre-immunized with SGH and six control groups

of mice were challenged with a mixture of two pairs of

salivary glands in 10 μl of PBS and 106 stationary phase

L. major promastigotes in 50 μl of PBS inoculated sub-

cutaneously in the right hind footpad. The footpad swel-

ling at the site of inoculation was monitored at weekly

intervals using a vernier calliper. The lesion size was

defined as the increase in the footpad thickness after

subtracting the size of the contralateral uninfected foot-

pad. These experiments were repeated three times.

Evaluation of parasite load

Parasite load was evaluated for all groups of mice. At

the seventh week post-infection, three mice per each

category (F2, F3, F4, F5, F6, F14, and their respective

control groups) were used to determine the parasite

load. For each mouse, parasite burden was assessed for

the following tissues: footpad lesion, lymph nodes, and

spleen. The number of viable parasites present at the

site of infection (footpad, draining lymph nodes, and

spleen) was quantified using the limiting dilution

method [16]. Briefly, each pool of tissue was excised and

homogenized in RPMI medium supplemented with 20%

heat-inactivated foetal bovine serum, 100 U of penicillin

per ml and 100 μg of streptomycin per ml. Each tissue

homogenate was serially diluted in a 96-well Maxisorb

plate (Nunc, Roskilde, Denmark). Samples, in quadrupli-

cate, were incubated at 23°C. The wells containing

motile promastigotes were identified under the micro-

scope, and the number of viable parasites in each tissue

was determined from the highest dilution at which pro-

mastigotes had grown after up to seven days of
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incubation. Results were expressed as the mean -log10
parasite titer.

Statistical analysis

Using a linear mixed-effects model for longitudinal data,

and while allowing for nested random effects (random

intercept), and whereas the within-subject residual

errors are permitted to be correlated (autoregressive of

the first order, AR1) and/or have unequal variances [17],

we tested for difference in trends (generation effect) as

well as time-generation interaction, between curves

illustrating the variation of the lesion size through time

for each group of mice immunized and challenged dif-

ferently as described above. In addition, for specific time

point analysis (e.g., post-challenge starting at 3rd week),

Wilcoxon [18] and Student’s t-test were used to deter-

mine median and mean differences in lesion size

between groups. Maximum p-value is reported when

difference is significant and minimum p-value when it is

not. In addition Holm’s correction for multiple testing,

of the reported p-values was done when appropriate.

The test data considered for the analysis consisted of

subsets involving different generations combined

sequentially starting from F2, and F3 data. The criteria

when the model detect a generation effect is a p-value <

0.05, associated with generation effect. This will show

that there is a new generation effect, i.e. a transition

from neutral or lack of protection to protective effect.

Considering the difference in lesion between groups for

post-challenge starting from 3rd week, the same linear

mixed model was applied to the obtained difference, to

confirm the finding of the above approach. Alternatively,

to test for trend or level change i.e. a departure of the

mean difference from stationarity, KPSS test was used

[19]. To evaluate and test the correlation between para-

site load and lesion size, Pearson’s statistic was used. All

the statistical analyses were performed with the follow-

ing packages (Stats, Nlme, and Tseries) implemented in

the R software [version 2.10.1] for statistical computing

(http://www.r-project.org).

Results

Footpad lesions of mice pre-immunized with SGH of F5,

F6, and F14 female P. papatasi developed after challenge

with L. major co-inoculated with each of the three types

of SGH, but they were significantly smaller in size and

grew more slowly than in the control groups (max p-

values < 0.0001) (Figures 1, 2). In contrast, mice pre-

immunized with SGH of F2, F3 female P. papatasi chal-

lenged with L. major co-inoculated with each of the two

types of SGH developed lesions as rapidly and as large

in size as the control groups (p = 0.67) (Figures 1, 2).

Mice pre-immunized with SGH of F4 female P. papatasi

challenged with L. major co-inoculated with the same

type of SGH developed lesions less rapidly and less large

in size as the control groups, and those pre-immunized

with SGH of F2 and F3 female P. papatasi, but without

significant differences (min p-values = 0.1). However,

lesions size observed in the group of mice pre-immu-

nized with SGH of F4 female P. papatasi are larger in

size and grow more rapidly than the ones observed in the

groups of mice pre-immunized with SGH of F5, F6, and

F14 female P. papatasi (p-value < 0.0001) (Figures 1, 2).

Lesions size differed significantly in mice pre-immunized

with SGH of F2, F3 compared to lesions size observed in

the groups of mice pre-immunized with SGH of F5, F6,

and F14 female P. papatasi (max p-value < 0.0001).

Considering as test data, subsets involving different

generations combined sequentially starting from F2, and

F3 data, and the response variable as the difference in

lesion size between group pre-immunized with SGH of

Fi and its control group, a generation effect is detected

at F4 (p-value = 0.019). This showed that there is a

transition from lack of protection to protection. This

protective effect phenomenon became clearer starting

from the F5 (max p-values < 0.001) (Figure 3). Alterna-

tively, the KPSS test for trend and level change indicated

a level change, i.e. a departure of the mean difference

from stationarity (p-value = 0.036) (Figure 3).

The lesion sizes among different groups were propor-

tionally correlated with parasite burdens in different

organs i.e. footpad, lymph nodes, and spleen; (min r =

0.88, max p < 0.001) (Figure 4). A statistically significant

difference (max adjusted-p < 0.001) in mean parasite

load in the infected footpad of up to 4 log10 units was

observed in mice pre-immunized with SGH of F5, F6,

F14 compared to their control groups respectively, and

to those pre-immunized with SGH of F2 and F3 female

P. papatasi. A significant difference (max adjusted-p <

0.05) in mean parasite load in draining lymph nodes of

up to 3 log10 units was observed in mice pre-immunized

with SGH of F5, F6, F14 compared to their control

groups respectively, and to those pre-immunized with

SGH of F2 and F3 female P. papatasi. Similarly, a signif-

icant difference (max adjusted-p < 0.01) in mean para-

site load in the spleen of up to 4 log10 units was

observed in mice pre-immunized with SGH of F5, F6,

F14 compared to their control groups, and to those pre-

immunized with SGH of F2 and F3 female P. papatasi.

The parasite loads in infected footpad, lymph nodes,

and spleen were significantly lower in mice pre-immu-

nized with SGH of F5, F6, and F14 than in the group of

mice pre-immunized with SGH of F4 female P. papatasi

(max adjusted p < 0.05). There is a significant difference

in parasite load observed in mice pre-immunized with

SGH of F4 compared to the groups of mice pre-immu-

nized with SGH of F2 female P. papatasi. The difference

in parasite load observed between mice pre-immunized
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with SGH of F4 and to those pre-immunized with SGH

of F3 female P. papatasi is not statistically different for

the footpad and lymph node but it is statistically signifi-

cant for the spleen (p < 0.05). No significant difference

in parasite load was observed between mice pre-immu-

nized with SGH of F2 and F3 and the control groups (p

> 0.05) for all tissues tested (Figure 4).

Discussion

Our results demonstrate that pre-immunization with

SGH of F2, and F3 generations of female P. papatasi

does not confer protection against L. major. Similarly,

pre-immunization with SGH of wild-caught or recently

colonized P. papatasi (F1) do not confer protection

against L. major infection [11]. The shift from lack of

protection to protection occurs at the F4 generation and

the protection effect of SGH is first observed at F5 and

in following generations. This shift occurring at the F4

generation was within this particular study and the tim-

ing is likely to vary from case to case depending on the

selection applied and ease/difficulty of adaptation of

sand flies from the wild to a laboratory colony. As far as

we are aware, this is the first report on the effect of

colonization on the outcome of pre-immunization with

SGH on L. major infection.

Previous studies showed that pre-immunization with

SGH, salivary component, or pre-exposure to uninfected

bites of long-term laboratory-colonized female P. papa-

tasi, induced significant protection against L. major co-

inoculated with the same type of SGH [8-10]. These stu-

dies were performed with long-term colonized P. papa-

tasi. We showed that pre-immunization with SGH of

recently colonized P. papatasi did not provide protec-

tion against L. major co-inoculated with the same type

SGH compared to a significant protection obtained with

SGH of long-term colonized one [11]. The protective

effect against L. major following pre-exposure of mice

twice to uninfected bites of long-term colonized Phlebo-

tomus dubosqi shortly before experimental challenge

provided protection against L. major [20]. However,

there is a lack of protection when mice are pre-exposed

for long-term to uninfected bites of P. dubosqi followed

by free sand fly bites period prior to infection [20]. It

was reported that pre-immunization of BALB/c with

SGH of colonized Lutzomyia intermedia did not protect

BALB/c mice against Leishmania braziliensis co-
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Figure 1 Lesion progression in vaccinated BALB/c mice after challenge with 106 L. major metacyclic enriched promastigotes. Each

experiment is repeated three times. Results of the 3 experiments (10 mice per group) pooled together are expressed as increases in footpad

thickness (in millimetres) and are means + S.D. F2: mice pre-immunized with SGH of female P. papatasi (F2) and challenged with L. major co-

inoculated with the same type of SGH; F3: mice pre-immunized with SGH of female P. papatasi (F3) and challenged with L. major co-inoculated

with the same type of SGH; F4: mice pre-immunized with SGH of female P. papatasi (F4) and challenged with L. major co-inoculated with the

same type of SGH; F5: mice pre-immunized with SGH of female P. papatasi (F5) and challenged with L. major co-inoculated with the same type

of SGH; F6: mice pre-immunized with SGH of female P. papatasi (F6) and challenged with L. major co-inoculated with the same type of SGH;

F14: mice pre-immunized with SGH of female P. papatasi (F14) and challenged with L. major co-inoculated with the same type of SGH;
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inoculated with the same type of SGH [21]. The use of

SGH may represent a hurdle in the development of vac-

cines based on sand fly saliva and therefore, it is highly

needed to identify and select individual salivary protein

candidates instead of using SGH [21]. It is important to

point out that these authors emphasized that coloniza-

tion of Lu. intermedia is a challenging process [21].

Thus, the enhancement observed for L. braziliensis

infection following pre-exposure of mice to Lu. interme-

dia saliva was potentially due to the sand fly generation

used which was not indicated in their study.

As for ticks, it is well established that there are homo-

logues and prologues in their salivary gland trasncrip-

tomes that likely encode products to circumvent host

immune responses that could neutralize their biological

activity [22]. Natural selection may occur in natural field

populations of sand flies that favor polymorphism of

salivary gland proteins and subsequently induce anti-

genic variation to avoid effects of the host immune sys-

tem [23,24]. This hypothesis is corroborated by our
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Figure 2 Lesion progression in control BALB/c mice after challenge with 106 L. major metacyclic enriched promastigotes. Each

experiment is repeated three times. Results of the 3 experiments (10 mice per group) pooled together are expressed as increases in footpad

thickness (in millimetres) and are means + S.D. PBS-F2 (control group): mice pre-immunized with PBS only and challenged with L. major co-

inoculated with SGH of female P. papatasi (F2); PBS-F3 (control group): mice pre-immunized with PBS only and challenged with L. major co-

inoculated with SGH of female P. papatasi (F3); PBS-F4 (control group): mice pre-immunized with PBS only and challenged with L. major co-

inoculated with SGH of female P. papatasi (F4); PBS-F5 (control group): mice pre-immunized with PBS only and challenged with L. major co-

inoculated with SGH of female P. papatasi (F5); PBS-F6 (control group): mice pre-immunized with PBS only and challenged with L. major co-

inoculated with SGH of female P. papatasi (F6); PBS-F14 (control group): mice pre-immunized with PBS only and challenged with L. major co-

inoculated with SGH of female P. papatasi (F14);

Figure 3 Box-plot of the lesion difference between PBS pre-

immunized group and challenged with Fi SGH and Fi pre-

immunized group versus the generation Fi.
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findings showing: 1) that pre-immunization with SGH of

wild-caught or recently colonized (F1) P. papatasi do

not confer protection against L. major compared to a

significant protection obtained with long-term colonized

ones, [11] and 2) pre-immunization with SGH of long-

term colonized (F39) P. papatasi do not confer protec-

tion against L. major co-inoculated with SGH of wild-

caught compared to a significant protection obtained

when both pre-immunization and challenge were per-

formed with SGH of long-term colonized P. papatasi

[25]. It was also reported that colonized and wild-caught

Lutzomyia longipalpis differ in the composition and the

amount of salivary proteins and these differences may

account for the lower effect observed on the modulation

of experimental Leishmania infection by wild-caught

SGH [26,27].

Despite that fact that no direct evidence is presented

in this study for a loss of variability in salivary protein

genes, we hypothesized that a loss of genetic variation

as a result of colonization is potentially responsible for

the protection observed in mice pre-immunized with

long-term colonized P. papatasi. Conversely, the anti-

genic diversity of salivary gland proteins of recently

colonized P. papatasi is likely the reason for lack of pro-

tection in mice pre-immunized with SGH of recently

colonized flies.

SP-15 was shown to be protective against L. major

[10]. It was hypothesized that the development of a vac-

cine based on SP-15 will not be affected by an inconsis-

tent immune response due to genetic variation in

natural populations of P. papatasi [28]. However, several

studies emphasized that natural genetic variation in can-

didate salivary vaccines is an important issue in the

potential efficacy of a vaccine [11,23-25].

Laboratory colonies of insects are often accepted as

being representative of field populations from which

they have been derived. However, this assumption may

not always be valid, as colonies frequently incorporate

only a fraction of the original population’s genetic varia-

bility [29]. Long-term term colonization of P. papatasi

induced a selection of refractory and susceptible lines to

L. major [30,31]. Wild-caught P. papatasi exhibited the

highest genetic variation in SP-15 compared to colo-

nized flies of the same species [28]. Moreover, the analy-

sis of genetic variation at 17 enzyme loci of one

colonized and five field populations of P. papatasi

showed that polymorphism of the examined loci

observed in colonized and in field populations were

23.5% and 76.6%, respectively [32].

For the New World sand fly Lu. longipalpis, coloniza-

tion led to reduced genetic variability in comparison to

field samples, and to fixation of rare or previously
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undetected alleles [33]. Hence, colonization of sand flies

may reduce genetic variability and may select for certain

traits not present in field populations.

For P. papatasi, pre-immunization of mice to PpSP15

was shown to be protective against L. major, while

immunization with another salivary gland protein

PpSP44 from the same colony of P. papatasi induced

disease enhancement [34]. In addition, pre-immuniza-

tion with SGH of wild-caught or recently colonized P.

papatasi does not protect against L. major infection

contrasting with significant protection observed with

long-term colonized flies [11]. Our previous studies

revealed that pre-immunization with SGH of long-term

colonized (F39) P. papatasi do not confer protection

against L. major co-inoculated with SGH of wild-caught

compared to a significant protection obtained when

both pre-immunization and challenge were performed

with SGH of long-term colonized P. papatasi [25].

In conclusions, we provide in this study further evi-

dence that colonization has a direct impact on the out-

come of L. major infection following pre-immunization

with SGH of different generation of P. papatasi. More-

over, the change in the resulting effect was detected

between the 4th and 5th generations following coloniza-

tion. As indicated above, whether this is related to a

qualitative or quantitative difference in the sand fly sal-

iva remains to be determined.
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