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SUMMARY

Mitogen-activated protein kinases (MAPKs) are
involved in environmental signal sensing. They are
thus expected to play key roles in the biology of
Trypanosomatid parasites, which display complex
life cycles and use extracellular cues to modulate
cell differentiation. Despite their relevance, structural
data of Trypanosomatid MAPKs is lacking. We have
now determined the crystal structure of Leishmania
major LmaMPK10, a stage-specifically activated
MAPK, both alone and in complex with SB203580.
LmaMPK10 was observed to be more similar to
p38 than to other human MAPKs. However, signifi-
cant differences could be identified in the catalytic
pocket, as well as in potentially regulatory sites in
the N-terminal lobe. The modified pocket architec-
ture in LmaMPK10 precludes DFG-in/DFG-out regu-
latory flipping as observed in mammalian MAPKs.
LmaMPK10-nucleotide association was also stud-
ied, revealing a potential C-terminal autoinhibitory
mechanism. Overall, these data should speed the
discovery of molecules interfering with LmaMPK10
functions, with relevance for antileishmanial drug
development strategies.

INTRODUCTION

Mitogen-activated protein kinases (MAPKs) are serine/threonine

protein kinases mediating highly diverse intracellular signaling

events. MAPKs, classified within the group of CMGC kinases,

are usually not the direct sensor elements of extracellular stimuli

(Plotnikov et al., 2011b), instead typically acting in the final steps

of signaling cascades, which include several protein kinases

working in sequence. MAPKs function as molecular switches
Structure 2
showing at least two conformations, corresponding to catalyti-

cally active and inactive states. One of the requirements for

activation usually involves posttranslational phosphorylation of

key residues at the activation loop (Huse and Kuriyan, 2002;

Kornev et al., 2006) by specific upstreamMAPK-kinases (MKKs).

Pathogenic Leishmania spp. are protozoan Trypanosomatid

parasites that cause human leishmaniasis. They alternate

between the motile, insect-borne promastigote form and the

vertebrate nonmotile amastigote stage, which proliferates inside

host macrophages causing the disease (Neuber, 2008). Stage-

specific signaling proteins sense extracellular cues and regulate

downstream cascades, eventually related to virulence and path-

ogenicity. As a direct consequence of these stage-specific

modifications, dramatic changes in phosphoprotein abundance

and phosphorylation patterns are observed during promastigote

to amastigote differentiation, to a great extent mediated by

protein kinases and phosphatases that act in a stage-specific

way (Morales et al., 2007, 2008).

Although MAPK signaling in the host cells has been long

identified as an important process during Leishmania infection

(Bhattacharya et al., 2011; Yang et al., 2010), much less attention

has been given to the parasite’s own MAPKs. According to

genomic analyses, there are 17 putative MAPKs in Leishmania

spp., being thus one of the more expanded protein kinase fami-

lies when compared to mammalian proteomes (Naula et al.,

2005; Parsons et al., 2005). Leishmania MAPKs are involved in

environmental sensing (Brumlik et al., 2011; Morales et al.,

2007, 2008; Wiese, 1998) and flagella biogenesis (Bengs et al.,

2005; Rotureau et al., 2009; Wiese, 2007), regulating the para-

sites’ adaptive response pathways. Little is known on themolec-

ular mechanisms involved in regulating protein kinase activation

in Trypanosomatids. In terms of structural data, only one three-

dimensional (3D) structure of a trypanosomatid protein kinase

has been reported (Ojo et al., 2011), which is not a MAPK. This

scenario is in striking contrast with the tremendous progress in

the field of human kinases, including biologically relevant

members of the ERK, p38, and JNK families, among the most-

studied MAPKs. Extensive structural work on these protein
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targets have unveiled specific active/inactive switching, as well

as molecular details of protein:substrate and protein:protein

association patterns (Huse and Kuriyan, 2002). These biologic

insights have also guided several successful drug development

efforts (Johnson, 2009; Simard et al., 2009). Considerable exper-

imental work is thus needed concerning MAPK signaling in

Trypanosomatids, as a number of distinctive biological features

of these protozoa argue against simple extrapolations from data

on higher eukaryotes. Trypanosomatids do not carry on classical

transcriptional regulation (Kramer, 2012), hence typical tran-

scription factors are not expected to be MAPK substrates; no

genes coding for tyrosine kinases or SH2-domain containing

adaptor proteins have been identified in the genomes, raising

the question on upstream sensing; and yet, too few MAPKKs

can be identified contrasting with the large number of putative

MAPKs (Parsons et al., 2005), suggesting alternative MAPK acti-

vation mechanisms. Structural biology approaches focused on

MAPKs from pathogenic Trypanosomatids seems thus pertinent

to unveil specific regulatory mechanisms, valuable as well within

serious drug discovery efforts.

We have previously shown through comparative phosphopro-

teomics that a limited subset of the MAPKs in Leishmania major

(LmaMPKs) become phosphorylated when differentiating from

promastigotes to the amastigote stage (Morales et al., 2007,

2008). LmaMPK4, LmaMPK7, and LmaMPK10 have thus been

pinpointed as candidate regulators of parasite differentiation

and survival inside host cells. Protein kinase activity studies

revealed that the amastigote-specific phosphorylation of

LmaMPK10 correlates to its own activation within the amastigote

stage (Morales et al., 2007, 2008), activity that proved to be

sensitive to SB203580 inhibition, a compound known to inhibit

p38 in a specific way. LmaMPK10 has also been shown to be

a protective antigen against Leishmania infection in an experi-

mental animal model (Kumari et al., 2011).

Here, we present the crystal structures of apo LmaMPK10

(1.95Å resolution), as well as bound to the p38-specific inhibitor

SB203580 (2.65Å), using a construct that lacks the last 46 amino

acids at the C terminus. To the best of our knowledge, this is the

first report unveiling themolecular structure of a Trypanosomatid

MAPK with near-atomic resolution. At the structural level,

LmaMPK10 is more similar to the human MAPK p38a than to

other human protein kinases. However, differences in the cata-

lytic pocket and within the N-terminal lobe are readily identified.

In particular, noncanonical secondary structure elements are

observed, as well as a series of distinctive amino acid residues,

different from the conserved canonical sequences, occupying

key positions in the structure. Among these, a particularly

important motif in the regulation of protein kinases (the DFG

motif) is modified in LmaMPK10 resulting in structural

constraints for the otherwise well-known phenylalanine-medi-

ated regulatory mechanism (Phe-in/out flipping). Thermody-

namic studies of nucleotide binding did not allow the quantifica-

tion of the ATP-binding association constant but did reveal

nanomolar affinity for the binding of SB253080, a human p38-

specific inhibitor. Fluorescence-based thermal shift assays

further confirmed this trend. The analysis of the association

constants, comparing full-length LmaMPK10 and a truncated

variant that lacks a parasite-specific C-terminal extension,

suggests that a structural mechanism of nucleotide-binding
2 Structure 20, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights r
autoinhibitory interference exists, conveyed by that terminal

self-peptide.

RESULTS AND DISCUSSION

LmaMPK10 Expression and Characterization
Recombinant full-length LmaMPK10 from Leishmania majorwas

expressed in Escherichia coli, but poorly diffracting crystals were

obtained after extensive crystallogenesis condition screenings.

Limited proteolysis and mass spectrometry analysis of

LmaMPK10 confirmed the presence of a�40-residue C-terminal

extension that is sensitive to proteolytic digestion, suggesting

it might include an unstructured or more flexible segment.

Accordingly, a truncated form lacking the last 46 residues

(LmaMPK10DC) was engineered, produced in recombinant

form, and purified to homogeneity, allowing us to obtain crystals

with significantly better X-ray diffraction quality.

Enzyme-coupled activity assays (Schindler et al., 2000)

were performed to quantify ATP-dependent phosphorylation

kinetics of LmaMPK10 and LmaMPK10DC (methods details in

the Supplemental Experimental Procedures, available online).

Neither one of these two constructs catalyzed detectable activ-

ities under these conditions, within themethod’s sensitivity limits

(Technikova-Dobrova et al., 1991), using a well-characterized

protein kinase (Mycobacterium tuberculosis PknB) as positive

control. The PknB-catalyzed phophotransfer in these conditions

revealed a kcat of 0.1 s�1, considering �250 nM product as a

rough minimum detection limit (Technikova-Dobrova et al.,

1991), LmaMPK10 displays a kcat < 2.10�6 s�1. Substitution of

Mg2+ by Mn2+, or even avoiding cations altogether, did not result

in detectable catalytic levels. Using the same experimental

approach, the ATPase and the kinase activities of p38a have

shown to be coupled (Chen et al., 2000), and unphosphorylated

p38a (or even monophosphorylated on Tyr within the activa-

tion loop) shows undetectable activity (Zhang et al., 2008).

Phosphorylated variants of recombinant LmaMPK10 and

LmaMPK10DC were identified by liquid chromatography-

coupled electron spray mass spectrometry (Supplemental

Experimental Procedures), after incubation with ATP (including

both monophosphorylated variants on the THY motif of the acti-

vation loop), but this did not result in detectable increase of

protein kinase activity (data not shown). A detailed characteriza-

tion of these phosphopeptides was thus not further considered,

coming from E. coli their biological relevance is questionable.

Recombinant LmaMPK10 is most probably purified in a nonac-

tive state, and the specific LeishmaniaMKK that phosphorylates

LmaMPK10 upstream (leading to a double phosphorylated acti-

vation loop profile) is yet to be identified.

Overall Structure of apo LmaMPK10DC
LmaMPK10DC was crystallized, and its structure was solved

with X-ray diffraction techniques. Molecular replacement using

human p38a as a search probe (Protein Data Bank [PDB] ID

code 3HV3) gave the best rotation function contrast, allowing

to refine the model to 1.95Å resolution (Table 1). Final electron

density maps display excellent quality in the C-terminal lobe

(see below for detailed structure description) (Figure 1A) and

weaker signal to noise levels in the N-terminal lobe and particular

segments. The model was built, including most of the amino
eserved



Table 1. X-Ray Diffraction Data Collection and Refinement

Statistics

LmaMPK10DC

LmaMPK10DC +

SB203580

Space group P 43 21 2 P 43 21 2

Protein molecules per

asymmetric unit

1 1

Solvent content (%) 52.4 52.6

Wavelength (Å) 1.5418 1.5418

Data Resolution (Å)a 28.73–1.95

(2.06–1.95)

43.1–2.63

(2.77–2.63)

Measured reflections 110,807 59,508

Multiplicitya 3.5 (3.5) 4.5 (4.5)

Completeness (%)a 98.3 (97.4) 97.7 (84.3)

Rmeas (%)a,b 5.0 (53.7) 9 (58.7)

<I/ss(I)>a 15.8 (1.4) 13.7 (1.3)

a = b (Å) 81.26 80.9

c (Å) 129.38 131.02

Refinement resolution (Å) 28.73–1.95 43.1–2.65

Rcryst
c [N� refs] 0.192

[29,996]

0.215

[12,184]

Rfree
c [N� refs] 0.224

[1,638]

0.241

[997]

Rms bonds (Å) 0.011 0.008

Rms angles (�) 1.07 1.04

Protein nonhydrogen atoms 2,706 2,422

Water atoms 193 59

Ligand atoms – 27

Mean B factor: overall (Å2) 53.6 76.1

Mean B factor: main

chain (Å2)

51.9 75.2

Mean B factor: side

chains (Å2)

55.5 78.1

Mean B factor: waters (Å2) 52.7 52.7

Mean B factor: ligand (Å2) – 86

Map versus model correlation

coefficient (Overall/local)d
0.84/0.88 0.82/0.87

N� residues in Ramachandran

plot regionse (Allowed/

favored/outliers)

337/325/0 297/282/0

Protein Data Bank ID code 3PG1 3UIB
aValues in parentheses apply to the high-resolution shell.
bRmeas =

P

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nh=ðNh � 1Þp P

i

jIi � hI± ij=P
h

P

i

I± ; Nh, multiplicity for each

reflection; Ii, the intensity of the ith observation of reflection h; < I >, the

mean of the intensity of all observations of reflection h, with

I ± =1=Nh

P

i

ðIð�Þ or Ið+ ÞÞ;
P

h

is taken over all reflections;
P

i

is taken

over all observations of each reflection.
cR=

P

h

jFðhÞobs� FðhÞcalcj=P
h

jFðhÞobsj; Rcryst and Rfree were

calculated using the working and test hkl reflection sets, respectively.
dCalculated with Phenix get_cc_mtz_pdb (Adams et al., 2010).
eCalculated with Molprobity (Chen et al., 2010).
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acids, according to reliable electron density features, thus

excluding the first 4 N-terminal residues, the last C-terminal

one, and the zone spanning residues 180 to 194. The latter
Structure 2
segment corresponds to the activation loop, and although elec-

tron density was visible, it was not sufficiently clear to allow for

confident interpretation, instead suggesting high flexibility and/

or the presence of alternative conformations that are not distin-

guishable at this resolution. The side chains of fourteen residues

have also been excluded because of similar reasons.

The structure of LmaMPK10DC displays the canonical

eukaryotic-like protein kinase (ePK) fold,which includes a smaller

N-terminal lobe, including a central b sheet and a larger, mostly

helical C-terminal domain, both connected by two hinge

segments (Figure 1B; Figure S1A). The N-lobe includes the

structurally conserved 5-stranded antiparallel b sheet in the

core (b1–b5), surrounded by three solvent-exposed a helices:

the strictly conserved aC, the C-terminal a11, right after the

second hinge segment, and, at the very beginning of the protein,

a1, a secondary structure element unique to this MAPK (Fig-

ure 1B). Also atypical is a small insertion of seven residues in

the N-terminal lobe that folds into a b-hairpin (amino acids

55–63; noncanonical bIV–bV; see PK10 insertion in Figure 1B

and Figure S1).Well-exposed to the solvent, this b-hairpin imme-

diately precedes helix aC. The C-terminal lobe is better

conserved as judged by its canonical, mainly helical secondary

structural elements, except for a small 3-stranded b sheet

(b6–b8), well-conserved and located close to the substrate

binding site.

The first interlobal hinge (hinge I; residues 113–116) is short,

just after the so-called ‘‘gatekeeper’’ residue (Thr 112), impor-

tant in allowing for nucleotide binding into the ATP-pocket.

Hinge II is instead a long loop (residues 329–345), connecting

the C-terminal lobe to the last a helix (a11), which is folded

back onto the N-terminal lobe, a typical feature of MAPKs.

Eleven helices are thus observed in all, not taking into account

short helical segments (280–284, 303–307, and 324–329) or

yet the nonregular, twisted helical section 195–205, just after

the activation loop. The conserved helices aC through aI, were

labeled according to a widely used secondary structure nomen-

clature (Scheeff and Bourne, 2005). Between aG and aH, two

a helices are inserted forming the MAPK insertion MKI (a helices

a7 and a8), typical of the CMGC group of protein kinases

(Kannan and Neuwald, 2004). A Ser-Pro-Ser motif (SPS) within

the MKI has been shown to be important as a noncanonical

nuclear localization signal in ERK1/2 (Chuderland et al., 2008;

Plotnikov et al., 2011a), whose subcellular localization appears

to be regulated by Ser phosphorylation. The LmaMPK10 MKI

also harbors an SPS motif, although it is not structurally equiva-

lent to the one in ERK (which is substituted in LmaMPK10 by

Thr-Pro-Lys). This modified motif in LmaMPK10 is seen located

on the opposite side of the MKI, equally well-exposed to the

solvent.

A strictly conserved glutamate on aC (Glu78 according to

LmaMPK10 numbering), is well known to establish a salt bridge

with a lysine in b3 (Lys51), when protein kinases are locked in

their active conformation (Taylor and Radzio-Andzelm, 1994).

In this structure of apo LmaMPK10DC, the carboxylate group

of Glu78 is located 3.9 Å away from the amino group on the

Lys51 side chain, which is observed also to bemobile, according

to weak electron density and high B factors, indicating that this

interaction is not strong (Figure 1C). Arg157 (included within

the conserved HRD motif), the following catalytic Asp158, and
0, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 3



Figure 1. Overall 3D Structure of LmaMPK10DC in Its apo Form

(A) Fully refined electron density map (sigmaA-weighted 2mFobs-DFcalc, contoured at 1.5s) with superposed amino acids in stick representation as a reference

of the final model.

(B) Cartoon representation of the full model, viewed from two orientations (the right panel is rotated 90� according to a vertical axis in the plane of the paper, with

respect to the left panel); the model is colored according to a blue-to-red ramp, indicating the N-terminal to C-terminal direction of the polypeptide; secondary

structure elements and particular LmaMPK10-specific motifs are labeled.

(C) Zoom-in showing the refined electron density (sigmaA-weighted 2mFobs-DFcalc, contoured at 1s) corresponding to residues Lys51 and Glu78. The salt

bridge distance is marked in angstroms. Note the weak electron density of these interacting amino acids.

See also Figure S1.
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Asn163, are located in the catalytic loop, and are all well resolved

in the electron density maps.

Comparing LmaMPK10 to human orthologs, the closest rela-

tives are ERK1/2 and p38a (40% and 36% identity, respectively).

Despite the marginally higher sequence similarity with ERK1/2,

on structural grounds the relatedness is slightly more important

with p38a (DALI Z scores of 35.6 with p38a [PDB ID code

3GFE] versus 34.1 with ERK2 [3ERK]), well above other homolo-

gous kinases displaying DALI Z scores <30, such as JNK3

(2P33), CDK2 (1JST), and GSK3 (1H8F). These structural differ-

ences can be identified in overall superpositions with p38 versus

ERK (Figure S1B), also explaining why p38a models resulted in

better solutions on the initial molecular replacements searches.

The most important changes can be observed in the N-terminal

lobe, wherein the position of aC and a few loops are more similar

between LmaMPK10 and p38a than to others. At difference with

the human counterparts, the electrostatic potential mapped onto

the solvent accessible surface of LmaMPK10, highlights a large

electronegative patch on the opposite side of the ligand binding

cleft (Figure S1C).

The heterogeneous electrostatic charge distribution on the

surface, as well as the presence of unique secondary structure

elements well-exposed to the solvent, are compatible with scaf-

folding of protein:protein associations, currently under investiga-

tion using structure-guided mutant constructs expressed in

Leishmania. Helix a1 replaces the more typical two-stranded

b sheet found in most MAPKs. This could be a feature common

to several trypanosomatid PKs, because it is also observed in the

other available 3D model of a protein kinase from Leishmania,
4 Structure 20, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights r
glycogen synthase kinase GSK (Ojo et al., 2011), although in

GSK it is found in a �90� rotated orientation. The topological

position of the b-hairpin just preceding aC, invites to the hypoth-

esis of a potential regulatory role, because interactions with

partner molecules at this site could directly affect the position

of aC (Figure 1B), a key helix in kinase activation regulation.

LmaMPK10-Specific Sequence Features
The LmaMPK10 sequence and 3D structure were used as

queries in multiple sequence alignments in order to locate con-

served and variable features (Figure S2). As expected, the ePK

domain is readily detectable, including the 12 highly conserved

ePK motifs (Manning et al., 2002) (Figure 2A). Most of the resi-

dues that define the protein kinase CMGC group (Kannan and

Neuwald, 2004) are indeed conserved in LmaMPK10. Among

these, three positions display substitutions: Met205 (which is

a Leu in typical MAPKs), Phe210 (substituting a Tyr), and

Arg234 (substituting a Pro).

Although the strictly conserved residues in ePKs (Kannan

et al., 2007) are present in LmaPK10, there are a few point sub-

stitutions in particularly intriguing positions. These unique

atypical features are well conserved only among trypanosomatid

LmaMPK10 orthologs (Figure S2), that is, not present in any one

of the other 16 MAPKs from Leishmania. These residues are

located within conserved loops or segments known to play

important functional roles in MAPKs (Figure 2B). Focusing on

the most important, and following their sequential order in the

protein, these key positions fall in the P loop between strands

b1 and b2; the HRD motif in the catalytic loop; the DFG triad
eserved



Figure 2. LmaMPK10-Specific Features in

Key Functional Positions

(A) Schematic representation of the full sequence

of LmaMPK10, showing the relative positions of

the 12 conserved ePK motifs (indicated in roman

letters). A selection of highly conserved residues

are labeled. Among these, some of the residues

that are not conserved in LmaMPK10 and trypa-

nosomatid orthologs are marked in italic bold. The

return of the last C-terminal portion toward the

N-terminal lobe is not indicated for clarity.

(B) Cartoon representation of LmaMPK10DC,

superposed within the transparent solvent acces-

sible surface. For clarity, only five LmaMPK10-

specific point substitutions are marked as red

spheres.

(C) A close-up of the modified DFG motif, which

has evolved to DFN in LmaMPK10. The H-bond

that links the asparagine side chain to the key

Glu78 in the aC is indicated. Note the phenylala-

nine in the ‘‘Phe-in’’ flipped position, resembling

the configuration of kinases in the active state.

The ATP-binding site is labeled for spatial

reference.

(D) SDS-PAGE separations of LmaMPK10 and

variants, revealing autokinase and phospho-

tranferase activities at the expense of [g32P]-ATP.

The autophosphorylation capacity of pure re-

combinant LmaMPK10DC is shown on the top of the panel, comparing thewt versus a Lys51Ala kinase-dead mutant. On the bottom part, phosphotransfer from

ATP to myelin basic protein (MBP; �21 kDa) is detected using the full-length wt LmaMPK10, fused to GFP (allowing for immunoprecipitation from L. donovani

amastigotes using anti-GFP antibodies [IP:anti-GFP]). Coomassie staining is very weak for immunoprecipitated GFP-LmaMPK10 and GFP-LmaMPK10-

Lys51Ala, equivalent quantities were confirmed by western blotting as indicated (WB:anti-GFP).

See also Figure S2.
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that participates in cation-binding and catalytic regulation

control; and finally, the so-called activation loop, just after the

DFG motif, finishing in the sequence APE.

(1) The P loop (residues 30–34), including the conserved

GXGXXG sequence, is directly implied in nucleotide

substrate positioning. In LmaMPK10 it contains Ser30 re-

placing the first conserved Gly residue.

(2) In ERK2 the phosphotransfer reaction is catalyzed by

Asp147 (included in the conserved motif HRD), which

acts as a base, and Lys149, which interacts with the

g-phosphate along the reaction pathway, providing the

right positioning of the ATP and stabilizing the transition

state (Turjanski et al., 2009). In LmaMPK10, the catalytic

Asp corresponds to Asp158, but the conserved Lys is

substituted by a His160. This His residue is thus occu-

pying a key position toward the ATP substrate-binding

site, very close to, and pointing in the same direction as

the catalytic Asp158. A histidine in this position is present

in very few members of the ePK family, particularly in

members recently classified as ELKs (ePK like kinase

family) from prokaryotes (Kannan et al., 2007). ELKs

display functional and sequence diversity and are not

well characterized. Their substrates include proteins and

small molecules (lipids, sugars, and amino acids) and

appear to have regulatory functions.

(3) After the HRD motif, the catalytic loop displays yet

another unusual substitution in position 173, where the

canonical lysine is replaced by a threonine.
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(4) Perhaps themost striking substitution, given its functional

importance, concerns the conserved DFG motif, which

delimits the beginning of the activation loop (Figure 2C).

Asn178 in LmaMPK10 substitutes the expected Gly in

this triad element. This glycine is directly involved in the

key regulatory switch between DFG-in (active) and DFG-

out (inactive) conformations in ePKs (Kornev et al.,

2006; Pargellis et al., 2002), linked to interlobe movement

and active-site accommodation for catalysis. The pres-

ence of an Asn at position 178 in LmaMPK10 results

in important implications for the ‘‘on-off’’ switching.

Asn178 makes the main chain of this triad more rigid,

because it is stabilized through an H-bond to the main

chain of Glu78 (Figure 2C), adding further restriction to

the position of the helix aC and making the required

DFG-in/DFG-out movement less likely. In the DFG-out

conformation, the conserved glycine displays a combina-

tion of f/c main-chain dihedral angles that is less prob-

able for any other amino acid, such as the asparagine

present in LmaMPK10.

(5) Residue substitutions can also be identified within

the activation loop. The phosphorylatable Thr190 and

Tyr192 constituting the THY motif are seen embedded in

a quite unusual context in LmaMPK10. Position 189, typi-

cally a hydrophobic residue in PKs, is occupied by a lysine

in LmaMPK10 (not included in the model because of acti-

vation loop mobility and lack of electron density), and

(6) the highly conserved Thr at position 195 within the TRWY

sequence, is substituted by a His.
–12, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 5
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(7) A more subtle substitution at position 210, involves a Tyr

to Phe change, which is nevertheless worth mentioning,

given the functional importance of the Tyr OH group in

kinase on/off switching in many CMGC kinases (Kannan

and Neuwald, 2004), principally via stabilization of the

key Thr in the activation loop, once it becomes phosphor-

ylated in the PK-active state.

Six single-residue LmaMPK10 mutations (S30G, H160K,

N178G, K189M, H195T, F210Y), reverting to the ePK-typical

ones, were generated and the recombinant proteins purified.

No gain of protein kinase activity in autophosphorylation or

surrogate substrate assays was revealed (data not shown). The

possibility of synergic effects, by combination of several or all

mutations simultaneously, cannot be excluded and merits

further structural and biochemical characterizations, currently

underway.

At this stage, taking into account the fact that LmaMPK10

protein kinase activity was not detected and that several highly

conserved residues are seen to be changed, we considered

the possibility that LmaMPK10 would be a pseudokinase. With

this aim we used [g32P]-ATP as phosphodonor substrate,

increasing the sensitivity of the method. We first analyzed the

autophosphorylation activity of the construct used for structural

studies, comparing wild-type LmaMPK10DC with the corre-

sponding Lys51Ala point mutant used as a catalytically dead

control (Figure 2D). LmaMPK10DC is able to use ATP to auto-

phosphorylate specifically, needing a competent ePK-canonical

architecture (i.e., Lys51 required to establish the salt bridge with

Glu78). We then wanted to look also at the full-length protein, in

its proper biologic context, so we generated GFP-tagged

versions of the wt and the Lys51Ala point mutant, with which

L. donovani cells were transfected. Immunoprecipitation from

soluble protein extracts of amastigote cells was performed using

an anti-GFP antibody. The pulled-down material was con-

firmed by western blot, displaying the expected size for the

GFP:LmaMPK10 fusion protein (73.9 kDa), and used as

LmaMPK10 source for kinase activity assays. Autophosphoryla-

tion was undetectable, perhaps because LmaMPK10 is already

phosphorylated in amastigotes, but phosphotransfer to myelin

basic protein (MBP) used as a surrogate substrate was observed

(Figure 2D). Once again, LmaMPK10 kinase activity was shown

to be dependent on the integrity of the active site because the

Lys51Ala mutation abolished phosphotransfer capacity (Fig-

ure 2D). Although LmaMPK10 catalyzed MBP phosphoryla-

tion with a much weaker activity than ERK2 (not shown), wt

LmaMPK10 is not a pseudokinase, being able to use ATP

to catalyze autophosphorylation and phosphotransfer to a

surrogate peptidic substrate.
LmaMPK10 Binding of SB203580
Determining the structure of LmaMPK10DC in complex with

a nucleotide, a nucleotide-derivative or a competitive inhibitor,

constitutes an important step forward within a target-based

drug discovery strategy. Soaking, as well as cocrystallization

experiments, were performed using ATP, ADP, and AMP-PCP

in the presence or absence of Mg2+ and Mn2+. Despite great

efforts, the resulting structures reproducibly showed no detect-

able occupancy of the nucleotide-binding site. We then decided
6 Structure 20, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights r
to determine the binding affinities of LmaMPK10 to ATP or ATP-

like molecules. Isothermal titration calorimetry was used to

quantify the ATP-LmaMPK10 and ATP-LmaMPK10DC dissocia-

tion constants at equilibrium, but signal-to-noise ratios were too

low in order to derive accurate figures. This likely reflects a weak

ATP association constant, although concurrent effects linked to

high heats of dilution of Mg2+ cannot be formally excluded.

Fluorescence-based thermal shift assays (TSA) also failed to

uncover ATP-LmaMPK10 association using both the full-length

as well as the truncated constructs of the protein (Figures S3A

and S3B). Binding was eventually detectable by using the p38-

specific inhibitor SB203580 (Cuenda et al., 1995) as ligand

(Figures 3A and 3B). Both the full-length kinase and its truncated

version bound to SB203580 with a 1:1 stoichiometry. The asso-

ciations were essentially driven by the enthalpic component. The

observed dissociation constants greatly depended upon the

presence of the 46-residues C-terminal extension (Table 2) as

LmaMPK10DC showed a >30-fold increase in binding affinity.

Comparative analysis of the full-length and DC-truncated

versions of LmaMPK10 by TSA further confirmed this trend

(Figure S3C).

TSA analyses revealed a further relevant feature: the full-

length wild-type protein was significantly more stable than the

truncated LmaMPK10DC (>12�C). The low quality of full-length

LmaMPK10 crystals in diffracting X-rays and the identification

of a proteolysis-sensitive segment within the C-terminal exten-

sion must be analyzed in the context of this greater thermal

stability of the full-length protein. The most likely model would

thus anticipate that an intervening loop within the C-terminal

extension is mobile in solution, at least in the nonphosphorylated

state of LmaMPK10. Nevertheless, part of the extension is most

probably interacting with the core of the kinase, consistent both

with the overall stabilizing effect, as well as with the observed

autoinhibition on the ATP-binding pocket (Figure 3C). The >30-

fold decrease in the SB253080 association constant when the

wild-type extension is present, is saying that this extension

exerts a direct interfering effect onto the nucleotidic cleft, most

probably through its direct contact with the LmaMPK10 core.

In support of this hypothesis, secondary structure prediction of

the 46 residues C-terminal peptide gives reproducible results

using different algorithms (Figure S3B). A first a helix is predicted

with high confidence, including the first �20 amino acids of the

peptide, and then an intervening loopwould connect to a second

shorter a helix. Ab initio 3Dmodeling of the first 36 residues of the

C-terminal peptide using PEP-FOLD (Thévenet et al., 2012) re-

sulted in well-clustered sets of solutions, reproducibly consistent

with the secondary structure predictions. Among the best result-

ingmodels, according to the program’s templatemodeling score

and energy ranking, were several that actually fit nicely through

the back of LmaMPK10DC, directly reaching the nucleotidic cleft

(Figure 3C). Although this in silico model awaits experimental

proof, it illustrates plausible distances that take into account

proper peptidic stereochemical constraints, while explaining

the thermal stabilization and the autoinhibited behavior of full-

length protein. From the C-terminal end of a11, to a midpoint

within hinge I at the ATP-binding pocket, there is a �25Å

distance, closely matching the predicted length of an 18-

residues, 5-turn a helix. On the other hand, this first half of the

46 amino acids C-terminal extension, presents highly charged
eserved



Figure 3. Thermodynamic Analysis of LmaMPK10 Binding to

SB203580

(A and B) A comparison of the isothermal titration calorimetric curves between

(A) full-length LmaMPK10 and (B) C-terminally truncated LmaMPK10DC is

shown, both being titrated with the human p38-inhibitor SB203580. Top

panels display raw heat fluxes (corrected for heat of dilution of both protein and

inhibitor), whereas bottom panels show the integrated heat of injection

(normalized to the amount of SB203580 injected). Note the similar stoichi-

ometries in terms of inhibitor:protein molar ratios, whereas association

constants change significantly (full details in the text and Table 2).

(C) Plausible model for the association of the C-terminal 46 residue extension

truncated in the LmaMPKDCconstruct. The 3D structure of apo LmaMPKDC is

shown as a cartoon, with the N termini and C termini indicated. Superposed,

a transparent rendering of the electrostatic potential mapped onto the

accessible solvent surface of the protein. The coordinates corresponding to

the inhibitor SB203580 occupying the ATP-binding site, have been grafted

from the LmaMPKDC-SB203580 complex solved in this work (see Figure 4)

and represented in spheres colored by atom to locate the nucleotide-binding

cleft. The two predicted a-helices of the C-terminal peptide, absent in

LmaMPKDC, are shown as a violet ribbon (rendered semitransparent to

highlight that it is a predicted model). Its coordinates correspond to the best

scoring ab initio 3D model, which includes only the first 36 amino acids of the

peptide (see the Supplemental Experimental Procedures). The connecting two

residues between a11 and the C-terminal extension are depicted as red

dashes; the intervening loop and the final ten residues within the peptide are

marked as violet dashes. Note the distance match between the peptide’s

predicted first a helix with the one separating the C-terminal end of a11 and the

entrance of the ATP-binding cleft.

See also Figure S3.
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residues in an alternate fashion such that basic arginines can be

nicely accommodated interacting with the acidic surface seen

on the back of LmaMPKDC (Figure 3C). An alternative, more

sophisticated mechanism, could imply allosteric modifications

triggered by the self-peptide binding away from the nucleotidic
Structure 2
cleft, eventually also resulting in the autoinhibitory effect. It will

thus be important to study if this C-terminal extension ismodified

in vivo (e.g., through phosphorylation, binding of molecular

partners, including dimerization, or yet proteolysis events), thus

linked to the physiological activation process.

Structure of LmaMPK10DC in Complex with SB203580
and Analysis of the Nucleotide-Binding Cleft
With this background information, we intended to solve the

crystal structure of LmaMPK10DC in complex with SB203580,

ultimately succeeding using a compound-soaking approach.

The inhibitor’s low solubility in water and its effect in rendering

the crystals more fragile complicated this task. After screening

many crystals on the basis of X-ray diffraction quality, we chose

the one diffracting to highest resolution (Table 1) and solved its

structure (Figure 4A) by molecular replacement using the refined

apo model. Initial cycles of refinement were performed employ-

ing simulated annealing, and reciprocal space refinement was

thereafter iterated with manual model rebuilding. Model building

proved to be a nontrivial task, mainly because the N-terminal

lobe displays vast regions not well defined in electron density.

Residue fragments 1–6, 17–24, 28–33, 57–63, 97–107, and

360–361 spanning solvent-exposed loops and b strands in the

N-lobe domain, as well as the activation loop residues 180–

191, could not be modeled because of a lack of interpretable

electron density. The side chains of 19 residues, mostly

belonging to the N-lobe domain, were not included in the model

for the same reasons. The B factors of those parts of the N-lobe

that do fit well in the electron density maps refine to extremely

high values (Figure S4), revealing important flexibility of the

molecule in this lobe. This pronounced differential flexibility

between both domains of LmaMPK10DC appears to be a partic-

ular feature, as compared to homologous MAPKs, such as p38

(Figure S4).

The nucleotide-binding site lies in the hinge region between

the two lobes (Figure 4). Although the key residues involved in

catalysis in ePK are conserved in LmaMPK10, several differ-

ences exist in the active site. The ligand-binding cleft displays

a number of residues involved in contacts (Figure 4B), most of

them establishing van der Waals interactions. Only one H-bond

is observed between nitrogen atoms involving the main

chain of Met115 and the inhibitor’s NB1 on the pyridine ring

acting as H-acceptor. Structural superposition of the apo and

SB203580-bound models of LmaMPK10DC allowed us to focus

onto inhibitor-triggered rearrangements. Tyr34 within the P loop

gets closer to the ligand, indicating that the whole P loop,

although not well defined in electron density, moves in closing

the ligand-binding cleft. The side chain of Asp176 is shifted,

accommodating the inhibitor in place. Although Lys51 is closer

to Glu78 side chain, it is still strikingly flexible, displaying low

electron density for its side chain. No significant differences

are detected in the C-terminal lobe. The ATP binding pocket of

LmaMPK10 has a smaller cleft and a different exposed profile

of the electrostatic potential on the active site’s surface (Fig-

ure S4D), when compared to other MAPKs, such as human

p38a and ERK2. The narrowing of the cleft as compared to

p38a obeys to a tighter closure of the glycine-rich loop onto

the nucleotide analog. This is linked to the unusual fact that the

DFG-in configuration of apo LmaMPK10 is not changed in the
0, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 7



Table 2. Isothermal Titration Calorimetry Analysis of the LmaMPK10/SB203580 Interaction

Protein Stoichiometry Kd (mM) DG (kcal.mol�1) DH (kcal.mol�1) TDS (kcal.mol�1)

LmaMPK10 0.82 (0.0024) 5.3 (0.21) �7.36 (0.021) �7.15 (0.068) 0.21 (0.089)

LmaMPK10DC 1.33 (0.035) 0.16 (0.015) �9.5 (1) �10.3 (1.13) �0.80 (0.088)

Values reported were obtained from the average of two independent titrations, with standard error of the mean indicated in parentheses.
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SB203580-bound complex. SB203580 is known to bind and

stabilize the DFG-out conformation in p38, wherein Phe169

within the DFGmotif contributes to direct binding of the inhibitor.

Overall, LmaMPK10 naturally binds SB203580 with an ‘‘ERK-

like’’ configuration, closely resembling the profile seen in 1PME.

LmaMPK10: On/Off Switching and Activation State
The active state of ePKs requires two continuous columns or

spines of stacked hydrophobic residues, the regulatory (R) and

the catalytic (C) spines (Kornev et al., 2006; Taylor and Kornev,

2011). Although many different configurations are found for the

inactive states of ePKs, a common theme involves breaking

the R spine in one way or another. Attempts to classify the struc-

tures of LmaMPK10 as active or inactive are not clear-cut.

Among the off-state traits, the protein displays an open confor-

mation, which is seen only slightly closed when bound to the

SB203580 inhibitor (Figure 4B). More importantly, no phosphor-

ylated residues were detected. Although most of the activation

loop could not be modeled, mass spectrometry analyses of the

samples used for crystallization do suggest they are nonphos-

phorylated. The high flexibility of the activation loop on its own

is not a clear signature of activation state: unphosphorylated

inactive human p38a displays a well-ordered loop (PDB ID

code 1P38), whereas active ERK, double-phosphorylated on

the activation-loop TEY motif, also displays an ordered activa-

tion-loop conformation (2ERK). Although the distance between

the side chains of Lys51 and Glu78 is consistent with a salt

bridge, typical of activated ePKs, Lys51 is very mobile in our

LmaMPK10 structures, strongly suggesting that this ionic inter-

action is not strong.

On the other hand, a continuous, unbroken, regulatory

spine suggests that LmaMPK10 has been crystallized in an

‘‘active-competent’’ configuration. The presence of an aspara-

gine (Asn178) substituting the glycine in the otherwise highly

conserved DFG motif, actually stabilizes Phe177 in a ‘‘DFG-in’’

position, completing the R-spine (Leu93, Leu82, Phe177, and

His156) (Figure 5A). This ‘‘active-state’’ architecture on the apo

form of LmaMPK10DC is further stabilized through an H-bond

between the side-chain of Asn178 and the main chain O of

Glu78 (Figure 2C), a key residue in properly orienting aC to

complete the R-spine. Flipping Phe177 to an inactive ‘‘DFG-

out’’ state seems either not possible, or at least involving a

high-energetic penalty, given that Asn178 does not have the

necessary intrinsic flexibility on its main chain dihedral angles,

a functional role uniquely ensured by a glycine (Kornev et al.,

2006). Further supporting this modified behavior when com-

pared to human MAPKs, the p38-specific inhibitor SB203580,

which stabilizes the DFG-out configuration in p38a, does bind

to LmaMPK10, but is not able to trigger/stabilize a DFG-out flip-

ping in the LmaMPK10-SB203580 structure. The residues

involved in building a continuous C-spine are also well posi-
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tioned, constituting an active-competent architecture (Ala49,

Val37, Leu165, Leu166, Ile164, Leu119, Val222, and Met226)

completed by the ATP-pocket ligand SB203580 in the com-

plexed structure (Figure 5A).

The nucleotide-bound state of LmaMPK10DC is only

mimicked by using SB203580, as nucleotide incorporation has

been elusive. Taking into account the overall extremely high

B-factors, as well as the differential higher plasticity of the

N-terminal lobe (Figure S4), we sought to analyze LmaMPK10’s

plastic propensity by molecular dynamics simulations. The apo

structure was compared to the SB203580-bound, as well as to

a simulated structure, where ATP was docked within the nucle-

otidic cleft (by superposition with the ATP-bound p38g structure

1CM8). A similar calculation was performed with the structure of

p38a (1R3C) to be used as reference. As anticipated from the

crystal structures, LmaMPK10DC shows indeed higher flexibility

than p38a, especially on the N-terminal lobe (Figure S5A). The

PK10 insertion, absent in p38, is highly flexible, both in the apo

and SB203580-bound models. This more plastic behavior is

not rigidified when SB203580 is bound in the nucleotide-binding

pocket (Figure S5B), whereas a clear stabilization is instead

observed if the true ATP moiety is in place (Figure S5C). This

significantly different effect of ATP with respect to SB253080

can be further scrutinized by analyzing some important details.

Only with ATP bound, the P loop is anticipated to close in

much more snugly onto the nucleotide moiety, correlating with

a strong interaction between Lys51 and Glu78 (Figures 5B–5E;

Figures S5D–S5F). The NZ atom on Lys51 is actually predicted

to interact with the acidic Glu78 side chain, as well as with the

a- and b-phosphates of ATP itself (Figure S5E), as has been

seen in other nucleotide-bound MAPK structures (Bellon et al.,

1999; Xie et al., 1998). The distance between Lys51 and Glu78

oscillates along the simulation between 3.5–8.0 Å in both the

unbound and SB203580 forms (Figure S5F), measuring the dis-

tances between the NZ atomof Lys51 and the CD of the carboxyl

moiety of Glu78, because the carboxyl oxygens frequently

switch their interactions during the dynamics. These predicted

distances in solution may thus be readily grouped in two major

populations (Figure S5F), one of which corresponds to the inter-

atomic distance observed in the X-ray structures.

Hence, although the pyrimidine ring of SB203580 occupies the

position of the adenine base in ATP, completing the catalytic

spine, this does not appear to be sufficient by itself to trigger

the full set of modifications toward an active configuration,

notably, SB203580 being deficient in stabilizing the Lys51-

Glu78 ion pair (and correlated movements on the P loop and

aC helix, as seen in our structure). The overall high B factors in

the LmaMPK10DC structures and particularly high plasticity of

the N-terminal lobe may be related to the fact that the C-terminal

46-residues extension is not present. Probably the first�20 resi-

dues of this extension are part of the N-lobe core. In any case,
eserved



Figure 4. 3D Structure of LmaMPK10DC in Complex with SB203580

(A) Cartoon representation of LmaMPK10DC bound to the inhibitor SB203580.

The model is colored according to a blue-to-red ramp, indicating the

N-terminal to C-terminal sense of the polypeptide. The inhibitor is highlighted

in stick representation colored according to atomic elements (oxygen, red;

nitrogen, blue; carbon, green; sulfur, yellow; fluorine, sky blue). Dotted lines

represent segments of the proteins that have not been included in the model

because of poor or undetectable electron density.

(B) Superposition of LmaMPK10DC in its apo form (blue ribbon) and in

complex with SB203580 (yellow), shown in stereo. The SB203580 is shown in

stick representation colored by atom. The inhibitor-binding residues are

shown in lines representation (colored by atom); for clarity only the ones

displaying larger positional shifts are labeled. The single hydrogen bond

between the nitrogen atoms of the pyrimidine ring on SB203580 and the main

chain of Met115 is indicated in dotted lines. Note the closure movement in the

inhibitor-bound structure, most prominently marked following the position of

Tyr34, overall rotating the N-terminal lobe with respect to the C-terminal one,

narrowing the nucleotide-binding cleft.

See also Figure S4.
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the second half of the extension might physically reach the

ATP-binding cleft, exerting the inhibition effect in nucleotide

binding. ATP concentrations in the cell are typically high, and

protein kinases have evolved a diverse array of molecular mech-

anisms to avoid potentially deleterious consequences of inap-

propriate activation. The particular ‘‘locked-in’’ architecture of

LmaMPK10, with regard to the more canonical DFG-dependent

Phe-flipping regulation away from the ATP-binding pocket,

might be related to the appearance of a different regulation
Structure 2
that maintains LmaMPK10 off until its self-peptide is outcom-

peted from the ATP-binding site.

EXPERIMENTAL PROCEDURES

Cloning and Mutagenesis

The sequences encoding for LmaMPK10 (full-length) and LmaMPKDC (lacking

the last 46 residues) were amplified by PCR and subcloned into plasmid

pQE80 (Qiagen, Venlo, the Netherlands), previously modified to carry a

Tobacco Etch Virus (TEV) protease cleavage site for removal of the N-terminal

His-tag. Site-directed mutageneses were performed on the pQE80-

LmaMPK10DC vector using specific 50-phosphorylated primers and high-

fidelity Phusion DNA polymerase (New England Biolabs Inc., Ipswich, MA,

USA). Purified amplicons were incubated with DNA-ligase, and TOP10F’ strain

cells were transformed. Mutageneses were systematically confirmed by DNA

sequence analysis. The N-terminal fusion of GFP to MPK10 in the leishmanial

expression vector pXG has been described previously (Morales et al., 2007).

The Lys51Ala mutation was introduced by PCR using the mutagenic primer

50 ATTCCGGTCGCCATCgcGCGCGTGTTCAACAC 30. Episomal tranfectants

GFP-LmaMPK10 wt and GFP-LmaMPK10Lys51Ala were established by

electroporation of 4 3 107 L. donovani LdB promastigotes from logarithmic

culture with 20 mg of recombinant plasmid. Transfected cells were plated on

media containing 20 mg/ml G418, and resistant colonies were expanded in

liquid culture at drug concentrations up to 100 mg/ml G418.

Protein Expression

Transformed E. coli Top10F’ cells were grown in Luria-Bertani medium supple-

mented with ampicillin (100 mg/ml) at 37�C until OD600 0.8. Temperature was

decreased to 20�C, and induction was triggered with 1 mM IPTG overnight.

Cells were harvested by centrifugation at 2,000 g. Pellets were resuspended

in 50 mM Tris.HCl (pH 8.5), 500 mM NaCl, supplemented with EDTA-free

protease inhibitors (Roche, Indianapolis, IN, USA), and cells disrupted with

lysozyme and sonication (five pulses of 30’’). Soluble fractions were obtained

by centrifugation 30 min at 10,000 g.

Protein Purification

The soluble fraction of total protein extracts was immediately subjected to

Ni2+ affinity chromatography (HisTrap, GE Healthcare Life Sciences, Wauke-

sha, WI, USA), after adding 20 mM imidazole. Purified proteins were eluted

with a linear gradient 4%–100% of Buffer B (50 mM Tris [pH 8.5], 500 mM

NaCl, and 500 mM imidazole) in 15 column volumes. Fractions were pooled

and incubated with TEV protease while dialyzed overnight against 50 mM

Tris (pH 8.5) and 500 mM NaCl at 4�C. A second Ni2+ column purification

step was performed. The flowthrough was collected and subjected to size-

exclusion chromatography with a Superdex 26/60 75 prep (GE Healthcare

Life Sciences) column previously equilibrated with 20 mM Tris (pH 8.5) and

150 mM NaCl. The peak fractions were pooled, concentrated to 10 mg/ml,

and stored at 4�C until use.

Enzymatic Assays with Recombinant LmaMPK10DC

Radioactive kinase assays were performed in a total volume of 30 ml containing

500 ng purified recombinant LmaMPK10DC or LmaMPK10DC-Lys51Ala,

kinase buffer (50 mM HEPES [pH 7.4], 10 mM MnCl2, 1 mM DTT, 20 mM

b-glycerophosphate, and 0.1 mM NaVO4) and ATP (20 mM ATP and 5 mCi

[g32P]-ATP). The reaction was incubated for 20 min at 30�C under constant

agitation and stopped by the addition of 6 ml 63 Lämmli buffer. The reaction

mixture was separated by SDS-PAGE. The gel was stained with Coomassie,

dried, and subjected to autoradiography. Enzyme-coupled assays are detailed

in the Supplemental Experimental Procedures.

Kinase Assay Using Leishmanial Recombinant Protein

L. donovani axenic amastigote cells were generated as detailed in the

Supplemental Experimental Procedures. Total L. donovani protein extract

(1–2 mg) was subjected to anti-GFP immunoprecipitation using the mMACS

anti-GFP magnetic beads (Miltenyi Biotec, Bergisch-Gladbach, Germany

#130-091-125). Immunoprecipitates were washed twice with 500 ml HNGT

(20 mM HEPES [pH 7.4], 150 mM NaCl, 10% Glycerol, and 0.1% Triton
0, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights reserved 9



Figure 5. Activation State and Plasticity in

LmaMPK10

(A)Catalyticandregulatoryspines inLmaMPK10DC.

Cartoon showing the LmaMPK10DC-SB203580

complex, with the inhibitor in stick and transparent

molecular surface representation. Solid molecular

surfaces are rendered for the labeled residues,

composing the catalytic or C-spine (in red) and the

regulatory or R-spine (in blue). Note the continuity

in both spines, consistent with a ‘‘locked-in’’

active state architecture.

(B) Histogram of the interatomic distance from

Lys51 NZ to Glu78 CD. Apo LmaMPK10DC,

compared to structures bound to ATP and

SB203580, are shown indifferent colors as labeled.

The vertical axis is showing relative probability

distance distributions. The distances along the

simulations were collected and a probability

distribution was generated every 0.1 Å, plotted

relative to the total number of collected distances.

As a control, independent molecular dynamics

calculationswere run from the same starting points

as the complexed forms shown here but without

adding the ligands, demonstrating that the starting

structures do not affect the final outcome of the

simulations (see Figure S5D).

(C) Cartoon representation of the final model of

LmaMPK10DC after 100 ns molecular dynamics

simulation, in its apo form, (D) in complex with

SB203580, or (E) in complex with ATP. On these

three panels, Lys51 and Glu78 are highlighted

in sticks to show that only the occupation of

ATP into the nucleotide-binding pocket predicts

the triggering of the Lys51-Glu78 salt bridge

(Lys51NZ-Glu78OE1 distances are indicated),

with correlated P loop and aC helix conforma-

tional rearrangements.

See also Figure S5.
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X-100) and twice with 500 ml kinase buffer (50 mM HEPES [pH 7.4], 10 mM

MnCl2, 1 mM DTT, 20 mM b-glycerophosphate, and 0.1 mM NaVO4). Twenty

percent of the total volume was removed, boiled with Lämmli buffer, and sub-

jected to SDS-PAGE and immunoblotting using anti-GFP antibodies. The re-

maining beads were drained and eluted from the columns in the absence of

a magnetic field using 45 ml kinase buffer, and kinase reaction was started

by the addition of 5 ml ATP/MBP mix (1 mCi/ml [g-32P]-ATP, 200 mM rATP,

and 1 mg/ml MBP). The reaction was incubated for 20 min at 30�C under

constant agitation and stopped by the addition of 10 ml 63 Lämmli beads.

The reaction mixture was separated by SDS-PAGE. The gel was stained

with Coomassie, dried, and subjected to autoradiography. Immunoprecipi-

tated GFP-LmaMPK10 wt and GFP-LmaMPK10Lys51Ala, barely detectable

with Coomassie, were confirmed by western blotting onto polyvinylidene

difluoride membranes (Millipore, Billerica, MA, USA). Proteins were revealed

using mouse monoclonal anti-GFP horseradish peroxidase-conjugated anti-

body (Miltenyi Biotec, Teterow, Germany). After washing, blots were devel-

oped using SuperSignal chemiluminescent detection system (Pierce Protein

Biology Products, Thermo Fisher Scientific Inc., Rockford, IL, USA) and visu-

alized on X-ray film.

Crystallogenesis

Crystallization conditions were identified using JCSG Core Suit Screenings

(Qiagen, Venlo, the Netherlands), with a robotic dispensing station

(Honeybee963, Digilab) in 250 nl+250 nl sitting-drops (CrystalQuick 96-well,

Greiner Bio-one, Frickenhausen, Germany) at 20�C. Conditions were opti-

mized manually in hanging drops (VDX plates, Hampton Research, Aliso Viejo,

CA, USA), mixing 2 ml of protein solution (10 mg/ml) and 2 ml of reservoir solu-

tion containing: 0.1 M HEPES (pH 7.5), 12% PEG 4000, 5% glycerol, and 5%

isopropanol. Crystals of apo-LmaMPK10DC appeared after 4 days. The
10 Structure 20, 1–12, October 10, 2012 ª2012 Elsevier Ltd All rights
LmaMPK10DC-SB203580 complex was prepared by overnight soaking

of LmaMPK10DC crystals in mother liquor containing 4 mM SB203580

(Sigma-Aldrich, St. Louis, MO, USA).

X-Ray Diffraction Data Collection, Processing, Structure

Determination, and Refinement

Single crystals were cryoprotected in mother liquor containing 20% glycerol

and frozen in liquid N2. X-ray diffraction data were collected at 100�K (Cryo-

stream Series700, Oxford Cryosystems, Oxford, UK) using a rotating anode

X-ray generator (Micromax007-HF, Rigaku, The Woodlands, TX, USA) equip-

ped with Varimax-HF (Rigaku) multilayer optics and a Mar345 (Mar Research,

Norderstedt, Germany) image plate detector. Data sets were processed using

Mosflm/Scala (Collaborative Computational Project Number 4, 1994). Molec-

ular replacement was used to obtain initial phases, using the program AMoRe

(Trapani and Navaza, 2008). The structure of human p38a (PDB ID code 3HV3)

was used as search probe. Cycles of reciprocal space refinement were per-

formed with the program Buster (Bricogne et al., 2011), alternated with manual

rebuilding and validation (Emsley and Cowtan, 2004). Visualization, analysis,

and figure preparation was done with Pymol (DeLano, 2002), and electrostatic

potential maps were calculated with the program APBS (Baker et al., 2001).

Isothermal Titration Calorimetry

The association of LmaMPK10 and LmaMPK10DC to SB203580 was quanti-

fied by isothermal titration calorimetry using a high-precision VP-ITC

isothermal titration calorimetric (MicroCal Inc., Piscataway, NJ, USA). Purified

LmaMPK10 (34 mM) or LmaMPK10DC (3 mM) were diluted in 20 mM Tris

(pH 8.5), 50 mM NaCl, and 0.8% DMSO. SB203580 was diluted in the same

buffer and used at 450 mM for LmaMPK10 or at 45 mM for LmaMPK10DC. Solu-

tions were thoroughly degassed under gentle vacuum at 30�C. Experimental
reserved
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setup consisted of repeated injections of SB203580 into the calorimetric cell

containing LmaMPK10 or LmaMPK10DC. Experiments were performed at

30�C with a preinjection of 1ml followed by 29 injections of 10 ml spaced by

360 s and using a 394 rpm rotating syringe. See Supplemental Experimental

Procedures for further details on data processing.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.str.2012.07.005.
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