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MexEF-OprN Efflux Pump Exports the Pseudomonas
Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-
heptylquinoline)

Martin G. Lamarche, Eric Déziel*
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Abstract

Bacterial cells have evolved the capacity to communicate between each other via small diffusible chemical signals termed
autoinducers. Pseudomonas aeruginosa is an opportunistic pathogen involved, among others, in cystic fibrosis
complications. Virulence of P. aeruginosa relies on its ability to produce a number of autoinducers, including 4-hydroxy-
2-alkylquinolines (HAQ). In a cell density-dependent manner, accumulated signals induce the expression of multiple targets,
especially virulence factors. This phenomenon, called quorum sensing, promotes bacterial capacity to cause disease.
Furthermore, P. aeruginosa possesses many multidrug efflux pumps conferring adaptive resistance to antibiotics. Activity of
some of these efflux pumps also influences quorum sensing. The present study demonstrates that the MexEF-OprN efflux
pump modulates quorum sensing through secretion of a signalling molecule belonging to the HAQ family. Moreover,
activation of MexEF-OprN reduces virulence factor expression and swarming motility. Since MexEF-OprN can be activated in
infected hosts even in the absence of antibiotic selective pressure, it could promote establishment of chronic infections in
the lungs of people suffering from cystic fibrosis, thus diminishing the immune response to virulence factors. Therapeutic
drugs that affect multidrug efflux pumps and HAQ-mediated quorum sensing would be valuable tools to shut down
bacterial virulence.

Citation: Lamarche MG, Déziel E (2011) MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-
heptylquinoline). PLoS ONE 6(9): e24310. doi:10.1371/journal.pone.0024310

Editor: Michael Otto, National Institutes of Health, United States of America

Received April 11, 2011; Accepted August 8, 2011; Published September 21, 2011

Copyright: � 2011 Lamarche, Déziel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by Canadian Institutes of Health Research (CIHR) operating grant MOP-97888 to ED. MGL was the recipient of postdoctoral
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Introduction

Chronic infections caused by the opportunistic pathogen

Pseudomonas aeruginosa are strongly associated with cystic fibrosis

(CF)-related complications such as lung damage and airway

obstruction [1]. These complications result from the exacerbated

inflammation associated with the chronic infection of cystic fibrotic

lungs [2]. Antibiotic therapies aiming at long-term remission are

usually inefficient and, consequently, lungs of most individuals

suffering from CF are permanently colonized by P. aeruginosa [3].

P. aeruginosa is resistant to a wide diversity of important

antimicrobial agents [4], which is largely due to the activity of

multiple multidrug efflux pumps. Among the various types of

efflux pumps found in Gram-negative bacteria, the RND

(Resistance-Nodulation-cell Division) family plays an important

role in the adaptive resistance to antibiotics [5,6]. In P. aeruginosa,

activation of the MexEF-OprN RND-type efflux pump gives rise

to, among others, chloramphenicol, fluoroquinolones, trimetho-

prim and triclosan resistance [7]. This efflux pump is encoded by

the mexEF-oprN operon and is positively controlled by MexT, a

transcriptional regulator belonging to the LysR family [8,9]. The

MexS protein also influences the MexEF-oprN efflux state of

activity by a mechanism yet to be determined. MexS presents

homologies with Zn2+-dependent oxidoreductases/deshydro-

genases, some of which associated with amino acid metabolism.

Mutations in the mexS gene lead to a dramatic increase in mexEF-
oprN transcription [10,11]. Consequently, some authors have

suggested that mexS, together with mexEF-oprN, could be involved

in detoxification [12]. In addition to its role in resistance to

antibiotics, the MexEF-OprN efflux pump affects many quorum

sensing (QS)-dependent virulence phenotypes (described below).

P. aeruginosa QS depends on the transcriptional regulators LasR,

RhlR and MvfR (PqsR) as well as on their cognate autoinducer

synthases LasI, RhlI and PqsA-D/PqsH, respectively [13]. LasI

and RhlI synthesize the autoinducers 3-oxo-dodecanoyl-homoser-

ine lactone (3-oxo-C12-HSL) and butanoyl-homoserine lactone

(C4-HSL) respectively, whereas PqsH catalyzes the final step in the

synthesis of 3,4-dihydroxy-2-heptylquinoline [14,15,16], known as

the Pseudomonas Quinolone Signal (PQS) [17]. As the bacterial cell

population grows, autoinducers are synthesized, freely diffuse out

or are actively exported across Gram negative bacterial mem-

branes and, eventually, exceed a threshold concentration at which

point quorum is reached [18,19]. An autoinducer bind to, and

activate, its cognate response regulator which then initiate or

repress the transcription of target genes. Activated LasR and RhlR

QS regulators exert positive feedback on their own QS system but

also they can influence activation of other systems. For instance,

LasR stimulates the transcription of the RhlRI and MvfR QS

systems, and directly controls the expression of pqsH [15,20,21]. In

this regard, the MvfR system is unique compared to other known
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QS systems since the expression of its main autoinducer PQS is

not directly controlled by its cognate regulator. Instead, PQS

concentration relies on 4-hydroxy-2-heptylquinoline (HHQ)

production; the product of pqsABCDE operon and the direct

precursor of PQS [14]. The pqsABCDE operon is regulated by

MvfR and is involved in the biosynthesis of many other 4-hydroxy-

2-alkylquinolines (HAQs) [14,22].

Interestingly, PQS is poorly synthesized in mutants constitu-

tively expressing mexEF-oprN. It was proposed that this signalling

molecule, or a precursor, represents a MexEF-OprN substrate

[5,23,24]. nfxC mutants of P. aeruginosa, constitutively expressing

mexEF-oprN, are readily obtained on media containing a high

chloramphenicol concentration [7,25,26,27]. QS-related pheno-

types characterizing nfxC mutants can arise from mutations in the

mexS gene. In addition to PQS modulation, overexpression of mexT

and mexEF-oprN results in deficiencies in C4-HSL, hydrogen

cyanide, elastase, pyocyanin and rhamnolipids production, as well

as biofilm formation [7,24,26,28]. The reason for these defects is

still unknown. It is noteworthy that the 3-oxo-C12-HSL signalling

molecule is exported by the MexAB-OprM RND-type efflux

pump [29,30].

Thus, to elucidate the molecular phenomena driving QS

modulation under MexEF-OprN activity, we used a mexS2 mutant

and various spontaneous nfxC-type mutants of P. aeruginosa strain

PA14. These mutants can overexpress mexEF-oprN more than 300-

fold compared to the wild-type strain. This strong efflux activity

allowed us to demonstrate that an RND-type efflux pump exports

the HAQ QS signalling molecule HHQ, the precursor of the PQS,

and that this leads to the QS defects characterizing nfxC-type

mutants.

Results

A P. aeruginosa mexS2 mutant overexpressing MexEF-
OprN fails to convert most HHQ into PQS
To further characterize the effects of MexEF-OprN efflux pump

activation on QS, the concentrations of the best known MvfR-

dependent QS signaling molecules were compared between the

wild-type P. aeruginosa strain PA14 and its isogenic mexS2 mutant

(MGL01), which represents an nfxC phenotype. Loss of mexS results

in uncontrolled overexpression of the MexEF-OprN pump (see

Experimental procedures) [10,11]. In MGL01 cultures, the

concentration of HHQ, the direct precursor of PQS, is about

four-fold higher than in PA14 cultures at an OD600=5 (Fig. 1).

However, and unexpectedly, PQS concentration, at the same

growth stage, is about two-fold lower in cultures of MGL01

compared to that of the wild-type strain (Fig. 1). Similarly to HHQ

and PQS, the synthesis of the other main HAQ, HQNO, depends

on PqsABCD [14,22]. However, in contrast with PQS, HQNO

synthesis is not dependent on the presence of HHQ [14].

Accordingly, there is no significant difference between HQNO

concentrations quantified in the wild-type and MGL01 cultures

(Fig. 1).

To verify whether perturbed HHQ and PQS production in

MGL01 is due to the mexS mutation per se, a complemented mexS2

mutant strain MGL01::pML01 was used. As shown in figure S1,

HAQ phenotypes are restored to those of the wild-type in the

complemented strain. Noteworthy, many P. aeruginosa strains carry

an 8 bp insertion within the mexT gene that causes a frame shift

and silences mexEF-oprN [10]. Blast analysis against PAO1 mexT

reveals that strain PA14 possesses a functional mexT gene due to

the deletion of this insertion, restoring the reading frame. This is in

agreement with observations made by Maseda et al. (2000) using

various PAO1 strains [10]. Nevertheless, in PA14, the MexEF-

OprN efflux pump is only expressed at a basal level under

experimental conditions (data not shown). Similarly, a mexE2

mutant (MGL04) displays no defect in HAQ production when

compared to wild-type PA14, testifying that basal levels of HAQ

efflux via MexEF-OprN are not sufficient to affect HAQ

phenotypes in the wild-type background (Fig. S1). To determine

if HAQ modulation is specific to overexpression of the MexEF-

Figure 1. Imbalance of HHQ and PQS production in a PA14
mexS2 mutant (MGL01). HHQ is the direct precursor of PQS but not
of HQNO. Compared to the wild-type strain PA14, HHQ accumulates in
MGL01 while PQS is poorly produced. HQNO concentrations are not
affected by the mexS mutation. HAQs were concentrated from ethyl
acetate extractions and were quantified by LC-MS/MS. Experiment was
achieved using biological triplicates.
doi:10.1371/journal.pone.0024310.g001

MexEF-OprN Exports HHQ
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OprN RND-type efflux pump, we verified the production of

HAQs in four other constitutively expressing RND efflux pump

mutants, i.e. in nfxB2, mexZ2, nalC2 and mexL2 mutants. These

mutants overproduce MexCD-OprJ, MexXY-OprM, MexAB-

OprM and MexJK-OprM, respectively. We found that none of

these other efflux pumps influences HHQ and PQS production

(Fig. S2). Together, these results indicate that HHQ and PQS are

specifically modulated by MexEF-OprN in the MGL01 mexS2

mutant.

Expression of the pqsH gene is upregulated in a PA14
mexS2 mutant
To understand the reason for the HHQ and PQS imbalance

characterizing the mexS2 mutant, the expression patterns of appropri-

ate QS regulators and their related genes were studied using

transcriptional and translational reporter fusions. We found that the

transcriptional activity of the mvfR promoter is nearly two-times higher

in MGL01 than in the wild-type strain (Fig. 2A). As expected, the

transcription of the pqsABCDE operon, which is activated by MvfR,

was found to be upregulated as well (Fig. 2A). The molecular basis

explaining this increased expression is unknown (discussed below).

Since mvfR and pqsH are positively controlled by the LasRI QS system,

it was interesting to investigate the expression of the lasR and lasI genes

in MGL01. The lasI translational reporter fusion revealed that the 3-

oxo-C12-HSL synthase is half-fold more expressed in MGL01 than in

PA14 (Fig. 2A). Accordingly, 3-oxo-C12-HSL concentrations quanti-

fied by LC-MS/MS are higher in MGL01 cultures when compared to

PA14 (Fig. 2B). In contrast, C4-HSL concentrations are lower in

MGL01 cultures (Fig. 2B).

Intriguingly, although PQS, the product of PqsH activity, is

produced in lower concentrations in MGL01, mvfR and pqsABCDE

are up-regulated in this strain. Thus, it was interesting to verify

whether the decrease in PQS is due to a decreased transcription of

pqsH inMGL01 strain. This was verified using a pqsH promoter-lacZ

transcriptional fusion chromosomally integrated into the wild-type

and MGL01 strains, yielding PA14 (pML03) and MGL01 (pML03)

strains, respectively. Unexpectedly, pqsH expression is upregulated

in MGL01 compared to the wild-type (Fig. 2A). Yet, this was not

reflected in a higher production of PQS, although mexS2 mutant

produces high concentrations of the PQS precursor, HHQ (Fig. 1).

Trans-expression of pqsH and HHQ supplementation do
not restore PQS production in mexS2 mutants
In order to verify whether the reduced PQS production in the

mexS2 mutant is caused by a posttranscriptional mechanism, we

introduced a medium copy number plasmid carrying pqsH under a

constitutive promoter (pML04) into the wild-type and MGL01

strains, giving strains PA14 (pML04) and MGL01 (pML04)

respectively. Also, to promote HHQ availability to PqsH,

exogenous HHQ was added to the cultures. As expected, PA14

(pML04) rapidly consumes exogenous HHQ to produce PQS

while the PA14 (pUCP26) control strain presents a more gradual

HHQ consumption with a corresponding simultaneous PQS

production (Fig. 3). In contrast, we observed a slight decrease in

available HHQ in MGL01 (pML04), with a concomitant limited

conversion into PQS (Fig. 3). Thus PQS production is only

partially restored in a mexS2 background by pqsH gene upregula-

tion and exogenous supplementation of HHQ.

Constitutively expressing MexEF-OprN mutant cells
contain less HHQ than wild-type cells
The above results demonstrate that HAQ concentrations in

MGL01 are not only directly influenced by the transcriptional and

translational status of lasRI, mvfR, pqsABCDE and pqsH genes but

also by another unidentified mechanism. We thus hypothesized

that the activity of the MexEF-OprN efflux pump directly

modulates HAQ intracellular concentrations, the fact that could

explain the weak PQS synthesis by the mexS2 mutant cells. This

was first verified by directly quantifying cell-associated HHQ and

PQS molecules in PA14 and MGL01. As shown in figure 4A,

proportions of cell-associated HHQ are lower in MGL01 than in

the wild-type strain PA14. This result is even more striking when

considering that MGL01 is a hyper HHQ producer (Fig. 1).

Nonetheless, a higher concentration of cell-associated PQS is

observed in the wild-type strain PA14 (Figure 4A), which is

consistent with the higher production of PQS in PA14 cultures

(Fig. 1).

In light of these results, we compared the intracellular

availability of PQS and HHQ for MvfR binding under MexEF-

OprN overexpression. PQS or HHQ was exogenously added to

cultures of an HAQ-deficient PA14 strain (pqsA2 pqsH2 double

mutant), or of its isogenic nfxC mutant (MGL02), carrying the

pqsA-lacZ transcriptional reporter plasmid pGX5 [31,32]. We

found that addition of PQS results in a stronger induction from the

pqsA promoter in MGL02 (pGX5) than in PA14 pqsA2 pqsH2

(pGX5) (Fig. 4B). This observation is likely to result from the

strong activating effect of PQS on the MvfR transcriptional

regulator in this PA14 nfxC mutant [14,32]. Indeed, as described

previously, the MGL01 mexS2 mutant is characterized by a

stronger induction from the pqsA promoter than the wild-type

strain (Fig. 2). Strickingly, MGL02 (pGX5) presents a lower HHQ-

dependent induction of the lacZ reporter gene, when compared to

that of the PA14 pqsA2 pqsH2 double mutant (Fig. 4B). These

results indicate that HHQ is less efficient in activating MvfR when

MexEF-OprN is constitutively overexpressed, suggesting that

HHQ is rapidly pumped out of the cells, reducing its availability

for MvfR activation.

The MexEF-OprN efflux pump exports HHQ
To further verify this hypothesis, we quantified HAQ

concentrations while blocking the efflux activity of MexEF-OprN.

This was accomplished by assaying HAQs in cultures exposed to

an efflux pump inhibitor (EPI): the MC-207,110 molecule [33].

Because of its growth-inhibitory effect, MC-207,110 was used at

low concentrations (see experimental procedures). HAQs from

supernatant as well as from washed cells were quantified by LC-

MS/MS. Remarkably, cell-associated HHQ increased in EPI-

treated MGL01 cultures (Fig. 5A), whereas the corresponding

culture supernatants showed lower HHQ concentrations when

compared to untreated cultures (Fig. 5B). Moreover, PQS

concentrations are considerably higher in both of the washed cell

samples and their corresponding supernatants in EPI-treated

MGL01 cultures when compared to controls (Figure 5C–D).

Taken together, these results support our hypothesis that, in mexS2

mutants, where the MexEF-OprN efflux pump is constitutively

overexpressed, much less intracellular HHQ is available to the

PqsH enzyme for PQS synthesis.

Finally, to conclusively confirm the importance of the MexEF-

OprN efflux activity in the modulation of HAQ production, we

constructed a mexS2 mexE2 double mutant of strain PA14, giving

strain MGL03. As expected, figure 6 is showing that PQS

production is increased to wild-type levels by the inactivation of

mexE while HHQ concentrations are decreased, although not fully

restored to that of the wild-type, in MGL03 (discussed below).

Moreover, the mexE knockout restores QS-related virulence

phenotypes in MGL01 such as swarming motility, pyocyanin

production and biofilm formation (Fig. 6). As expected mexS2

MexEF-OprN Exports HHQ
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complementation in MGL01 with pML01 also restores the

phenotypes to that of the wild-type (Fig. S3). Taken together,

these results confirm HHQ as a substrate of the MexEF-OprN

efflux system, which affects its intracellular availability for PqsH-

mediated conversion into PQS and consequently, modulate QS-

dependent virulence traits.

Figure 2. LasRI and MvfR quorum sensing are up-regulated in a PA14 mexS2 mutant (MGL01). (A) Shown is the b-galactosidase activity
(Miller units) of transcriptional and translational fusions as a function of cell growth (OD600). Notably, transcription of the PQS biosynthetic gene
(pqsH) is upregulated in MGL01. Experiment was achieved using biological triplicates. (B) Shown are the concentrations of 3-oxo-dodecanoyl-
homoserine lactone (3-oxo-C12-HSL) and butanoyl-homoserine lactone (C4-HSL) as a function of cell growth (OD600). AHLs were concentrated from
ethyl acetate extractions and were quantified by LC-MS/MS. Experiment was achieved using biological triplicates.
doi:10.1371/journal.pone.0024310.g002

MexEF-OprN Exports HHQ
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Discussion

P. aeruginosa is highly resistant to a large spectrum of

antimicrobial agents as it possesses, among other factors, an array

of both constitutively active and inducible efflux pumps. In

addition to their well-studied role as major antibiotic resistance

determinants, these pumps are currently thought to play other

unexpected functions, including QS modulation [29,30,34,35,36].

The role of the MexEF-OprN efflux pump in the P. aeruginosa

biology is closely related to the mexS gene, whose function is still

misunderstood. K. Poole (2005) has proposed that MexS could

serve as a detoxifying enzyme for a yet unidentified metabolite

[12]. Additionally, the MexEF-OprN efflux pump could be

important for this metabolite secretion in non functional mexS

cells [12]. However, the natural substrate of MexEF-OprN is

unknown. Based on our results and hypothesis put forward by K.

Poole, it is tempting to speculate that such a molecule could be

structurally related to quinolones. Indeed, the present study shows

that the MexEF-OprN efflux pump exports the PQS precursor,

HHQ.

Results presented in figure 1 illustrate well the link that exists

between HHQ synthesis and PQS accumulation. In the wild-type

strain PA14, PQS accumulates while the availability of HHQ

remains stable and low, indicating that the synthesis rate of HHQ

is similar to that of PQS, as we have previously reported [14]. This

equilibrium is disturbed in the mexS2 mutant, MGL01, since

HHQ accumulates while PQS is poorly synthesized (Fig. 1). We

observed that the LasR-controlled QS genes, including mvfR, are

upregulated in MGL01 (Fig. 2A). However, mvfR upregulation

alone cannot explain why the pqsABCDE operon, involved in

HHQ synthesis, is upregulated in the weak PQS producer strain

MGL01. This is intriguing, especially when considering that PQS

is the primary activating ligand of MvfR. Unknown factors,

independent of PQS or HHQ, in mexS2 mutants might be exerting

a positive effect on the transcription of pqsABCDE. This hypothesis

is currently under investigation in our laboratory. Still, it is

plausible that upregulation of LasR-controlled QS genes (lasR

regulon) might result from the increased 3-oxo-C12-HSL concen-

tration observed in MGL01 cultures, as shown in figure 2B

[30,37]. Interestingly, MexT, which is highly expressed in nfxC-

type mutants, blocks the RhlR/C4-HSL-dependent activation of

the mexAB-OprM operon, an efflux pump involved in 3-oxo-C12-

HSL export [29,30,37]. Therefore, MexT-dependent downregu-

lation of mexAB-OprM could well be responsible for the 3-oxo-C12-

HSL accumulation seen with MGL01 cells, thus stimulating, in a

positive feedback loop fashion, the LasR-controlled genes. Being a

part of the LasR regulon, pqsH expression is upregulated in the

MGL01 mexS2 mutant, yet, the overproduced HHQ is poorly

converted into PQS. Even higher expression of the pqsH gene from

a constitutive plac promoter fails to complement the MGL01 PQS

production defect (Fig. 3). Together, these results strongly suggest

that most HHQ produced by MGL01 should be rapidly secreted

out of cells and kept in the extracellular milieu (Figs. 1 and 3).

Accordingly, in a nfxC background, exogenously added HHQ fails

to activate MvfR and consequently, to induce the pqsA-lacZ

reporter construct (Fig. 4b).

At this stage of the study, results and clues we had pinpointed

toward a role for the MexEF-OprN efflux pump in the export of

HHQ. We thus designed experiments to confirm this hypothesis.

We first showed that mexS2 mutant cells, which produce much

more HHQ than the wild-type, contain less cell-associated HHQ

than the wild-type cells. HAQs are molecules that are thought to

diffuse across, and get trapped into, lipid membranes. For instance

most PQS is cell-bound [38]. PQS was also shown to bind lipid A

molecules, while HHQ does not [39]. Thus, in MGL01, putative

lipid A modifications are unlikely be responsible for the observed

low cell-bound HHQ concentration. Instead, it is very probable

that MexEF-OprN constitutive activity, which characterizes mexS2

mutant cells, causes a rapid export of HHQ away from the

intracellular PqsH enzyme, explaining why PQS is poorly

synthesized in MGL01. Accordingly, the efflux pump inhibitor

(EPI) MC-207,110 increases HHQ accumulation in MGL01 cells,

seemingly just enough to induce PQS synthesis which must be

concomitant with HHQ consumption (Fig. 5A) [33]. Finally, we

show that knocking out mexE gene in the MGL01 background

(MGL03 strain) restores PQS production to that of the wild-type

levels, as well as some QS-dependent virulence phenotypes such as

swarming motility, pyocyanin production and biofilm formation

Figure 3. Constitutively expressed pqsH (pML04) fails to restore
the production of PQS in a PA14mexS2 mutant (MGL01). Shown
are the HAQ concentrations as a function of cell growth (OD600). This
experiment was conducted in the presence of exogenously added HHQ
(41 mM). HAQs were quantified by LC-MS/MS and the experiment was
achieved using biological triplicates.
doi:10.1371/journal.pone.0024310.g003

MexEF-OprN Exports HHQ

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24310



(Fig. 6B) [11,24,26,30,40]. Interestingly, although PQS synthesis is

restored in MGL03 strain, there is an upregulation in the

expression of pqsABCDE demonstrated by the accumulation of

HHQ when compared to the wild-type (Fig. 6A). This observation

strengthens our hypothesis that, in mexS2 mutants, the pqsABCDE

operon may be subject to genetic control other than that exerted

by the MvfR-PQS complex. Furthermore, results obtained with

strain MGL03 are in accordance with those of Favre-Bonté et al.

(2003), who showed that a mexE knock-out restores the biofilm as

well as C4-HSL deficiencies characterizing the nfxC strain PAO1-

BI relative to the wild-type phenotypes [23]. Similarly, Cosson

et al. (2002) reported that such double mutant is as virulent as the

wild-type P. aeruginosa in infection models [41]. Together, our

results validate the role of the MexEF-OprN apparatus per se in the

export of HHQ. Our finding finally validates the hypothesis put

forward by Köhler et al. in 2001 that this efflux pump exports a

precursor of PQS [24].

The MexEF-OprN is apparently inactive in most P. aeruginosa

strains, permitting expression of QS-dependent virulence factors

[10]. Nevertheless, isolates from chronic CF infections were

shown to carry multiple mutations that simultaneously silence

expression of QS-related virulence factors (e.g. lasR2 and

pqsABCDE2 mutants) and enhance resistance to antibiotics [27].

Likewise, some studies noted the increased expression of mexEF-

Figure 4. HHQ is exported out of constitutively expressing MexEF-OprN efflux cells (MGL01). (A) Shown is the percentage of cell-
associated HHQ or PQS as a function of cell growth (OD600). Here, we show that MGL01 cells contain less cell-associated HHQ and PQS when
compared to the PA14 wild-type strain. This is in contrast with the observation that HHQ concentrations are higher in MGL01 than in PA14 cultures
(Fig. 1). HAQs were quantified by LC-MS/MS and experiment was achieved using biological triplicates. (B) Shown is the b-galactosidase activity (Miller
units) of a pqsA-lacZ transcriptional reporter as a function of cell growth (OD600). This experiment was conducted in the presence of exogenously
added HHQ (41 mM) or PQS (2 mM). Experiment was achieved using biological triplicates.
doi:10.1371/journal.pone.0024310.g004

MexEF-OprN Exports HHQ
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oprN in clinical isolates of P. aeruginosa, suggesting that a positive

pressure occurs in vivo for nfxC clones selection [25,42,43,44].

Moreover, HHQ was found to be more abundant than PQS in a

mammalian infection model, which is reminiscent of MGL01

mexS2 mutant HAQs phenotypes [32,45]. Since QS is essential

for P. aeruginosa virulence in various infection models, we believe

that the expression status of the MexEF-OprN efflux pump could

be an important determinant permitting the switch from an acute

to a chronic infection ‘‘mode’’. Obviously, infected hosts can be

submited to a strong antibiotherapy that selects for multiresistant

P. aeruginosa. Interestingly however, mexEF-oprN constitutive

expression has also been reported in the absence of selective

pressure. Transcriptomic data from P. aeruginosa interacting with

primary normal human airways epithelial cells revealed overex-

pression of the mexEF-oprN operon [46]. Also, frequency of nfxC

emergence was seen to be 10-fold higher in vivo (model of acute

pneumonia in rat), without antibiotics pressure, than in

conventional culture media [43]. In light of these studies, we

believe that prolonged P. aeruginosa exposure to some in vivo

conditions alone might suffice to induce mexEF-oprN expression or

select for nfxC mutants. Likewise, Fetar et al. (2010) recently

showed that mexEF-OprN transcription is induced by in vitro

nitrosative stress, a condition also known to occur during

pulmonary infections [47]. Thus, in addition to some unknown

environmental cues, selective pressures from in vivo environments

might promote mexEF-oprN expression and chromosomal stability.

In conclusion, we propose that the MexEF-OprN efflux pump

constitutes an important machinery that modulates the virulence

of P. aeruginosa through the export of specific QS regulatory

molecules, especially HHQ.

Figure 5. Rapid export of HHQ by the MexEF-OprN efflux pump reduces its availability to PqsH and consequently, PQS
biosynthesis. The efflux pump inhibitor (EPI) MC-207,110 causes HHQ concentrations to (A) increase within PA14 mexS2 mutant (MGL01) cells and
to (B) decrease in supernatants. Accordingly, (D and C) the EPI promotes PQS production in MGL01. The EPI was initially added to synchronized
MGL01 cultures (OD600=0.05) at a concentration of 20 mg/ml. Another 20 mg/ml was added after two hours of growth. HAQs were quantified by LC-
MS/MS and experiment was achieved using biological triplicates.
doi:10.1371/journal.pone.0024310.g005
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Methods

Experimental procedures
Bacterial strains, plasmids and media. Strains and

plasmids used in this study are listed in Table 1. Bacteria were

grown in Tryptic Soy Broth (TSB) (Difco) at 37uC. nfxC mutants

were selected on TSB agar plates containing 500 mg/ml

chloramphenicol. HHQ was synthesized as described [38] and was

added to cultures at a concentration of 41 mM, when indicated.

When required, antibiotics were used at the following final

concentrations: carbenicillin, 50 mg/ml; chloramphenicol, 500 mg/

ml; gentamycin, 50 mg/ml; kanamycin, 50 mg/ml; tetracycline,

75 mg/ml in liquid TSB and 125 mg/ml in TSB agar. All antibiotics

were from Sigma except for carbenicillin (Duchefa).

Construction of plasmids and mutant strains
Construction of the mexS2 mutant. The mexS2 mutant

used in this study was obtained from random mutagenesis using

Figure 6. The phenotypes of a mexS2 mutant are directly explained by the overexpression of the MexEF-OprN efflux pump. In a
PA14 mexS2 mutant background, a mutation in mexE restores (A) HAQ concentrations as well as QS-related virulence phenotypes (B) to that of the
wild-type. HAQs were quantified by LC-MS/MS and experiments were achieved using biological triplicates.
doi:10.1371/journal.pone.0024310.g006
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the pIT2 plasmid (ISlacZ/hah transposon) [48] during a screening

for swarming deficient mutants (J. Tremblay and E. Déziel,

unpublished data). This mutant is designated mexS::Tn5. The

tetracycline resistance marker was excised from the insertion site

using the Cre recombinase harbored by the pCRE2 plasmid;

leaving a 63 amino acids insertion at leucine 185 [49]. This

mutant strain is designated MGL01. To confirmed constitutive

expression of the mexEF-oprN operon in MGL01, posttran-

scriptional status of mexE mRNA was assessed by qRT-PCR.

Compared to the wild-type strain PA14, transcription of the mexE

gene is increased 21- and 12-fold at OD600 of 1.4 and 4.0,

respectively. The fold change was calculated using the 22DDCt

method [50]. The nadB gene was used as a housekeeping control

[51]. To complement the mexS2 mutation, the mexS gene was

amplified using the inMexT-F (59-CGACGTCGTCGGAAAG-

GCCGATG-39) and PA14_32440-R (59-CTAGCCAGGTT-

GCACGATCATCCAAGAC-39) primers and cloned into the

pGEM-T easy vector (Promega, Madison, WI, USA). The NotI

fragment of the pGEM-T easy::mexS construct was then cloned

into the NotI restriction site of the mini-CTX1 plasmid [52],

giving pML01. This construct was then introduced into competent

E. coli SM10lpir for mobilization into P. aeruginosa MGL01 by

conjugation, to give MGL01 (pML01).

Construction of the mexS2 mexE2 double mutant. Phu-

sion High fidelity DNA polymerase (New England BioLabs, Inc.,

Ipswich, MA, USA) was used for all DNA amplifications. A

genomic fragment (2488 bp) containing the mexE gene was

amplified using primers pmexE-F (59-CGAGGAACTGGAG-

AAATTCG-39) and mexE-R2 (59-ACAACTGGAAGCTG-

GTATCG-39) and cloned into the pGEM-T easy vector. An in-

frame deletion within the mexE gene was performed by PCR using

the outward primers mexE59Ext-kpnI (59-GGTACCGAATT-

CGTCCCACTCGTTCAG-39) and mexE39Ext-kpnI (59-GGT-

ACCGATCCGCAGAAGGTCGAGATG-39), both containing a

59-end KpnI restriction site. The KpnI digest of the PCR product

was circularized using T4 ligase (NEB). Then, the SacI-SphI

fragment from the resulting construct was inserted into the suicidal

vector pEX18Ap cut with the same enzymes, to generate pML02

[53]. pML02 was mobilized into PA14 mexS::Tn5 using the E. coli

SM10lpir donor strain [54]. Merodiploids were selected on TSB

Table 1. Bacterial strains and plasmids.

Bacterial strains/Lab. No Relevant characteristicsa Reference or source

Escherichia coli strain

SM10lpir thi-1, leu, tonA, lacY, supE, recA::RP4-2-Tc::Mu, lpir, Kmr [54]

Pseudomonas aeruginosa strains

PA14 Clinical isolate UCBPP-PA14 [61]

PA14 mexS::Tn5/ED1188 mexS::ISlacZ/hah, Tetr This study

MGL01/ED1189 PA14 mexS Leucine185::63 (from ED1188) This study

PA14 pqsA2 pqsH2 pqsA::TnphoA, Kmr; pqsH::aacC1, Gmr [32]

MGL02/ED1194 nfxC mutant derived from PA14 pqsA2pqsH2 This study

MGL03/ED1195 ED1188+DmexE, Tetr This study

MGL04/ED1395 DmexE This study

PA14 mexL2 MexJK-OprM constitutive strain [62]

PA14 mexZ2 MexXY-OprM constitutive strain [62]

PA14 nalC2 MexAB-OprM constitutive strain [62]

PA14 nfxB2 MexCD-OprJ constitutive strain [62]

Plasmids

mini-CTX1 TetR, ori, int, oriT, V-FRT-attP-MCS [52]

mini-CTX-lacZ TetR, ori, int, oriT, V-FRT-attP-MCS [55]

pCRE2 pUT derivative harboring the phage P1 cre gene [49]

pEX18Ap Apr; oriT+ sacB+, gene replacement vector with MCS from pUC18 [53]

pFLP2 Source of FLP recombinase, sacB, oriT, rep, Apr [53]

pGEM-T easy Cloning vector Promega

pGX1 mvfR–lacZ transcriptional fusion, Cbr [58]

pGX5 pqsA-lacZ transcriptional fusion, Cbr [31]

pIT2 ISlacZ/hah, Tetr [48]

pME3853 lasI-lacZ translational fusion, Tetr [63]

pML01 mini-CTX1::mexS This study

pML02 pEX18Ap::DmexE This study

pML03 pqsH promoter in mini-CTX-lacZ This study

pML04 pUCP26::pqsH This study

pUCP26 TetR, ori, rep, plac-MCS-lacZa [56]

aAmpicillin, Apr; Carbenicillin, Cbr; Chloramphenicol, Cmr ; Gentamycin, Gmr; Kanamycin, Kmr; Tetracycline, Tetr.
doi:10.1371/journal.pone.0024310.t001
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agar containing carbenicillin and tetracycline and then DmexE

mutants were resolved on plates containing 7% sucrose. The

mexS2 mexE2 double mutant is designated strain MGL03. The

PA14 mexE2 single mutant (MGL04) was generated using the

same strategy.
Construction of chromosomal pqsH-lacZ transcriptional

reporter. The pqsH promoter region was amplified using the

ppqsH-F (59-GGTACCTAAGGGGTTGACAGGAGC-39) and ppqs-

H-R (59- GGATCCCCGTTGCTCCTTAGCAGC-39) primers,

which contain the restriction sites KpnI and BamHI, respectively

(underlined). The resulting 512 pb fragment was cloned into the

corresponding sites of themini-CTX-lacZ plasmid [55], giving pML03,

which was then introduced into competent E. coli SM10lpir for

mobilization into P. aeruginosa PA14 and MGL01 by conjugation, to

give PA14 (pML03) and MGL01 (pML03), respectively. Clones

carrying chromosomal insertion of the mini-CTX constructions were

selected on tetracycline TSB plates. The tetracycline resistance cassette

was excised from the chromosome using the flipase expressed from

plasmid pFLP2 [53].
Construction of constitutively expressed pqsH gene. The

pqsH gene was amplified using primers pqsH-sacI-F (59-

GAGCTCATGACCGTTCTTATCCAGGG-39) and the pqsH-

HindIII-R (59-AAGCTTCTACTGTGCGGCCATCTCA-39). The

resulting 1149 bp fragment was cloned into the SacI and HindIII

restriction sites of the pUCP26 plasmid [56], giving pML04.
b-galactosidase assay. b-galactosidase activity was measured

as described previously by Miller with slight modifications [57].

Briefly, cells were grown in TSB to various cell densities and then

diluted in Z buffer (Na2HPO4 0.06 M; NaH2PO4 0.04 M; KCl

0.01 M;MgSO4 0.001 M; b-mercaptoethanol 0.05 M; pH 7). Cells

were permeabilized by the addition of one drop of 0.1% SDS and

two drops of chloroform. Then, 200 mL of ONPG 4 mg/ml was

added to each reaction. Color development was monitored at

420 nm and b-galactosidase activity was expressed in Miller units

(MU), calculated as follows: 1,0006OD420/T (min)6V (ml)

6OD600.
Detection and measurements of HAQs by LC/MS. Except

when specified, 300 mL culture samples were taken at regular intervals,

used for determination of growth (OD600), and mixed with 300 ml

methanol containing 75 mM of tetradeutero-PQS and 40 mM of

tetradeutero-HHQ for final concentrations of 37.5 and 20 mM

respectively, as internal standards [38]. After centrifugation, samples

were directly injected for LC separation on an Agilent HP1100 HPLC

system equipped with a 36150 mm C8 Luna reverse-phase column

(Phenomenex). A 1% acidified water/acetonitrile gradient was used as

the mobile phase at a flow rate of 0.4 ml?min21, split to 10% with a

Valco Tee. A Quattro II (Waters) triple-quadrupole MS was used for

molecule detection. Data acquisition was performed in positive ion

mode with a scanning range of 100–400 Da. Precise quantification of

HAQs was performed by MS/MS, as described previously [22,58].
Efflux pump inhibitor assays. The MC-207,110 molecule

is an efflux pump inhibitor (EPI) and was kindly provided by Olga

Lomovskaya from Mpex Pharmaceuticals [33]. The MexEF-

OprN efflux pump is absolutely essential for the high

chloramphenicol resistance feature of nfxC mutants, which are

readily isolated on chloramphenicol plates. We thus evaluated the

efficiency of MC-207,110 to decrease the activity of MexEF-OprN

by its effect on the emergence of nfxC colonies. This was conducted

by plating 50 mL of overnight wild-type cultures onto TSB agar

plates containing 500 mg/ml of chloramphenicol (a concentration

only permissive to nfxC mutants), supplemented or not with MC-

207,110 (20 mg/ml). Plates containing this low concentration of

the EPI showed a 50% reduction in the emergence of nfxC colonies

after 24 h of incubation at 37uC when compared to control plates

(data not shown), confirming the efficiency of this molecule in

blocking the activity of MexEF-OprN. Thus, MC-207,110 was

initially added to synchronized MGL01 cultures (OD600=0.05) at

a concentration of 20 mg/ml. To minimize growth inhibition effect

caused by the EPI, a supplemental 20 mg/ml was added only after

2 h of growth. Twenty mg/ml of MC-207,110 has no effect on

bacterial growth whereas 40 mg/ml results in a slight reduction of

MGL01 growth (Fig. S4). For LC-MS/MS analyses, whole

culture, supernatant and PBS washed cell samples were used.

Swarming and biofilm assays. Swarming motility and

biofilm assays were performed as described previously [59,60].

Swarm plates were incubated at 30uC for 16 h. Biofilm assay was

conducted at 37uC for 72 h using TSB for bacterial growth.

Supporting Information

Figure S1 (A) mexS trans-complementation restores

HAQ imbalance occuring in a PA14 mexS2 mutant. (B)

The wild-type HAQs production is not affected by mexE mutation.

HAQs were quantified by LC-MS/MS and experiment was

achieved using biological triplicates.

(TIF)

Figure S2 Mutants overexpressing other RND-type

efflux pumps do not display any defect in HAQ

production. Shown are the HAQ concentrations as a function

of cell growth (OD600). HAQs were quantified by LC-MS/MS

and experiment was achieved using biological triplicates.

(TIF)

Figure S3 mexS trans-complementation restores QS-

related virulence phenotype defects of a PA14 mexS2

mutant. Experiments were achieved using biological triplicates.

(TIF)

Figure S4 Bacterial growth inhibition by the EPI MC-

207,110. Shown is the cell growth (OD600) as a function of time,

as measured using a Bioscreen C apparatus (Oy Growth Curves

Ab Ltd) (A) the P. aeruginosa wild-type strain PA14, (B) the MGL01

mexS2 mutant. Experiments were achieved using biological

triplicates.

(TIF)
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