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Abstract

Background: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may
critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to
glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited
neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte
mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such
astrocytic dysfunction is sufficient to trigger striatal neuronal loss.

Methodology/Principal Findings: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day
0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited
proliferation of astrocytes expressing S100b followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45.
Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death
appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal
degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures,
GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated
by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants
prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss
in vitro.

Conclusions/Significance: Taken together, these results indicate that a transient metabolic insult with GA induces long
lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of
astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable
progression of disease in children with GA-I.
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Introduction

During CNS development, astrocytes are mostly generated after

the initial production of neurons and then play a key role in the

subsequent development of grey and white matter. Astrocytes

participate in guiding the migration of developing axons and

neuroblasts [1,2], are essential for the generation and pruning of

synapses [3], and for the blood brain barrier formation [4].

Developing astrocytes are vulnerable to ischemia [5], oxidative

stress [6], and inflammation [7,8]. Primary or secondary astrocyte

damage has been implicated in several developmental or peri-

natal CNS pathologies such as periventricular leukomalasia [6],

vanishing white matter disease [9], Alexander disease and lead and

methylmercury poisoning [9]. Thus, a vulnerability of astrocytes in

early stages of development may critically alter subsequent survival

and function of neurons.

Severe loss of basal ganglia neurons is a pathological hallmark of

Glutaric acidemia type I (GA-I), an autosomal recessive inherited

neurometabolic disease caused by deficiency of glutarylCoA

dehydrogenase (GCDH) enzyme [10,11,12,13]. GCDH deficiency

alters lysine and tryptophan catabolism causing the accumulation

of glutaric acid (GA) and related metabolites in the brain of GA-I

patients [10,14]. Clinically, babies with GA-I can present

macrocephaly before the appearance of first symptoms typically
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denoted by encephalopathic crisis [11,15,16]. Then, GA-I may

evolve to a complex neurological syndrome simulating a cerebral

palsy with extrapyramidal signs such as progressive dystonia and

dyskinesia. Symptoms may have a gradual rate of onset and

progression, or occur suddenly after an acute metabolic crisis

[10,11,12,16,17]. Pathologically, the characteristic features of GA-

I are a loss of neurons in the caudate and putamen and spongiform

lesions in the white matter [11,15,18]. Increased extracellular GA

acts as a potent neurotoxic metabolite having the potential to

induce excitotoxicity [17], disruption of mitochondrial energy

metabolism and oxidative stress [19,20]. In astrocytes, GA

interferes with sodium-coupled dicarboxylate transporters, thus

disrupting the supply of tricarboxylic acid cycle intermediates

necessary for ATP and neurotransmitter synthesis in neurons [21].

In spite of this acute metabolic effect, there is scarce information

about other mechanisms by which GA may cause astrocytes to

trigger progressive neuronal loss in GA-I.

We have previously shown that astrocytes are preferential cell

targets of GA [22] which likely accumulates in astrocytes through

glutamate transporters [23]. Remarkably, cultured astrocytes

become severely dysfunctional when exposed to GA, with

mitochondrial depolarization and secondary oxidative stress

[22]. In addition, GA induces astrocytes to actively proliferate

by a mechanism involving activation of MAP kinases and

oxidative stress. We have also showed that systemic administration

of GA to rat pups also resulted in acute increase in postnatal

gliogenesis and increased number of undifferentiated astrocytes

expressing S100b [22]. However, it is uncertain whether the

appearance of such abnormal astrocytes contributes to the striatal

degeneration characteristic of the disease.

To investigate the role of astrocytes in GA-I striatal degener-

ation, a transient metabolic crisis was induced in rat pups by a

single intracerebroventricular (icv) administration of GA to mimic

an acute encephalopathic crisis suffered by GA-I patients

[12,14,19]. Here, we describe a novel mechanism by which icv

GA acutely induced proliferation of astrocytes and long-term

astrocytosis. Interestingly, astrocytosis induced by GA was

followed by massive neuronal loss days after the crisis indicating

an indirect mechanism of toxicity. In culture systems, GA was not

directly toxic to isolated striatal neurons, but caused oxidative

stress and long lasting astrocyte dysfunction sufficient to kill striatal

neurons. These results indicate that dysfunctional astrocytes are

sufficient to trigger striatal neuronal loss, thus providing the basis

to prevent the progressive neurodegeneration using antioxidants.

Results

GA induced long lasting astrocytosis in the striatum
In line with a previous report [22], we have validated an animal

model of GA-I by injecting rat pups at postnatal day 0 (P0) with a

single bolus of 2.5 mmol/g body weight GA into the cisterna magna

(IV ventricle). The dose employed likely reach millimolar concentra-

tion of GA in the brains of the pups [19], which correspond to the

concentrations found in patients with GA-I [11,12,14,19]. Further-

more, the dose was adjusted to also reproduce the characteristic

encephalopatic crisis of GA-I patients. In pups, the crisis consisted in

tonic-clonic convulsions lasting up to 15 min followed by a hypotonic

phase that lasted up to 30 min. In average, there was a mortality of

20%. As depicted in Fig. 1, the pathological correlate of GA

administration was a long lasting astrocytosis observed from P5 to P45.

GA induced a 3-fold increase of astrocyte-like cells expressing nuclear

S100b in P5 as compared to the respective age-matched controls

injected with vehicle. Increased number of S100b positive cells

remained elevated until P45. The number of GFAP astrocytes

remained elevated by 2–3 folds from P5 to P45. Double labeled cells to

both S100b and GFAP were increased from a 25%67 at P5 up to

92%618 at P45. No significant changes in striatal vimentin and nestin

expression were found in GA-injected animals at all ages studied.

Increased gliogenesis induced by GA
A single icv administration of GA at P0 induced a marked

increase in dividing cells labeled with BrdU that were mainly

localized in the striatal neuroepithelium and the underlying

parenchyma (Fig. 2A, B). The number of BrdU positive cells in

GA-treated pups striatal parenchyma remained elevated up to 45

days, suggesting the majority of newborn cells survived. Most of

Figure 1. GA induced long lasting astrocytosis in the striatum.
P0 rat pups were injected icv with GA or vehicle and processed from 5
(P5) until 45 (P45) days later for immunohistochemistry as described in
Materials and Methods. A: Representative S100b (red) and GFAP (green)
immunofluorescences of the striatal parenchyma at P5, P21 and P45
evidencing an increased number of astrocytes with nuclear S100b and
typical GFAP stains in GA-treated pups (right) when compared to
controls (vehicle, left). Some GFAP astrocytes were also positive to
S100b (white arrow heads). Box in the inset shows striatal areas
analyzed. Scale bar: 25 mm. B: Increased number of astrocytes after the
icv GA injection evidenced by 2–3 folds rises in S100b positive cells at
P5 and elevated number of GFAP positive cells until P45. All values were
significantly higher (p,0.05) than respective controls (taken as 100%
and indicated with the dotted line). All data is expressed as mean 6
SEM.
doi:10.1371/journal.pone.0020831.g001

Astrocyte Damage and Striatal Degeneration

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e20831



BrdU positive cells displayed an astrocytic phenotype predomi-

nantly expressing S100b at P5 but progressively turning to GFAP

positive as animal aged (Fig. 2). In comparison, animals injected

with vehicle displayed a low number of BrdU positive cells and few

of them were labeled with S100b or GFAP.

Delayed neuronal death following icv administration of GA
To determine whether GA administration induced neurode-

generation, the number of degenerating striatal neurons was

estimated by Fluoro JadeC (FJC) cell staining at different time

points (Fig. 3A). While no significant number of degenerating

neurons was found in control animals, the number of FJC

degenerating neurons in GA-injected pups increased just after

P12, reaching a 3-fold increase at P21 and P45 (Fig. 3B).

The striata of GA-injected animals also showed an increased

number of neurons stained with nitrotyrosine (second row Fig. 3A,

Fig. 3C), indicative of nitrosative and oxidative stress [6,24]. Some

oligodendrocytes inside axonal bundles were also stained for

nitrotyrosine (not shown).

The number of striatal neurons (estimated by NeuN positive cell

counting per area unit) remained unchanged until P12 in GA

injected pups as compared to controls (Fig. 3D). This was followed

by a significant decrease by 25 and 27% in NeuN positive neurons

at P21 and P45, respectively. In addition, the pattern of NeuN

neuronal staining in GA-injected animals was atypical, with a

weak, perinuclear and cytoplasmic staining that contrasted with

predominately nuclear staining in control pups (Fig. 3A, third row

panels). As dying neurons could retain some NeuN immunoreac-

tivity [25], the counting likely overestimates the total number of

neurons.

The axonal bundles perforating the striatum were disrupted in

GA-injected animals as shown by phosphorylated neurofilament

(PNF) staining. While axonal bundles in control pups were

progressively larger and compacted as the pup aged, bundles

remained disaggregated in GA-injected animals, the total area

being decreased by 70% at P45 (Fig. 3E). Similar results were

obtained with non-phosphorylated neurofilament staining (not

shown). Compared to control animals, the area of PNF-axonal

bundles was significantly decreased from P5 to P45.

FeTCPP abolished the delayed astrocytosis and striatal
degeneration induced by GA

The co-administration of FeTCPP intraperitoneal (20 nmol/g,

ip) in pups receiving icv GA at P0 significantly prevented the

increase in S100b and GFAP positive cells, neuronal loss and

disruption of axonal bundles induced by GA (Fig. 4A–B), further

indicating an association between oxidative damage acutely

induced by GA [22] and subsequent astrocytosis and neuronal

damage (Fig. 4 A–B).

GA caused astrocytic dysfunction in vitro
Treatment of confluent astrocytes with 5 mM GA (24 h) caused

significant mitochondrial depolarization as shown by decreased

JC1 red staining and ratiometric red/green relationship (Fig. 5 A,

B upper panel and chart). GA also evoked lower glutathione levels

as indicated by decreased blue fluorescence resulting from

monochlorobimane-glutathione adducts (Fig. 5 A, B middle

images and graph). In addition, the oxidation of carboxy-

H2DFFDA increased the green fluorescence up to 140% of

controls in GA-treated astrocytes (Fig. 5 A, B bottom images and

chart), further indicating oxidative stress. The antioxidants

FeTCPP and apocynin [26] abrogated GA effects on cultured

astrocytes (Fig. 5 B). GA did not affect immunoreactivity and

expression of the astrocytic markers glutamate transporter GLT1

and glutamine synthase (not shown).

GA did not induce neuronal death in absence of
astrocytes

Then, we used cell culture approaches to determine whether

astrocytes were required for striatal neuron loss induced by GA.

The direct neurotoxic potential of GA was assayed by incubating 5

days in vitro E18 striatal neurons with 5 mM GA (pH 7.4) or

saline during 24 h. As shown in Fig. 6A, GA failed to induce

Figure 2. Increased gliogenesis following icv GA administra-
tion. P0 pups were treated with GA or vehicle and immediately injected
with a single dose of BrdU ip to label dividing cells. A: Panoramic BrdU
immunohistochemistry of the striatal regions lining ventricles showing
an increased number of dark BrdU labeled nuclei in both striatal
parenchyma and subventricular areas (dotted white lines indicate the
limit between both areas) of GA-injected animals. In controls, injected
with vehicle, BrdU positive nuclei were mainly restricted to subven-
tricular regions. Inset schematizes areas imaged. Calibration bar: 75 mm.
B: The number of BrdU labeled cells in the striatal parenchyma of GA-
injected animals related to respective controls remained elevated until
P45. All values were significantly higher than controls (taken as 100%
and indicated by a dotted line). C: Astroglial phenotype of BrdU+ cells
in GA-injected animals evidenced by a double labeling for both BrdU
and S100b that were dominant at P5, and a progressive BrdU-GFAP
double immunoreactivity at P21 and P45. In all conditions, the number
of BrdU positive cells that displayed astroglial phenotype was
significantly higher than controls. All data is expressed as mean 6
SEM. Asterisks indicate statistical significance related to respective
controls at p,0.05).
doi:10.1371/journal.pone.0020831.g002
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significant neuronal death as estimated by counting of surviving

neurons once the 24 h GA treatment finished. Lactate dehydro-

genase release and number of MAP2 positive cells tested in GA

treated neurons did not differ from controls (109%612 and

89%612, respectively), indicating a low vulnerability of isolated

neurons to GA. This was consistent with a preserved neuronal

morphology of GA-treated neurons (insets, Fig. 6A).

Astrocyte activation by GA was sufficient to induce
neuronal death

It was previously shown that GA activated astrocytes and

induced proliferation [22]. When E18 striatal neurons were seeded

on the top of a feeder layer of striatal astrocytes previously exposed

to GA, the neuronal survival decreased by 50% as compared to

those treated with vehicle only (Fig. 6B). Surviving neurons

roughly lost up to 40% of processes and swollen its bodies around

25% when compared to control neurons (Fig. 6B).

Simultaneous treatment of astrocytes with GA and FeTCPP

prevented astrocyte activation and subsequent neuronal death,

and also preserved the normal neuronal morphology (Fig. 6C).

Treating astrocytes with GA plus the antioxidants iron tetrakis-(4-

sulfonatophenyl)-porphyrinate (FeTPPS, 20 mM) or iron tetra-

kis(N-methyl-49-pyridyl)-porphyrinate (FeTMPyP, 2 mM) was also

neuroprotective as shown by the obtained 95%612 and 101%68

of neuron survival, respectively. The NADPH oxidase inhibitor

apocynin [26] also showed a modest protective effect (1 mM,

85%615 of surviving neurons). 20 mM of the MAP kinase

inhibitor 1,4-diamino-2,3-dicyano-1,4-bis [2-aminophenylthio]

butadiene (U0126) partially prevented the neuronal loss induced

by GA-stimulated astrocytes (70%618 of neuron survival related

to controls).

To determine whether astrocytes exposed to GA were sufficient

to mediate neuronal death, we assessed the effects of astrocyte

conditioned media (CM) on striatal neuron morphology and

survival. 1:5 dilution of CM obtained from control astrocytes (CM-

C) exerted a beneficial effect on striatal neurons, increasing neurite

growth and survival by 10% (Fig. 7A). In contrast, CM from GA-

treated astrocytes (CM-GA) significantly decreased both neuronal

Figure 3. Delayed degeneration of striatal neurons following icv GA administration. P0 pups were treated with GA or vehicle and
processed at different times to evaluate Fluoro JadeC (FJC) positive degenerating neurons, neuron number, nitrotyrosine immunoreactivity and
phosphorylated neurofilament (PNF) areas. A: Representative microphotographs of the striatal parenchyma at P21 showing that GA treatment
caused increased FJC and nitrotyrosine labeling, and both decreased number of NeuN positive neurons and PNF areas. Calibration: 20 mm in upper
and mid panels, and 100 mm in the bottom one. Inset: scheme of striatal area analyzed. B: Time course of FJC labeling in striatal sections of GA-
injected animals as compared to controls. Note the sharp increase in degenerating FJC positive cells at P21 and P45. C: Time course of nitrotyrosine
labeling in striatal sections of GA-injected animals as compared to controls. Note the sharp increase in nitrotyrosine immunoreactivity at all ages but
peaking at P21. D: Time course of number of striatal NeuN positive neurons showing a significant decrease at P21 and P45 in GA-injected animals as
compared to controls. E: Relative area of PNF bundles at different times after GA-treatment. Note the significant diminution evidenced at P5 and the
progressive decrease until P45. Dotted lines in charts B, C and D indicate respective control values. All data are the mean 6 SEM. Statistical
significance at p,0.05 (*).
doi:10.1371/journal.pone.0020831.g003
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survival and the number of neurites in surviving neurons. Maximal

neuron death induced by CM-GA (approximately 45%) was

obtained at a 1:5 dilution but significant neuronal loss was seen up

to 1:20 dilution (Fig. 7B). Remarkably, neurotoxic potential of

astrocytes treated with GA persisted up to 7 days after GA

withdrawal. At this time, 1:5 dilution of CM-GA killed 25%610 of

neurons, suggesting GA induced long-lasting astrocytic changes.

Treatment of astrocytes with FeTCPP before the GA exposure

prevented the toxicity of CM-GA (Fig. 7C), further suggesting

oxidative stress is required for GA-induced astrocyte activation.

Discussion

The present study shows evidence that astrocyte dysfunction

induced by an acute and transient metabolic insult with GA is

sufficient to initiate a progressive pathological process in astrocytes

leading to striatal neuronal death. Neuronal degeneration was

delayed by several days with respect to the metabolic insult and

coincident with increased number of S100b-expressing astrocytes

infiltrating the striatum. In addition, cultured astrocytes exposed to

GA become no longer permissive to striatal neurons and secrete

neurotoxic soluble factors, further indicating dysfunctional astro-

cytes are sufficient to initiate neuronal loss in GA-I. Taking

together, these findings show a previously unknown pathological

role of astrocytes in the triggering of striatal degeneration during

postnatal development.

We found that a single icv administration of GA was sufficient to

induce an acute encephalopatic crisis in rat pups, resembling that

observed in patients with GA-I [15], with tonic-clonic convulsions

Figure 4. FeTCPP prevented GA-induced astrocytosis and
subsequent striatal degeneration. P0 pups received a single dose
of FeTCPP (20 mmol/g, ip) or vehicle and then were injected with GA or
vehicle as described in Methods. A: Counting of S100b and GFAP
astrocytes at P21. Note FeTCPP prevented astrocytosis induced by GA.
‘: p,0.01 related to controls. B: Counting of number of NeuN positive
neurons and area of PNF bundles. FeTCPP co-administration with GA
preserved both the neuron number and PNF area. Dotted lines indicate
control value. *: p,0.05 related to corresponding controls.
doi:10.1371/journal.pone.0020831.g004

Figure 5. GA induced astrocytic mitochondrial depolarization and increased oxidative stress. Confluent striatal cultured astrocytes were
submitted to GA (5 mM, 24 h) and then mitochondrial potential and oxidative status were assessed immediately. A: Representative images of the
effects of GA on mitochondrial potential (measured by the probe JC1), glutathione levels (assessed by monochlorobimane), and oxidative activity
analyzed with carboxy-H2DFFDA. Note that GA-treated astrocytes have decreased mitochondrial potential and cellular glutathione as evidenced by
green mitochondria and less blue fluorescence, respectively. In bottom images, green spots surrounding the DAPI stained nuclei in GA-treated cells
denote increased oxidative stress. Calibration: 20 mm in upper and mid panels, and 10 mm in the bottom one. B: Quantitation of GA effects and
counteracting antioxidant actions. Charts show percent values of JC1 ratiometric fluorescence, monochlorobimane (MCB) emission and green
carboxy-H2DFFDA fluorescence in GA-treated astrocytes alone or pre-incubated with the antioxidants FeTCPP (FeT, 20 mM), apocynin (APO, 1 mM), or
FeTMPyP (FeM, 2 mM). Note that antioxidants abrogated GA decreasing effects on mitochondrial potential and glutathione levels, as well as the
increased oxidative stress. Control conditions were indicated with dotted black lines. Asterisks indicate statistical significance at p,0.05.
doi:10.1371/journal.pone.0020831.g005
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followed by a progressive neurodegeneration. This effect was

obtained by GA reaching transiently millimolar concentration in

the pup’s brain comparable to that found in the autopsy brains of

patients [11,12,14,15,19]. Interestingly, GA administration did not

result in acute or subacute striatal neuronal loss as could be

anticipated if GA would simply act as a potent excitotoxin to

induce neuronal death [17]. Rather, GA acutely stimulated striatal

gliogenesis, which originated waves of newborn astrocytes that

apparently remained integrated in the striatal parenchyma for

several weeks. Such astrocyte population was predominantly

S100b-positive during the first week and evolved to a predominant

GFAP-positive astrocytosis lasting several weeks. This, in agree-

ment with previous studies showing postnatal gliogenesis in the

striatum is increased following brain damage such as hypoxia [27].

These results indicate that GA targets astrocytes more readily than

previously thought and long before striatal neuronal damage is

apparent.

This novel GA-I animal model allowed determining that

astrocytes are affected early after GA administration, displaying

a strong proliferative reaction and expressing increased levels of

S100b [22]. GA is a dicarboxylic acid structurally close to

glutamate that interacts with glutamate transporters [23] allowing

GA accumulation in astrocytes preferentially. In turn, intracellular

accumulation of GA in astrocytes results in severe mitochondrial

dysfunction associated to oxidative stress and increased astrocyte

proliferation via activation of MAPK signaling [22]. These results

were further confirmed by a recent study showing GA compet-

itively interferes with astrocytic sodium-dependent dicarboxylate

transporters, altering its anaplerotic supply of tricarboxylic acid

cycle intermediates to neurons [21]. Here, we provide evidence

that dysfunctional astrocytes actively mediate the elimination of

neurons in vivo and in vitro. In pups, neuronal degeneration was

delayed by several days with respect to the metabolic insult and

coincident with increased number of S100b-expressing astrocytes

infiltrating the striatum. In addition, cultured astrocytes exposed to

GA become no longer permissive to striatal neurons and secrete

neurotoxic soluble factors,. Taking together, these findings show a

previously unknown pathological role of astrocytes in the

triggering of striatal degeneration during postnatal development.

Since astrocytosis was so blatant after GA administration we

hypothesized that dysfunctional astrocytes are the cause of progressive

neuronal death. A failure of astrocytes to reach appropriate

differentiation may critically compromise the astrocytic support to

neurotransmission or neuronal survival, as has been suggested in GA-I

[21]. Alternatively, altered glutamate uptake by astrocyte could

facilitate excitotoxic killing [2,3,4,17,28,29]. Aberrant specification of

Figure 6. GA did not induce neuronal death in absence of astrocytes. Isolated striatal neuronal cultures were employed to investigate the
mechanism of GA-induced neurotoxicity. A: Phase contrast of E18 striatal neurons at 5 DIV exposed to vehicle or 5 mM GA (pH 7.4, 24 h). Note that
GA neither modified the morphology (as shown in respective insets) nor the number of MAP2 positive neurons as indicated in the right chart. Scale
bars: 80 mm (images), 40 mm (insets). B: Astrocyte monolayers pretreated with vehicle or GA 5 mM for 24 h were used as feeding layer to cultured
E18 striatal neurons. Note the decrease in the number of neurons and that surviving neurons exhibited swollen bodies and sparse neurites. Extensive
washings before neuronal seeding discarded a direct effect of GA on striatal neurons. Scale bars: 20 mm. C: FeTCPP applied immediately before GA
prevented toxic effects of GA-treated astrocytes as shown by the preserved neuronal number and morphology of neurons co-cultured on GA-treated
astrocyte monolayers. Symbol ‘ indicates statistical significance at p,0.01 and NS: means no statistical signification.
doi:10.1371/journal.pone.0020831.g006
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glial precursors leading to an increased immature astrogliogenesis has

also been proposed as a mechanism for abnormal neuronal

organization and survival in postnatal development [28]. In addition,

an exacerbated proliferation of astrocytes could impair the generation

of oligodendrocytes from common glial precursors [28], contributing

to white matter defects described in GA-I patients [10,11]. Since

S100b protein is typically secreted by astrocytes, its GA-induced

expression could explain astrocyte proliferation and abnormal

phenotypes. S100b is known to exert paracrine effects that contribute

to astrocyte proliferation, migration, differentiation and neuronal

death [30,31]. Taken together, our results suggest that dysfunctional

astrocytes are generated in response to GA administration and persist

several weeks, being temporally coincident to the triggering of

neuronal death. GA-induced delayed neurodegeneration seems to be

a progressive process that occurs autonomously from GA levels,

resembling some cases of GA-I patients where neurological symptoms

continue to aggravate after normalization of metabolic parameters by

dietary managements [11,12,13].

In the present study, we found that GA caused astrocytes to

become neurotoxic for striatal neurons plated on top of highly

enriched astrocyte monolayers. It is unlikely this effect was mediated

by GA or related metabolites, since extensive washing was performed

before neuronal plating. Astrocyte-mediated toxicity was further

confirmed in experiments using the conditioned media of astrocytes

following GA exposure, suggesting a mechanism mediated mainly by

soluble factors. The mechanism of astrocyte-mediated toxicity to

striatal neurons is under active investigation. It is unlikely that

astrocytes kill neurons simply by decreasing the export of tricarboxylic

acid cycle intermediates [21], since this mechanism is potentially

reversible once GA is removed from the cultures or from the brain.

Rather, we propose GA induces a long term phenotypic changes in

astrocytes that causes them to become neurotoxic. Early oxidative

stress, mitochondrial dysfunction and increased proliferation appear

as crucial pathways contributing to astrocyte toxicity as suggested by

the potent neuroprotective effects of antioxidants and MAP kinase

inhibitor. Moreover, astrocytes bearing the amyotrophic lateral

sclerosis (ALS) linked to superoxide dismutase 1 G93A (SOD1G93A)

mutation also induce motoneuron killing in both coculture conditions

and through soluble factors found in the culture media [32,33,34,35].

The fact that astrocytes treated with GA and those bearing the

SOD1G93A mutation [22,36] display comparable defects in mito-

chondrial membrane potential suggests a common intracellular

signaling pathway leading to a neurotoxic astrocytic phenotype.

Further, the antioxidant FeTCPP and related compounds with

antioxidant and peroxynitrite scavenger activities that prevented GA-

induced astrocyte mediated toxicity both in vitro and in vivo are also

protective in ALS models [37]. Thus, metalloporphyrins appear as

potentially useful adjuvant therapeutics in the acute encephalopathic

crisis, which could abrogate the triggering of the pathological process

in GA-I patients.

Summarizing, our data propose that astrocytes are key players

in GA-I onset and progression. While normal astrocytes could

buffer GA toxic effects during the presymptomatic stages of the

disease, they could become vulnerable to GA when concentrations

critically increase. Our results suggest that once damaged by GA,

astrocytes proliferate and follow a long term phenotypic change

that appears to promote disease progression autonomously from

GA levels. Finally, it is conceivable that an acute pharmacological

intervention with FeTCPP will prevent astrocyte proliferation and

neurotoxicity, thus ameliorating the otherwise ineluctable course

of GA-I.

Materials and Methods

Chemicals
Dulbecos modified Eagle’s medium (DMEM), Neurobasal

medium, glutamine, B27, fetal bovine serum (FBS), penicillin/

streptomycin, trypsin, Fluoro JadeC (FJC), 5,59,6,69-tetrachloro-

1,19,3,39-tetraethylbenzimidazolylcarbocyanine iodide (JC1), 5-

(and-6)-carboxy-29,79-difluorodihydrofluorescein diacetate (car-

boxy-H2DFFDA) and monochlorobimane were purchased from

Invitrogen (Carlsbad, CA, USA). Iron porphyrins came from

Figure 7. Astrocyte activation by GA was sufficient to induce
neuronal death through soluble factors. The neurotoxic activity of
conditioned media (CM) of astrocytes treated with GA (CM-GA) was
tested on cultured E18 striatal neurons 5 DIV after plating. A:
Representative MAP-2 immunostaining of striatal neurons upon
treatment with CM from control (CM-C), or GA-treated (CM-GA) or
FeTCPP/GA-treated astrocytes (CM-FeT/GA). Note decreased neuronal
number and neurite growth caused by CM-GA and the maintenance of
both neuronal survival and phenotype in the CM-FeT/GA condition.
Scale bar: 50 mm. B: Counting of striatal neurons maintained in culture
for 24 h with CM-C or increasing dilutions of CM-GA or vehicle.
Neuronal number increased when treated with CM-C (first column of
the chart). Conversely a concentration dependent neuronal loss was
caused by CM-GA when compared with vehicle (taken as 100%, dotted
line). *: p,0.05. C: FeTCPP applied immediately before GA abolished
the toxicity of CM-GA (1:5 dilution) preserving both the neuronal
number and morphology. Control was indicated by the dotted line. All
data is the mean 6 SEM. ‘: p,0.01; *: p,0.05.
doi:10.1371/journal.pone.0020831.g007
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Alexis Biochemical (San Diego, CA, USA). 1,4-diamino-2,3-

dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) was pur-

chased from Cell Signaling Technology (Danvers, MA, USA).

Commercial antibodies came from Dako (Carpinteria, CA, USA),

Chemicon (Temecula, CA, USA), Sigma (St Louis, MO, USA),

Covance (Princeton, NJ, USA), Cell Signalling (Danvers, MA,

USA) and Invitrogen. All other chemicals of analytical grade were

obtained from Sigma.

Ethical statement
This study was carried out in strict accordance with the IIBCE

Bioethics Committee’s requirements (Number of protocol appro-

bation 001/2/2010) and under the current ethical regulations of

the National law for animal experimentation Nu 18.611 that

follows the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. All surgery was performed under

ketamine:xilacine anesthesia, and all efforts were made to

minimize suffering, discomfort or stress. All efforts were also

made in order to use the minimal number of animals necessary to

produce reliable scientific data.

Animals
Sprague Dawley rats, breeded at the IIBCE animal house, were

maintained with food and water ad libitum, controlled tempera-

ture and 12 h light/dark cycle. 5 whole litters of 12 animals each

were used for each experimental in vivo condition. Other 5 whole

litters were employed for culturing astrocytes or neurons. All

experiments were performed at least three times in duplicates or

triplicates.

GA administration and drug treatment
Each littermate was injected intraventricularlly into the Cisterna

magna between 12 and 24 hours after birth (P0) with GA

(2.5 mmol/g, pH 7.4) or vehicle (phosphate buffered saline (PBS),

0.01 M, pH 7.4). The dose employed (congruent with 2.5 mM

GA in body and around 50 mM in cerebrospinal fluid at the

moment of administration) was in range with concentrations found

in brain of GA-I patients and mimicked the acute crisis they suffer

[11,12,15]. A maximal volume of 5 ml was injected at 2 ml/min by

using 3 mm of an anesthesia 30G needle attached to a Tygon tube

extension to allow correct manipulation and zone identification.

After injection, animals were allowed to recover at 30uC during

15–30 min and returned to the mother. In some experiments, 5-

bromo-29-deoxyuridine (BrdU, 60 mg/kg, ip) was administered

immediately after GA or PBS administration. Treatment with the

antioxidant FeTCPP (10–20 mmol/g, ip) was performed before

GA or PBS injection.

Histological processing
After 5 (P5), 12 (P12), 21 (P21) and 45 (P45) days post-injection,

5 animals of each experimental condition were anesthetized with

90 ketamine:10 xilacine mg/Kg and intracardially perfused with

saline and then with 4–10% paraformaldehyde in 0.1 M, pH 7.4

phosphate buffer. After perfusion, brains were quickly removed,

postfixed (4 h, 4uC) and maintained in phosphate buffer until

sectioning. For each brain, consecutive series of 20 and 50 mm

thick coronal sections containing striatal regions were obtained

[38,39] with a Leica 1000S vibratome and either stored free-

floating at 4uC or mounted on gelatin-coated slides.

Immunohistochemistry
For the visualization of astrocytes and/or neurons, parallel free

floating sections were processed for the immunohistochemical

demonstration of S100b, GFAP (both astroglial markers) or NeuN

as a pan-neuronal labeling. Neurofilament and phosphorylated

neurofilament staining was made after citrate antigen retrieval as

indicated by antibody manufacturers. In all cases, brain sections

were washed in PBS (0.01 M, pH 7.4) and incubated with non-

specific binding blocking buffer (PBS+0.3% Triton X-100+5%

bovine serum albumin or goat serum) for 30 min. Afterwards,

sections were incubated overnight at 4uC with pairs of compatible

antibodies such as a polyclonal anti-rabbit GFAP (Sigma, 1:500)

together with monoclonal anti-S100b (Sigma, 1:500), anti-NeuN

(Chemicon, 1:350); or anti-68 kDa (Cell Signaling, 1:500) or anti-

phosphorylated thick neurofilaments (Covance, 1:1500). After

primary antibody incubations, sections were rinsed in PBS, and

then incubated at room temperature (21–23uC) for 90 min with

either anti-mouse or anti-rabbit Ig conjugated to fluorescent

probes (Molecular Probes), both diluted 1:500–1:800 in PBS-0.3%

Triton. Sections were washed, mounted in glycerol and imaged in

a FV300 Olympus confocal microscope. As negative controls, the

primary antibodies were omitted.

BrdU was recognized by using a mouse specific antibody

(DAKO, 1:500 in PBS-0.3% Triton X-100 buffered solution, 4uC,

and overnight) after HCl denaturation and neutralization [22].

Some BrdU immunostainings were recognized by a secondary

antibody conjugated to horse radish peroxidase and diaminoben-

zidine stain.

Nitrotyrosine recognition was made according to the protocol

described above after a heat antigen retrieval as suggested by

manufacturers and employing the rabbit anti-nitrotyrosine poly-

clonal antibody (1:300, Chemicon).

Assessment of degenerating neurons
Brain sections were stained with Fluoro-Jade C (FJC) as

described by Schmued et al. [40]. Briefly, 20 mm gelatin-sticked

dried brain sections were dehydrated-rehydrated, oxidized (0.06%

of potassium permanganate) and incubated with 0.0001% FJC at

room temperature. After 20 min, sections were washed, dried,

cleared in xylene and cover slipped in DPX mounting media.

Sections were imaged in a FV300 Olympus confocal microscope

using a 488 nm excitation.

Quantification in brain sections
Anatomical landmarks were used to ensure that parameters

were analyzed at similar striatal levels within and between

experimental groups [38,39]. A systematic random sampling was

employed and 5 to 11 representative high-power non-overlapping

fields covering up to 90% of striatal areas were imaged in 5 to 9

striatal sections of each condition. In each image, all individual

nuclei or positive cells were counted manually using the Image J

(NIH, USA) cell counter. Total BrdU positive nuclei were counted

in striatal sections immunostained for BrdU alone or double

labeled with GFAP or S100b. Positive BrdU nuclei were counted

in striatal parenchyma once background was measured and

corrected to 0. Only the brown dots that duplicated the background

values were counted and represented.

The number of FJC positive cells and area of neurofilaments

were assessed using the NIH 1.62 and Image J software. In all

cases, data obtained in each field per slice were added together

providing one value for each slice. Data from all slices per rat were

averaged and the final value was used to calculate the relationship

between treated and control conditions.

Cell cultures
Primary astrocyte cultures were prepared from striata of rats

aged 1–2 days according to Saneto and De Vellis [41] with minor
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modifications. Briefly, cultures were obtained from 4–7 striata that

were dissociated with trypsin and mechanically, seeded in a

proliferating media and enriched in astrocytes by continuous

shaking at 37uC during 48 h. Then, astrocytes were plated at

26104 cells/cm2 and maintained in DMEM supplemented with

10% FBS, 3.6 g/l HEPES, 100 IU/ml penicillin and 100 mg/ml

streptomycin. Cultures consisted in at least 98% GFAP positive

astrocytes and devoid of OX42-positive microglial cells.

Striatal neurons were prepared from E17-18 embryos according

to Ventimiglia et al. [42] with minor modifications. Pregnant rats

were euthanized and embryos aseptically retired. Striata were

removed and received in Neurobasal medium containing 2% B27

and 1 mM glutamine. Tissue was cleaned, minced and dissociated

to obtain isolated cells after passing through an 80 mm mesh.

Around 300000 cells (3.2–3.46104 cells/cm2 density) were seeded

onto plates covered with 0.1 mg/ml poly-D lysine. Half of the

media was replaced at day 3 after plating. At 5 days in vitro (DIV)

cells were treated with conditioned media for 24 h. In cultured

isolated neurons, 97% of living cells were MAP2 positive and

GFAP negative. Less than 1% of cells were positive for

neuroglican 2.

In co-culture experiments, freshly prepared neurons (around

26104 cells/cm2 density) were seeded on top of confluent astrocyte

monolayers previously treated with GA or FeTCPP/GA at

6 hours after withdrawal of the media containing GA and several

washes. Evaluation of neuron survival was made 5 days later.

Astrocyte treatments
Experiments were done in confluence (approximately 1 week

after plating). Before each treatment, astrocytes were incubated

with DMEM-2% FBS during 24 h and then treated with 5 mM

GA (pH 7.4) for 24 h [22]. Appropriate aliquots of a 500 mM acid

stock solution, were prepared in 5 N NaOH immediately prior to

use to assure neutral pH. In other experiments, cells were

pretreated with 20 mM FeTCCP previous to GA addition, media

was replaced, cells washed and then GA or PBS was added.

Conditioned astrocyte medium was collected 18 h after drug

withdrawal and 6 hours of washing. Media collected were spun

briefly to obtain a cell-free conditioned medium that was used for

treating isolated striatal neurons. Similar protocols were per-

formed by pre-treating astrocytes with 20 mM FeTPPS, 2 mM

FeTMPyP, 1 mM apocynin, or 20 mM U0126, during 30 to

60 min previous to add 5 mM GA.

Assessment of astrocyte mitochondrial potential,
glutathione and oxidative levels in living astrocytes

Mitochondrial potential was evaluated as previously described

[22]. Briefly, control and GA-treated astrocytes were incubated

with the ratiometric dye JC1 (3 mM, 37uC, 15 min, in PBS

containing 1 g/L glucose and 0.183 g/L CaCl2). The ratio

between red and green emission was measured after a single

excitation at 488 nm. Glutathione levels were estimated according

to Chatterjee et al. [43] by measuring the fluorescence of

monochlorobimane-glutathione adducts. Briefly, cells were incu-

bated with monochlorobimane (40 ı̀M, 37uC, 20 min) and then

disrupted with Igepal (0.1% v/v). Emission was measured at

460 nm after a 395 nm excitation. Oxidative activity in control

and GA-treated astrocytes was measured with the cell-permeant

carboxy-H2DFFDA probe. According to manufacturers, living

cells were washed and incubated 1 h with 5 mM carboxy-

H2DFFDA. Then, 1 mg/ml DAPI was added, cells rinsed and

each fluorescence immediately imaged or measured after excita-

tions of 405 and 488 nm, respectively. All data were expressed as

percent of respective control values.

Quantification of survival in cultured neurons
The number of viable neurons was estimated after immuno-

staining against the neuronal marker microtubule associated

protein-2 (MAP-2) or bright field imaging. Briefly, cultures were

fixed with 220uC methanol (5 min, 4uC), hydrated for 30 min

and blocked with 5% bovine serum albumin in PBS during 60 min

at room temperature. Then, cultures were incubated with a

monoclonal anti-MAP2 antibody (Chemicon, 1:400, overnight,

4uC) and with a secondary antibody conjugated to tetramethylr-

hodamine isothiocyanate (90 min, room temperature). In co-

cultures, neurons were recognized by morphology and MAP2

immunoreactivity, whereas astrocytes were identified by positive

immunoreactivity against S100b or GFAP (both Sigma, 1:400). All

positive MAP2 cells were counted regardless of its appearance in

90% of whole area seeded. Neuronal survival in isolated cultures

was also assessed by the release of lactate dehydrogenase [22].

Statistical analysis
Statistical analysis of data was performed with Sigma Stat 2.0

using student t-test or one-way ANOVA followed by Scheffe post

hoc comparison if necessary. All results are presented as mean 6

SEM, p,0.05 was considered as significant.
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