
�>���G �A�/�, �T���b�i�2�m�`�@�y�y�d�j�9�8�9�9

�?�i�i�T�b�,�f�f�`�B�B�T�X�?���H�X�b�+�B�2�M�+�2�f�T���b�i�2�m�`�@�y�y�d�j�9�8�9�9

�a�m�#�K�B�i�i�2�/ �Q�M �k�9 �a�2�T �k�y�R�k

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�*�H�B�K���i�2�@�#���b�2�/ �K�Q�/�2�H�b �7�Q�` �m�M�/�2�`�b�i���M�/�B�M�; ���M�/ �7�Q�`�2�+���b�i�B�M�;
�/�2�M�;�m�2 �2�T�B�/�2�K�B�+�b�X

�ú�H�Q�/�B�2 �.�2�b�+�H�Q�m�t�- �J�Q�`�;���M �J���M�;�2���b�- �*�?�`�B�b�i�Q�T�?�2 �1�X �J�2�M�F���b�- �J���i�i�?�B�2�m

�G�2�M�;���B�;�M�2�- ���M�M�2 �G�2�`�Q�v�- �h�2�K���m�B �h�2�?�2�B�- �G���m�`�2�M�i �:�m�B�H�H���m�K�Q�i�- �J���;���H�B �h�2�m�`�H���B�-

���M�M�2�@�*�H���B�`�2 �:�Q�m�`�B�M���i�- �C�m�b�i�m�b �"�2�M�x�H�2�`�- �2�i ���H�X

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�ú�H�Q�/�B�2 �.�2�b�+�H�Q�m�t�- �J�Q�`�;���M �J���M�;�2���b�- �*�?�`�B�b�i�Q�T�?�2 �1�X �J�2�M�F���b�- �J���i�i�?�B�2�m �G�2�M�;���B�;�M�2�- ���M�M�2 �G�2�`�Q�v�- �2�i ���H�X�X
�*�H�B�K���i�2�@�#���b�2�/ �K�Q�/�2�H�b �7�Q�` �m�M�/�2�`�b�i���M�/�B�M�; ���M�/ �7�Q�`�2�+���b�i�B�M�; �/�2�M�;�m�2 �2�T�B�/�2�K�B�+�b�X�X �S�G�Q�a �L�2�;�H�2�+�i�2�/ �h�`�Q�T�B�+���H
�.�B�b�2���b�2�b�- �k�y�R�k�- �e �U�k�V�- �T�T�X�2�R�9�d�y�X ���R�y�X�R�j�d�R�f�D�Q�m�`�M���H�X�T�M�i�/�X�y�y�y�R�9�d�y���X ���T���b�i�2�m�`�@�y�y�d�j�9�8�9�9��

https://riip.hal.science/pasteur-00734544
https://hal.archives-ouvertes.fr


Climate-Based Models for Understanding and
Forecasting Dengue Epidemics
Elodie Descloux 1,2*, Morgan Mangeas 3, Christophe Euge`ne Menkes 4, Matthieu Lengaigne 5, Anne Leroy 6,
Temaui Tehei 6, Laurent Guillaumot 7, Magali Teurlai 3, Ann-Claire Gourinat 8, Justus Benzler 9, Anne
Pfannstiel 10, Jean-Paul Grangeon 10, Nicolas Degallier 5, Xavier De Lamballerie 1

1 UMR190, Emergence of Viral Pathologies, Institute of Research for the Development, Aix-Marseille University, Marseille, France,2 Department of Internal Medicine,
Territorial Hospital Centre of New Caledonia, Noumea, New Caledonia,3 UMR ESPACE-DEV 228, Institute of Research for the Development, Noumea, New Caledonia,
4 UMR 7159/UR 182, LOCEAN, Institute of Research for the Development, Noumea, New Caledonia,5 UMR 7159/UR 182, LOCEAN, Institute of Research for the
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Abstract

Background: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses
that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the
relationships between climate,Aedes aegyptivectors and dengue outbreaks in Noumea (New Caledonia), and to provide an
early warning system.

Methodology/Principal Findings: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea.
Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the
distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2
months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-
annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative
humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue
outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature
exceeding 32uC during January–February–March and the number of days with maximal relative humidity exceeding 95%
during January. The best predictive variables were the maximal temperature in December and maximal relative humidity
during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-
out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the
predictive model 79% and 65%, respectively.

Conclusions/Significance:The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last
forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in
outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to
anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue
management in other countries.
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Introduction

Dengue viruses are the most important arthropod-borne viruses
affecting humans. During the past century, the four serotypes
(DENV 1 - DENV 4) have spread to about a hundred countries in
the tropical and subtropical world including Asia, Africa, the
Americas and the Pacific. Each year, an estimated 50 million
people contract dengue fever with at least 500,000 cases of dengue
haemorrhagic fever or dengue shock syndrome leading to 25,000
deaths [1]. The spatial distribution of this emerging infectious

disease largely reflects the distribution of its primary urban
mosquito vector,Aedes aegypti[2]. As no effective vaccine and
specific treatment exist, vector control currently represents the
only resource to mitigate dengue outbreaks.

Epidemic dynamics of dengue, like those of other vector-borne
diseases, are driven by complex interactions between hosts, vectors
and viruses that are influenced by environmental and climatic
factors. Several determinants in dengue fever emergence have
been identified including human population growth, accelerated
urbanization, increased international transport, weakened public
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health infrastructure as well as a lack of effective vector control and
disease surveillance [3–6]. On the other hand, there is growing
interest in the impact of climate change on the emergence or re-
emergence of vector-borne infectious diseases such as dengue [7–
10]. It has been shown that climate-induced variations in modelled
A. aegyptipopulations were strongly correlated to reported
historical dengue cases (1958–1995) at the global scale [11], and
a potential increase in the latitudinal and altitudinal distribution of
A. aegyptiand dengue are expected under global warming [5,12].

In a specific ecosystem, the required conditions for the
occurrence of a dengue outbreak include i) the presence of a
dengue virus, ii) the presence and a sufficient density of competent
vectors, iii) a sufficient number of susceptible humans that is
serotype-specific, and iv) favorable environmental and climatic
conditions for dengue transmission. Despite evidence that climate
can influence dengue like other vector-borne diseases (i.e. vector
population size and distribution, vector-pathogen-host interac-
tions, and pathogen replication [7,10,13–14]), the relationships
between climate,Aedesmosquitoes density and behaviour, human
populations and dengue incidence are not well understood.

Previous studies have shown that temperature influences the
lengths of the mosquito gonotrophic cycle and the extrinsic
incubation period of the virus within the mosquito, the survival
rate of adults, the mosquitoes population size and feeding
behaviours and the speed of virus replication [7,13,15–19]. Water
is necessary for eggs and larva development, mosquito breeding,
and humidity affects adult mortality [16–17,20–22]. Temperatures
and precipitations have been identified as influencing incidence
rates of dengue in several endemic areas in the world (i.e. Thailand
[23–24], Taiwan [25–27], Singapore [28], and Puerto Rico
[24,29]). On a broader scale, it is plausible that El Nin˜o-Southern
Oscillation (ENSO) also influences patterns of dengue transmission
[23–24,30–31]. This coupled ocean-atmosphere phenomena
results in warm waters displacement and changes in sea surface
temperatures (SST) across the Pacific Ocean, and has a strong
influence on regional climates, particularly in the Pacific. ENSO
can induce large temperature, humidity and precipitation changes

for months (see the websites of the International Research Institute
for Climate and Society (IRI, www.iri.org), and the National
Oceanic and Atmospheric Administration (NOAA, www.noaa.
gov) for more details). Importantly, previous studies revealed a
positive correlation between ENSO, as measured by the Southern
Oscillation Index (SOI), and dengue outbreaks in the South Pacific
islands [30–31].

Our study was conducted in New Caledonia where dengue
represents a major public health problem like in many Pacific
Islands Countries and Territories [32]. The first dengue outbreak
in New Caledonia occurred in 1884–1885 [33]. Disease
transmission increased after World War II, and successive waves
of epidemics involving all four serotypes were reported. Since
2000, serotype 1 has been predominant [34] causing more than
6,000 cases during the 2003–2004 epidemics [35] and about one
thousand of cases in 2008. Although the serotype 4 [36] was
involved in a major outbreak in 2009 (8,456 cases), the serotype 1
is still circulating. New Caledonia has had an effective surveillance
system for dengue and access to high quality meteorological data
for many years. Since 2000, regular entomological surveillance is
performed. This provides an opportunity to study the influence of
climate variations on dengue dynamics.

We analyzed the epidemiology of dengue fever in Noumea, the
capital of New Caledonia, from 1971 to 2010 together with local
and remote climate influences. The objectives of this study were i)
to improve our knowledge of the relationships between meteoro-
logical variables, entomological surveillance indices and dengue
fever dynamics at seasonal to inter-annual time scales, ii) to
identify suitable conditions for an epidemic occurrence, and iii) to
develop a predictive model for dengue outbreaks that can be
integrated in an early warning system in New Caledonia.

Methods

Study area
New Caledonia is a French overseas territory located in the

subregion of Melanesia in the southwest Pacific, about 1,200 kilo-
metres east of Australia and 1,500 kilometres northwest of New
Zealand. It lies astride the Tropic of Capricorn, between 19u and
23u south latitude. Its climate is tropical.

This archipelago of 18,575 square kilometres is made up of a
main mountainous island elongated northwest-southeast 400 kilo-
metres in length and 50–70 kilometres wide, the Loyalty Islands
(Mare, Lifou, and Ouvea), and several smaller islands (e.g. Isle of
Pines). The population was estimated in January 2009 to be
245,580 [37]. Approximately half of inhabitants are concentrated
in the southeast region of the main island around Noumea, the
capital.

A. aegyptiis the only mosquito vector of dengue in New
Caledonia. The two others vectors of dengue present in the Pacific
region,A. albopictusandA. polynesiensis, have never been detected in
this archipelago [38–40]. In Noumea, most ofA. aegyptibreeding
sites are outdoors and therefore rainfall dependent.

Data collection
Epidemiological data. All cases of dengue fever and dengue

haemorrhagic fever reported from January 1971 to December
2010 were collected from the Pasteur Institute, the Health
Department of the Direction of Health and Social Affairs of
New Caledonia, and the Communicable Disease Surveillance
Division, Secretariat of the Pacific Community. A clinical case was
defined as sustained fever and at least two of the following criteria:
nausea or vomiting, myalgia or arthralgia, headache or retro-
orbital pain, rash and/or spontaneous bleeding. A laboratory

Author Summary

Dengue fever is a major public health problem in the
tropics and subtropics. Since no vaccine exists, under-
standing and predicting outbreaks remain of crucial
interest. Climate influences the mosquito-vector biology
and the viral transmission cycle. Its impact on dengue
dynamics is of growing interest. We analyzed the
epidemiology of dengue in Noumea (New Caledonia)
from 1971 to 2010 and its relationships with local and
remote climate conditions using an original approach
combining a comparison of epidemic and non epidemic
years, bivariate and multivariate analyses. We found that
the occurrence of outbreaks in Noumea was strongly
influenced by climate during the last forty years. Efficient
models were developed to estimate the yearly risk of
outbreak as a function of two meteorological variables
that were contemporaneous (explicative model) or prior
(predictive model) to the outbreak onset. Local threshold
values of maximal temperature and relative humidity were
identified. Our results provide new insights to understand
the link between climate and dengue outbreaks, and have
a substantial impact on dengue management in New
Caledonia since the health authorities have integrated
these models into their decision making process and
vector control policies. This raises the possibility to provide
similar early warning systems in other countries.

Influence of Climate on Dengue Dynamics
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positive case was defined as a single or paired serum sample
positive in serological assays (hemagglutination inhibition, IgM
detection by indirect immunofluorescence or ELISA), or direct
detection of dengue virus by reverse-transcriptase polymerase
chain reaction (RT-PCR using a pandengue technique), virus
isolation, or NS1 antigen detection (ELISA or rapid
immunochromatographic test). The serotyping of positive
samples using RT-PCR with specific primers for DENV-1, 2, 3,
and 4 was regularly performed at the Pasteur Institute over the
1971–2010 period.

Since 1995, a georeferencing of dengue cases per council has
been performed. To identify the possible origin of dengue
infection, travel history and first day of illness were determined
by the Health Department of the Direction of Health and Social
Affairs of New Caledonia. Imported dengue cases were defined as
laboratory positive dengue cases with travel history to endemic
countries within 14 days before the date of disease onset.

Incidence rates of dengue were calculated each year in New
Caledonia (number of dengue cases per 10,000 inhabitants per
year) using population data based on linear extrapolations of local
census reports (1969, 1976, 1983, 1989, 1996, 2004, 2009 [37]). In
Noumea, annual dengue incidence rates were computed for the
1995–2010 period from observed data. As georeferencing was not
available before 1995, and as there is a strong linear relationship
between incidence rates observed in Noumea and those observed
in the entire territory over the 1995–2010 period, we used a linear
fit to estimate dengue incidence rates in Noumea for the 1971–
1994 period (Figure 1).

Two methods were used to separate the years during which
dengue outbreaks occurred (denoted epidemic years) or did not
occur (denoted non epidemic years) on the basis of annual
incidence rates of dengue cases computed from January to
December in Noumea. The first method denoted ‘‘tercile method’’
divided the years into three groups: epidemic years when the

dengue incidence rate belonged to the upper tercile, non epidemic
years when the dengue incidence rate belonged to the lower
tercile, and unclassifiable years when the dengue incidence rate
belonged to the central tercile. The second method denoted
‘‘median method’’, divided years into two groups: epidemic years
when the annual incidence rate was greater than the median of the
annual dengue incidence rates over the 1971–2010 period, and
non epidemic years when the annual incidence rate was lower
than the median. The first method allowed the problem of
epidemic threshold to be minimised and to ensure a clear
separation between epidemic and non epidemic years but with a
30% data loss while the second one allowed models to be built
using the whole set of data.

Meteorological data. Two types of meteorological data were
used: meteorological data measured at the reference weather
station of Météo-France in central Noumea, and ENSO indices.

Data collected at the Noumea weather station for the period
January 1971 to December 2010, the time period of the available
dengue data, were analyzed. This station provides observations
that are representative of the local climate around Noumea which
contributes the most dengue cases in New Caledonia (Figure 1),
and where dengue outbreaks usually begin. From these daily data,
monthly, quarterly and annual means were calculated as well as
monthly and quarterly number of days with a daily parameter
greater than a given threshold. Quarterly data were generated
with a sliding window each month. Monthly and quarterly
parameters were named ‘‘parameter_month’’, and ‘‘parameter_
first letter of each month of the quarter’’, respectively. The
meteorological parameters of interest were daily minimum, mean,
and maximum temperatures (min Temp, mean Temp, max
Temp), daily minimum, mean, and maximum relative humidity
(min RH, mean RH, max RH), and cumulative precipitations
(Precip). Other parameters that may influence the productivity of
larval breeding sites and mosquitoes populations were also

Figure 1. Epidemiology of dengue fever and evolution of annual mean temperature in Noumea-New Caledonia (1971–2010). The
predominant circulating serotype (DENV-1, DENV-2, DENV-3 or DENV-4) is indicated in black characters. When other serotypes were detected, they
are indicated in little grey characters. Annual dengue incidence rates observed in Noumea over the 1995–2010 period are highly correlated with
dengue incidence rates observed in New Caledonia (Spearman coefficientrho= 0.99,p-value = 1*102 14). Annual dengue incidence rates in Noumea
(1971–1994) were estimated (green dotted line with circles) on the basis of the relationship between incidence rates observed in New Caledonia (grey
line) and those observed in Noumea (blue dotted line with crosses) using a linear model. During the 1971–2010 period, dengue incidence rates and
annual mean temperatures (from January to December) were significantly correlated in Noumea (Spearman’s coefficientrho= 0.426,p-value = 0.007).
An increasing trend of dengue outbreaks amplitude and annual mean temperatures were observed during this 40-year study period.
doi:10.1371/journal.pntd.0001470.g001
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considered such as mean daily wind force at 10 meters (WF),
potential evapotranspiration by Penman-Monteith (ETP) and
potential hydric balance sheets (HB = Precip-ETP) reflecting water
resources. Numbers of days with a parameter over a thresholdx
were named NOD_parameter_thresholdx. Several temperature
thresholds were analyzed for min Temp, mean Temp and max
Temp, ranging from 21 to 25uC, 24 to 28uC, and 25 to 35uC,
respectively. Different thresholds were also analyzed for min RH
(50%, 60%, 70%), mean RH (70%, 80%) and max RH (80%,
90%, 95%), for Precip (0.1, 1, 2, 3, 4, 5, 10, 25 mm/day), ETP (4,
5, 6, 7), HB (2 5, 0, 5, 10 mm), and WF (3, 4, 5, 6, 7, 8 m/s).

Several ENSO indices were integrated in the analysis: Nin˜o 3,
Niño 3.4, Niño 4, Southern Oscillation Index (SOI), and
Multivariate ENSO Index (MEI). Time series of these monthly
ENSO indices were obtained from the NOAA Climate Prediction
Center [41].

Altogether approximately 4000 meteorological data were
generated for the 1971–2010 period (monthly, quarterly, and
annual values). They were aggregated in seven families: temper-
ature, relative humidity, precipitations, wind force, potential
evapotranspiration, hydric balance sheet and ENSO.

Entomological surveillance data. An entomological
surveillance network was established since 1997 at the initiative
of the Pasteur Institute, the Health Department of the Direction of
Health and Social Affairs of New Caledonia, and councils of
Noumea and its neighbouring towns.

Since March 2000, about one hundred randomly selected
houses in each of three districts of Noumea (East, West, and South)
in a homogeneous and representative panel of 6,608 houses were
visited each month to determine the number and type of larval
developmental places, and the number ofA. aegyptilarvae, pupae
and female adults. The following surveillance indices were
computed monthly by the Laboratory of Medical Entomology of
the Pasteur Institute:

i) House Index (HI) = number of houses with at least one larval
breeding site positive forA. aegyptix 100)/number of
inspected premises.

ii) Breteau Index (BI) = number of larval breeding sites positive
for A. aegypti/100 inspected premises.

iii) Adult Productivity Index (API) = number ofA. aegyptipupae
and stage 4 larvae/number of inspected premises.

Statistical analysis and modelling
Bivariate and multivariate analyses were conducted using the R

software package (R development Core Team version 2.9.1 [42]).
Time series analysis. Time series analysis of monthly,

quarterly and annual data of dengue incidence rates, entomo-
logical indices and climatic variables were studied. Their temporal
evolution was studied at inter-annual and seasonal scales. Global
trends were computed for epidemiological and meteoro-
logical time series using linear regression (trend line).

Bivariate analysis. The relationships between epidemio-
logical and meteorological data, entomological and meteorological
data, and entomological and epidemiological data were studied in
Noumea at different time-scales using a Spearman’s method with
p-values below 0.05 indicating statistical significance. At the
annual scale, time series of annual dengue incidence rates and
annual means of meteorological variables were analyzed from
1971 to 2010. At the monthly scale, time-lagged correlation
analyses (lag being equal to 0, 1, 2 and 3 months) were performed
on time series of monthly means of meteorological variables,

entomological indices and dengue incidence rates from March
2000 to December 2009.

Comparative analysis of epidemic years and non
epidemic years. To minimize the influence of changes in
disease surveillance and diagnosis over the 1971–2010 period, we
decided to use series of epidemic years (0 for non epidemic years, 1
for epidemic years, according to the tercile method described
above) rather than dengue incidence rates.

Epidemic and non epidemic years were compared to identify
suitable seasonal meteorological patterns for dengue outbreak
occurrence. Monthly and quarterly meteorological data observed
in Noumea during epidemic and non epidemic years were
compared from August (yeary-1) to July (yeary) and means and
95% confidence interval (IC95%) were calculated. Categorical
variables were compared using a two-sidedt-test and correlation
analyses were performed using a Spearman’s rank correlation test.
The p-values below 0.05 were considered to indicate statistical
significance.

Multivariate modelling of dengue outbreak risk. The
final objective of this study was to design two types of model to
predict the risk of dengue outbreak in Noumea. The first model
named hereafter ‘‘explicative model’’ was expected to identify
suitable conditions for an epidemic occurrence using data from
September (yeary-1) to April (yeary), i.e. four months before and
after the outbreak onset (in January). The second model named
hereafter ‘‘predictive model’’ was intended to help the health
authorities of New Caledonia to anticipate the risk of a dengue
outbreak. Only meteorological variables available prior to the
outbreak onset, i.e. from September (yeary-1) to December (year
y-1) were used in this framework. On the basis of the bivariate
analysis results, we decided to focus on the monthly and quarterly
meteorological data. Poorly correlated variables such as wind force
were excluded from the pool of potential input variables.

The type of classification method used for both explicative and
predictive models was the Support Vector Machines (SVM) which
is a supervised pattern recognition technique recently introduced
in Statistical Learning Theory [43]. The main advantage of this
method is that SVM are based on the principle of Structural Risk
Minimization rather than on the error rates as do many other
methods. SVM focus on generalizing well rather than correctly
classifying the training dataset (i.e. minimizing the generalization
error rather than the training error). The concept of SVM is to
design a function which correctly classifies all of the objects of the
training dataset. In the linearly separable case, SVM allow the
identification of an hyperplane which is defined by the following
equation:w.x+b= 0 wherew is a vector normal to the hyperplane
and b is the bias. In the non linear case, the separating surface is
found by mapping the input points onto a higher dimensional
space where the training dataset become linearly separable and by
using an appropriate kernel (here a Gaussian kernel) in the
optimization process [43].

In our study, the SVM took as input a set of meteorological data
and predicted, for each given input, which one of the two possible
classes the input is a member (epidemic year or non epidemic
year). All the available data (40 years) were used for training the
model and the median method, introduced above, was applied to
separate the years. The results were then supplied as probability
estimates of dengue outbreak occurrence using the method
developed by Wu et al. [44].

The selection of the most relevant model was achieved using a
forward stepwise selection method based on the corrected Akaike
Information Criterion (AICc) [45–46]. This method not only
rewards goodness of fit, but also includes a penalty that
discourages overfitting.
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The robustness of the explicative and predictive models was
estimated using a leave-one-out cross validation method: a single
observation (yeary) from the original sample (1971–2010 years)
was retained as a validation data for testing the model, and the
remaining observations were used as training data. This process
was repeated 40 times such that each yearly observation in the
sample was used once as the validation data. The results from the
folds then were averaged to produce a single estimation of dengue
outbreak risk in Noumea each year. The performance of the
models was estimated with the Receiver Operator Characteristics -
Area Under the Curve (ROC-AUC). The sensitivity, specificity,
positive predictive value and negative predictive value were
calculated for each model.

Results

Time series analysis
Dengue data. During the 1971–2010 period, successive

waves of dengue outbreaks involving the four serotypes were
recorded in New Caledonia with an increasing magnitude,
particularly in Noumea where dengue outbreaks usually begin
(Figure 1). The annual dengue incidence rates revealed a global
upward linear trend (mean increase of 65.4 dengue cases per
10,000 inhabitants over the studied period in Noumea). The most
severe outbreaks were caused by DENV-1 and more recently
DENV-4 in 2003 (5673 reported cases, 733 hospitalizations, 19
deaths), 2008 (1170 reported cases,, 100 hospitalizations, two
deaths) and 2009 (8456 reported cases, 470 hospitalizations, three
deaths). On four occasions, dengue outbreaks were repeated in two
successive years: in 1976–1977 (DENV-1), 1995–1996 (DENV-3),
2003–2004 (DENV-1), and 2008–2009 (DENV-1 and DENV-4).

The analysis of monthly reported and laboratory positive cases
revealed a strong seasonal distribution of dengue cases during
epidemic years (Figure 2). The majority of outbreaks displayed a
similar seasonal evolution: beginning in January, an epidemic peak
between March and May, and ending in July. The temporal
distribution of dengue cases during non epidemic years was
different, with an occurrence of cases every month. Imported
dengue cases from different locations in Asia and the Pacific
(particularly Indonesia, the Philippines and French Polynesia) were
recorded once or several times a year without a clear seasonal
pattern.

Entomological data. Entomological surveillance data were
available from March 2000 to December 2009 in Noumea and a
decreasing trend of all entomological indices was observed
(supporting Figure S1). Indices reflecting the distribution and the
abundance of larval developmental places (HI and BI), and the
vector density (API) were strongly correlated (HI versus BI:
rho= 0.98, p-value, 0.001; API versus HI: rho= 0.82, p-
value, 0.001; API versus BI:rho= 0.84, p-value, 0.001).

Monthly means of HI, BI and API revealed a strong seasonal
pattern with highest values between January and July (Figure 3).

Meteorological data. Over the 1971–2010 period, time
series of annual means of daily mean Temp, Precip, and mean RH
were characterized by a strong inter-annual variability. A number
of ENSO events were observed including the strongest El Nin˜o
events of the century (i.e. 1982–1983 and 1997–1998). A global
upward linear trend of annual mean Temp (mean increase of
0.75uC over the studied period, Figure 1) was observed in contrast
with the Precip and mean RH time series that did not display any
trend.

Rainfall is highly seasonal in New Caledonia. There are two
main seasons: a warm and wet season (November–April), and a
cooler and drier season (May–October). From November to April,

max Temp in Noumea commonly reaches 30uC (on average
during 42 days) and 6-month cumulative Precip 630 mm, whereas
from May to October, max Temp rarely reaches 30uC (on average
during only 2 days) and 6-month cumulative Precip are around
430 mm. The peak of mean Temp (February) precedes the peak of
Precip and mean RH (March) with a lag of one month.

Bivariate analysis
During the 1971–2010 period, a significant correlation was

found between dengue incidence rates and mean annual mean
Temp in Noumea (Spearman’s coefficientrho= 0.426, p-val-
ue = 0.007, Figure 1) but there was no significant correlation with
annual mean RH and Precip. Similar results were obtained with
conserved trends and detrended data. Anomalies of annual means
of mean Temp, Precip and mean RH were significantly correlated
with ENSO, as measured by Nin˜o 3.4 (rho= 2 0.365, p-
value = 0.029; rho= 2 0.481, p-value = 0.003; rho 2 0.486, p-
value = 0.003, respectively). During El Nin˜o (positive value of
Niño 3.4), the weather was cooler and drier. During La Nin˜a
(negative value of Nin˜o 3.4), the weather was warmer and wetter.
However, no direct correlation was found between ENSO and
dengue incidence rates at the inter-annual scale (rho= 2 0.106,p-
value = 0.539). Dengue outbreaks occurred during either El Nin˜o,
La Niña or neutral phases of ENSO.

During the 2000–2009 period, dengue incidence rates,
meteorological and entomological data were analyzed in Noumea
at a monthly scale. A strong seasonal distribution of HI, BI and
API was observed (Figure 3), and significant correlations were
found between monthly entomological surveillance indices and
climate variables (data not shown). Although the highest dengue
incidence rates and the highest values of HI, BI and API were
observed during the same period of the year (from January to July),
no significant time-lagged correlation has been found between
monthly entomological indices and dengue incidence rates
reported in Noumea over the 2000–2009 period (supporting
Figure S1). We did not find relevant entomological patterns during
dengue outbreaks. Accordingly, entomological surveillance indices
were not used for the modelling of dengue outbreak risk.

Comparative analysis of epidemic and non epidemic
years

Based on the tercile method, there were 13 epidemic years
(dengue incidence rate in the upper tercile, i.e.. 19.48 cases/
10 000 inhabitants) and 13 non epidemic years (dengue incidence
rate in the lower tercile, i.e., 4.13 cases/10 000 inhabitants). A
detailed analysis was performed based on monthly and quarterly
meteorological data measured from September (yeary-1) to April
(yeary), i.e. four months before and after the outbreak onset.

Temperatures (min Temp, mean Temp and max Temp) were
higher during epidemic years than during non epidemic years.
The peak of max Temp, observed usually in February, preceded
the epidemic peak of dengue with a lag of 1–2 months (Figure 4a).
Analysis of daily data allowed identifying important temperature
thresholds. It revealed that the number of days with max Temp
exceeding 32uC, mean Temp exceeding 27uC, and min Temp
exceeding 22uC were significantly higher during epidemic years
than during non epidemic years. The most important and
significant differences were observed during the first quarter of
the year, principally in February for max Temp (p-value, 0.01
using at-test, Figure 4b).

By contrast, the relationships between Precip, mean RH and
dengue dynamics were not clear, as shown in supporting Figure
S2. Highest Precip and mean RH were observed in February–
March–April during the epidemic phase of dengue. Using at-test,
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Precip and mean RH were significantly lower in February during
epidemic years than during non epidemic years (p-value, 0.01
and = 0.04, respectively). Inversely, the ETP was significantly
higher in February (p-value = 0.02). WF, HB, ENSO indices and
entomological surveillance indices were not significantly different
between epidemic and non epidemic years.

Meteorological variables showing strongest correlations with the
epidemic years series, as defined in the Methods section, are
presented for each family of variables in Table 1. Significant
correlations were identified with several local meteorological
variables (particularly Temp, Precip, RH, and ETP) but not with
ENSO indices. No or poor correlation was found with WF and
HB. In accordance with Figure 4 and supporting Figure S2, Temp
were positively correlated with dengue outbreaks in Noumea,
whereas Precip and RH measured in February were negatively
correlated with dengue outbreaks. A positive correlation was found
between the ETP measured in February and the occurrence of
dengue outbreaks.

Multivariate modelling of dengue outbreak risk
First, in order to produce an explicative model of dengue

outbreak, we selected meteorological variables observed within the
period of dengue outbreak onset, i.e. from January to April
(Figure 2). The best SVM model based on the minimum AICc

(2 79.21) was obtained using two meteorological variables, i.e. the
number of days with maximal temperature exceeding 32uC during

the first quarter of the year (NOD_max Temp_32_JFM), and the
number of days with maximal relative humidity exceeding 95%
during January (NOD_max RH_95_January). The addition of a
third meteorological variable did not improve the performance of
the model. Results obtained in leave-one-out cross validation
(Figure 5) were close to those obtained with the complete dataset
(Figure S3) and were characterized by a high ROC-AUC value
reaching 0.80 and 0.85, respectively. As indicated by the ROC
curves, most of epidemic years were predicted correctly with high
probability and few false alarms. Importantly, with bivariate
analysis, NOD_max Temp_32_JFM was positively correlated with
the occurrence of dengue outbreak (rho= 0.57, p-value = 0.002)
whereas NOD_max RH_95_January did not appear to be a
discriminatory meteorological variable (rho= 2 0.11, p-val-
ue = 0.58). With multivariate analysis, these two variables were
highly informative and discriminatory. Scatter plots of epidemic
and non epidemic years as a function of these two variables
allowed the identification of three distinct groups (Figure 6):
group A including years characterized by low NOD_max
Temp_32_JFM (, 12 days) and low NOD_max RH_95_January
(, 12 days), group B including years characterized by high
NOD_max Temp_32_JFM (. 12 days) and low NOD_max
RH_95_January, and group C including years characterized by
low NOD_max Temp_32_JFM and high NOD_max
RH_95_January (. 12 days). According to the tercile method of
years classification, all non epidemic years belonged to group A

Figure 3. Seasonal evolution of monthly entomological surveillance indices and meteorological data in Noumea (August 2000–July
2009). HI, BI and API evolution display a strong seasonal cycle, with highest values between January and July. Entomological surveillance indices
were significantly correlated with meteorological data at the seasonal scale. The peak of mean Temp preceded the peak of Precip, mean RH and API
with a lag of one month, and the peak of HI and BI with a lag of two months.
doi:10.1371/journal.pntd.0001470.g003

Figure 2. Monthly distribution of laboratory positive dengue cases during epidemic and non epidemic years. A strong seasonality in
the dengue cases distribution was observed during epidemic years with outbreaks occurring usually between January and July. By contrast, dengue
cases occurred almost every month without a clear seasonal pattern during non epidemic years.
doi:10.1371/journal.pntd.0001470.g002
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whereas all epidemic years, except 1973 and 2003, belonged to
either group B or group C. Similar results were obtained using the
median method ensuring the inclusion of all years, preferable for
the development of SVM models. Only four years (1978, 1979,
1985, and 2002) belonging to the middle tercile (dengue incidence
rate ranging from 4.13 to 19.48 cases/10 000 inhabitants/year)

were incorrectly classified using the median method. In 2002,
although favorable climatic conditions for dengue outbreak were
observed, the incidence rate (5.24 dengue cases/10 000 inhabi-
tants/year) was close to the median (7.65 dengue cases/10 000
inhabitants/year). In 1978, 1979 and 1985, the low values of
NOD_max Temp_32_JFM and NOD_max RH_95_January
were not favorable for dengue outbreak. However, incidence rates
(7.74, 10.63, and 11.24 dengue cases/10 000 inhabitants/year,
respectively) were close to the median. Two years (1973 and 2003)
belonging to epidemic years using either a tercile or a median
method of classification were characterized by low NOD_max
RH_95_January and intermediate NOD_max Temp_32_JFM, as
members of group A (non epidemic years). However, dengue
outbreaks occurred with high incidence rates (23.64 and 213.58
dengue cases/10 000 inhabitants/year in 1973 and 2003,
respectively). These mismatches indicate that i) the model fails
for years that are difficult to classify as their dengue incidence rates
were close to the median and in the middle tercile and, ii)
NOD_max Temp_32_JFM and NOD_max RH_95_January
alone cannot account for all dengue outbreaks (Figure 6). It is
likely that other climate events and other factors influencing
dengue dynamics contribute to the epidemic spread of dengue
viruses during these peculiar years. We were thus able to build an
efficient explicative model of dengue epidemics based on
meteorological variables contemporaneous to the outbreak.

Another challenge was to construct a predictive model for
dengue epidemics using variables available prior to the outbreak
onset, i.e. from September (yeary-1) to December (yeary-1).
Accurate predictive skill (AICc =2 66.64) was achieved with the
SVM model built from the value of the two following variables: the
quarterly mean of maximal relative humidity during October–
November–December (max RH_OND), and the monthly mean of
maximal temperature in December (max Temp_December) of the
yeary-1 with a ROC-AUC value of 0.83 (supporting Figure S4).
Probabilities obtained in leave-one-out cross validation (Figure 7)
and the corresponding ROC-AUC value reaching 0.69 illustrate
the robustness of this predictive model. Importantly, max
RH_OND and max Temp_December were not significantly
correlated with the risk of dengue outbreak with bivariate analysis
(rho= 0.24, p-value = 0.14; andrho= 0.25, p-value = 0.14, respec-
tively).

Scatter plots of epidemic years and non epidemic years built
from the combination of meteorological variables used for the
SVM explicative model (Figure 8) and for the SVM predictive
model development (Figure 9) show that dengue outbreaks
occurred in distinct climatic conditions in Noumea. With the
SVM predictive model, as noted with the SVM explicative model,
epidemic years belonged to two different groups of data according
to the value of max RH_OND and max Temp_December (see the
two red kernels corresponding to high risk of dengue outbreak in
Figure 9). Dengue outbreaks occurred following either years
characterized by high max Temp_December and relatively low
max RH_OND, or years characterized by high max RH_OND_
December, and max Temp_December. To note, the high value of
max Temp_December (31.2uC) and the relatively low value of
max RH_OND (86.8%) measured in 2010 indicate a high risk
(74%) of dengue outbreak for 2011.

Figure 4. Relationship between maximal temperatures and dengue outbreaks in Noumea. Averages and 95% confidence intervals
(IC95%) of max Temp (Figure 4a) and NOD_max Temp_32 (Figure 4b) calculated monthly during epidemic and non epidemic years were compared
from August (yeary-1) to July (yeary). The peak of max Temp preceded the epidemic peak of dengue with a lag of 1–2 months. The number of days
with max Temp exceeding 32uC during the first quarter of the year was significantly higher during epidemic years than during non epidemic years,
especially in February (NOD_max Temp_32_February = 7.25 versus 2 days, respectively).
doi:10.1371/journal.pntd.0001470.g004

Table 1. Correlations between meteorological variables and
dengue outbreaks in Noumea.

Spearman’s rank correlation
test

rho coefficient p-value

Temperature ( 6C)

NOD_min Temp_22_JFM 0.58 , 0.01

NOD_mean Temp_27_NDJ 0.59 , 0.01

NOD_max Temp_32_JFM 0.51 , 0.01

Relative humidity (%)

NOD_min RH_70_February 2 0.47 0.01

NOD_max RH_95_February 2 0.47 0.01

NOD_max RH_80_SON 0.47 0.02

Precipitations (mm)

Precip_February 2 0.57 , 0.01

NOD_Precip_0.1_December 2 0.43 0.03

NOD_Precip_10_February 2 0.41 0.04

Potential evapotranspiration (mm)

ETP_February 0.44 0.02

NOD_ETP_4_February 0.50 0.01

NOD_ETP_6_FMA 0.47 0.01

Hydric balance sheet (mm)

NOD_HB_10_February 2 0.45 0.02

NOD_HB_0.5_FMA 2 0.37 0.06

NOD_HB_5_ DJF 2 0.32 0.11

Wind Force (m/s)

NOD_WF_3_NDJ 0.41 0.04

NOD_WF_7_SON 0.37 0.07

WF_September 0.23 0.26

ENSO

NINO.3.4_November 0.20 0.33

NINO.3.4_ASO 0.19 0.34

NINO.4_November 0.18 0.37

Monthly and quarterly meteorological data measured from September (yeary-
1) to April (yeary), i.e. four months before or after the outbreak onset, were
analyzed from 1971 to 2010 in Noumea. For each family of meteorological
variables, the three variables most correlated with the occurrence of dengue
outbreaks are presented,p-value, 0.05 indicating statistical significance.
Monthly and quarterly parameters were named ‘‘parameter_month’’, and
‘‘parameter_first letter of each month of the quarter’’, respectively. Number of
days with a parameter over a thresholdx were named
NOD_parameter_thresholdx.
doi:10.1371/journal.pntd.0001470.t001
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Figure 5. SVM explicative model of dengue outbreaks in Noumea (leave-one-out cross validation). The model estimates the probability
of dengue outbreak occurrence (red bars) each year according to the number of days with maximal temperature exceeding 32uC during the first
quarter of the year (NOD_max Temp_32_JFM), and the number of days with maximal relative humidity exceeding 95% during January (NOD_max
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A comparison of the results obtained with the explicative model
and the predictive model was performed together with a detailed
analysis of the relationships between meteorological variables used
to build the explicative model (NOD_max Temp_32_JFM and
NOD_max RH_95_January) and those used to build the
predictive model (max RH_OND and max Temp_December).
As shown in Figure S5, strong relationships exist between the
values of max Temp and max RH measured at the end of the year
y-1, and those measured at the beginning of the yeary. Low max
RH_OND and max Temp_December (yeary-1) were predictive
of low NOD_max Temp_32_JFM and NOD_max RH_95_Jan-
uary (years y, group A). High max RH_OND and max
Temp_December (yeary-1) were predictive of either high
NOD_max Temp_32_JFM and low NOD_max RH_95_January
(yearsy, group B), or low NOD_max Temp_32_JFM and high

NOD_max RH_95_January (yearsy, group C). Results obtained
with the predictive model were highly consistent with those
obtained with the explicative model with similar probabilities of
dengue outbreak risk obtained for 30 of the 40 studied years.
Failures of the predictive model can be explained by a lack of
correlation between these meteorological variables on a few
occasions (e.g. 1982, 1983, 1995). For example, although the
predictive model estimated a risk of dengue outbreak close to 5%
in 1995, the explicative model estimated a risk over 90%, and a
major outbreak occurred. The value of max RH_OND and max
Temp_December measured in 1994 (87% and 27.6uC, respec-
tively) were relatively low and therefore not predictive of outbreak
risk. However, climatic conditions were favorable for a dengue
outbreak occurrence (NOD_max Temp_32_JFM = 20 days,
NOD_max RH_95_January = 0 day, group B). This suggests that

RH_95_January). Results obtained in leave-one-out cross validation are presented in Figure 5a. The black line indicates the annual dengue incidence
rate, and black diamonds indicate epidemic years according to the median method. The ROC curve (Figure 5b) indicates the rates of true and false
positives for different detection thresholds. For example, for a probability of dengue outbreak above 65% (0.65), 15 of 20 epidemic years are
predicted correctly (true positive rate = 75%) with only one false alarm (false positive rate = 5%). The sensitivity of the model for this threshold is 75%
(15 epidemic years predicted correctly/20 epidemic years), the specificity 95% (19 non epidemic years predicted correctly/20 non epidemic years),the
positive predictive value 94% (15 epidemic years predicted correctly/16 epidemic years predicted by the model), and the negative predictive value
79% (19 non epidemic years predicted correctly/24 non epidemic years predicted by the model).
doi:10.1371/journal.pntd.0001470.g005

Figure 6. Scatter plots of epidemic and non epidemic years with regards to NOD_max Temp_32_JFM and NOD_max
RH_95_January. Each year, the number of days with maximal temperature exceeding 32uC during January–February–March (NOD_max
Temp_32_JFM) and the number of days with maximal relative humidity exceeding 95% during January (NOD_max RH_95_January) were calculated.
Two methods denoted ‘‘tercile method’’ and ‘‘median method’’ were used to separate the years on the basis of annual dengue incidence rates in
Noumea (see Methods). On the left panel, epidemic years (dengue incidence rate in the upper tercile, i.e.. 19.48 cases/10,000 inhabitants/year) and
non epidemic years (dengue incidence rate in the lower tercile, i.e., 4.13 cases/10,000 inhabitants/year) are presented. The distribution of crosses
(epidemic years) and circles (non epidemic years) permits the identification of three groups (A, B, C). All non epidemic years belonged to group A
whereas all epidemic years, except 1973 and 2003, belonged to either group B or group C suggesting that dengue outbreaks can occur in distinct
climatic conditions. On the right panel, epidemic years (dengue incidence rate greater than the median, i.e. 7.65 cases/10,000 inhabitants/year) and
non epidemic years (dengue incidence rate lower than the median) are presented with the advantage of a whole set of data being usable for
modelling. Years that were not considered with the tercile method (dengue incidence rate in the middle tercile) are coloured in red. Further epidemic
(red crosses) and non epidemic years (red circles) are considered with the median method, and similar groups (A, B, C) were identified. With the
median method, three epidemic years (1978, 1979 and 1985) and one non epidemic year (2002) were incorrectly classified. These four years were
characterized by annual dengue incidence rates closed to the median.
doi:10.1371/journal.pntd.0001470.g006
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Figure 7. SVM predictive model of dengue outbreaks in Noumea (leave-one-out cross validation). The model estimates the probability
of dengue outbreak occurrence (red bars) each yeary according to the quarterly mean of maximal relative humidity during October–November–
December (max RH_OND), and the monthly mean of maximal temperature in December (max Temp_December) yeary-1. Results obtained in leave-
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other climate variables or meteorological processes may impact on
the local value of NOD_max Temp_32_JFM and NOD_max
RH_95_January.

Discussion
The influence of climate on dengue dynamics in Noumea, the

capital of New Caledonia, over the 1971–2010 period has been

analyzed at different time scales using high quality and high
resolution meteorological observation data, along with epidemio-
logical and entomological surveillance data. During epidemic
years, dengue outbreaks peaked around March–April at the end of
summer season. The epidemic peak lagged the warmest
temperature by 1–2 months and was in phase with maximum
precipitations and maximum relative humidity. The seasonal

one-out cross validation are presented in Figure 7a. The black line indicates the annual dengue incidence rate, and black diamonds indicate epidemic
years according to the median method. The ROC curve (Figure 7b) indicates the rates of true and false positives for different detection thresholds. For
example, for a probability of dengue outbreak above 65% (0.65), 11 of 20 epidemic years were predicted correctly (true positive rate = 55%) with
three false alarms (false positive rate = 15%). The sensitivity of this model for this threshold is 55% (11 epidemic years predicted correctly/10 epidemic
years), the specificity 85% (17 non epidemic years predicted correctly/20 non epidemic years), the positive predictive value 79% (11 epidemic years
predicted correctly/14 epidemic years predicted by the model), and the negative predictive value 65% (17 non epidemic years predicted correctly/26
non epidemic years predicted by the model).
doi:10.1371/journal.pntd.0001470.g007

Figure 8. SVM explicative model probability contours superimposed with NOD_max Temp_32_JFM and NOD_max RH_95_January
during epidemic/non epidemic years. Line-curves indicate the estimated probability of dengue outbreak occurrence given by the model. Blue
colour indicates low risk, yellow colour indicates intermediate risk, and red colour indicates high risk of dengue outbreak. Meteorological parameters
used to build the SVM models are shown for epidemic years (crosses) and non epidemic years (circles). The number of days with maximal
temperature exceeding 32uC during January–February–March (NOD_max Temp_32_JFM) and the number of days with maximal relative humidity
. 95% during January (NOD_max RH_95_January) of the yeary were used to build the SVM explicative model.
doi:10.1371/journal.pntd.0001470.g008
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evolution of entomological indices (e.g, Breteau, House and Adult
productivity indices) matched the seasonality of dengue outbreaks.

No relationship was found between the inter-annual variations
of dengue incidence rates and those of the entomological data. On
the other hand, a number of meteorological indices developed
from summertime temperature, precipitation or relative humidity
showed a significant correlation with dengue occurrence.

New explicative and operational predictive models of dengue
outbreak were developed. We used a multivariate SVM model to
identify the best set of meteorological variables explaining dengue
epidemics. We found that a non linear combination of two
meteorological variables strongly outperforms a model based on a
single variable or a linear approach, as commonly employed in the
literature. We found the best explicative variables to be the
number of days with max Temp exceeding 32uC during January–
February–March (NOD_max Temp_32_JFM) and the number of
days with max RH exceeding 95% during January (NOD_max
RH_95_January). When the model gives a probability of dengue

outbreak above 65%, these two variables explain 94% of the
epidemic years and 79% of the non epidemic years (Figure 5).
Most dengue outbreaks occurred within two kinds of distinct
climatic conditions: high NOD_max Temp_32_JFM and low
NOD_max RH_95_January, or low NOD_max Temp_32_JFM
and high NOD_max RH_95_January. We were also able to build
another SVM model based on two variables to predict dengue
outbreaks in advance: the maximal temperature in December
(max Temp_December) and maximal relative humidity during
October–November–December (max RH_OND) of the year prior
to the epidemics. For a probability of dengue outbreak above 65%,
this model can predict 79% of the epidemic years and 65% of the
non epidemic years (Figure 7).

Influence of local meteorological conditions on dengue
dynamics

Overall, the high performance of the climate-based models of
dengue outbreak risk developed in our study suggest that dengue

Figure 9. SVM predictive model probability contours superimposed with max RH_OND and max Temp_December during epidemic/
non epidemic years. Similarly to the SVM explicative model (Figure 8), the quarterly mean of maximal relative humidity during October–
November–December (max RH_OND), and the monthly mean maximal temperature in December (max Temp_December) of the yeary-1 were used
to build the SVM predictive model.
doi:10.1371/journal.pntd.0001470.g009
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dynamics were essentially driven by climate during this 1971–2010
period in Noumea. The explicative model provides important and
new information. We have shown that maximal values of
temperature and relative humidity were determinant in dengue
outbreaks occurrence and precise thresholds of their value were
identified. Importantly, we found that the most relevant
meteorological variables explaining dengue outbreaks were built
using the number of days for which the variable was greater than a
threshold value introducing the importance of the persistence of
suitable climatic conditions. Our findings are compatible with the
mosquito biology and viral transmission cycle.

The length ofAedesgonotrophic cycle is shorter at temperatures
above 32uC and feeding frequency is more than twofold at 32uC as
compared to 24uC; pupae development period reduced from four
days at 22uC to less than one day at 32–34uC [16–17,47].
Additionally, the experimental infection ofA. aegyptiwith DENV-2
viruses showed that the extrinsic incubation period shortens from
12 days at 30uC to seven days at 32–35uC leading to an increasing
risk of viral transmission from an infected mosquito to a
susceptible host [15]. The influence of temperature on the rate
of virus replication inside mosquitoes was also evidenced in the
study of Wattset al. Temperatures may also influence the vector
size and its biting rate [19,21]. Consequently, it is likely that the
increased level of viral transmission characterizing dengue
outbreaks in Noumea at temperatures exceeding 32uC may be a
consequence of shortening of theA. aegyptigonotrophic cycle and
extrinsic incubation period, and of increased vector feeding
frequency.

Mortality rate of larvae, pupae and adult mosquitoes as a
function of temperature between 10 and 40uC can be represented
by a wide-base ‘U’ graphical shape with lower mortality rate at
temperature ranging from 15 to 30uC [16–20,22]. Hence,A.
aegyptimortality rate may be relatively constant at temperatures
observed usually in Noumea, and the increasing mortality rate
expected above 32uC is not likely to be an important limiting
parameter in the spread of dengue viruses in this specific
ecosystem.

Larval breeding places are mostly outdoors in Noumea and
mosquito abundance increases during the rainy and humid season.
Moreover, relative humidity may be determinant inA. aegyptiegg
development and adult population size that may itself be
correlated with vectorial capacity [48]. High humidity shortens
incubation and blood-feeding intervals; it favours adult mosquito
longevity [20] and thus dengue transmission. This may explain
why a sustained high RH during January is associated with a
higher risk of dengue outbreak in Noumea.

Influence of remote climate conditions on dengue
dynamics

On a broader scale, a growing number of studies have shown
that ENSO may be associated with changes in the risk of mosquito
borne diseases such as dengue [23–24]. By contrast, Haleset al.
[31] further analyzed the relationships between the annual
number of dengue cases in New Caledonia, ENSO, temperature
and rainfall using global atmospheric reanalyses climate based
data, and they did not find any significant correlation between
SOI and dengue (Pearson’s coefficient = 0.20). In accordance with
this study, and with the advantage of observational and long term
data, we found significant inter-annual correlations between
ENSO and our local climate but not between ENSO and dengue
(Table 1). Moreover, the selection process of multivariate models
did not select any ENSO index neither in explicative mode nor in
predictive mode. These findings suggest that, in New Caledonia,
large-scale climate indices such as ENSO cannot account for the

complexity of the local meteorological inter-annual situations.
However, at a larger scale, Haleset al.showed that the number of
dengue outbreaks in the South Pacific islands (aggregated data,
1970–1995) were positively correlated with the SOI [30],
suggesting that La Nin˜a may favour dengue outbreaks in this
region of the world. The impact of ENSO on local weather in the
South Pacific may strongly vary from one place to another. New
Caledonia, located around 20usouth latitude in the western Pacific
is relatively far from the main centre of action of ENSO located in
the equatorial central/eastern equatorial Pacific and its local
weather is thus not only influenced by ENSO, but also by other
climate modes such as the Madden-Julian Oscillation which
strongly influences local meteorological parameters at intra-
seasonal (30 to 90 days) time scales [49]. In contrast, ENSO
influence may be stronger in islands located closer to the equator,
the relationship between ENSO and dengue epidemics being
therefore more straightforward [29].

Our long-term study also suggests an increasing risk of dengue
outbreaks in New Caledonia in the context of global warming
(Figure 1). Even though a global upward trend of dengue
incidence rates was noted along the 1971–2010 period, and as
surveillance methods and laboratory tests have evolved, it is
difficult to know if the amplitude of dengue outbreaks is
significantly growing.

Dengue dynamics driven by multiple factors
Even though climate influenced the disease epidemiology in

Noumea during this forty-year period, the reasons of dengue
emergence in New Caledonia are multiple, including population
growth (119,710 inhabitants in 1973 to 245,580 in 2009),
accelerated urbanization particularly around Noumea, tourism
development and increasing international and inter-islands traffic
[50]. The emergence of dengue fever in other parts of the world,
particularly South East Asia where dengue is endemic with a co-
circulation of the four serotypes, represents an increasing source of
virus introduction into New Caledonia. Indeed, multiple and
repeated introductions of dengue viruses have been detected from
several countries in Asia [34]. Moreover, the geographical
distribution of A. aegyptihas expanded during recent decades in
New Caledonia (Paupy and Guillaumot, unpublished data).

Well known factors may have contributed to the epidemic
dynamics such as the size of susceptible human hosts and vectors
populations. In the absence of seroprevalence data, and due to the
lack of long term entomological data, these variables were not
included in the input dataset of the models. Nevertheless, as
dengue is known to confer a prolonged serotype-specific immunity
in the long term, herd immunity represents an important factor in
understanding dengue dynamics [51–54]. In New Caledonia,
successive waves of dengue outbreaks involving the same serotype
were reported in 1980 and 1986 (DENV-4), 1989 and 1995
(DENV-3), 2003 and 2008 (DENV-1). This constant interval time
between two epidemics involving the same serotype has already
been observed in other South Pacific Islands [55–57]. Recently, a
large molecular characterization of DENV-1 viruses collected
regularly in French Polynesia between the 2001 and 2006
outbreaks revealed that the virus responsible for the severe 2001
outbreak was introduced from South-East Asia, and evolved under
an endemic mode until its re-emergence under an epidemic mode
five years later [56]. These findings suggest that 5–6 years may be
necessary for the renewal of the susceptible population in these
islands. In New Caledonia, at four occasions, dengue outbreaks
were detected between January and July during two successive
years: in 1976–1977 (DENV-1), 1995–1996 (DENV-3), 2003–
2004 (DENV-1), and 2008–2009 (DENV-1 and DENV-4). This
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suggests that environmental conditions may be not favorable for
dengue transmission all through the epidemic year, particularly
during the second semester of the year characterized by lower
values of entomological indices. It is likely that dengue re-emerged
the following year when climatic conditions were favorable for
dengue transmission (as suggested by the results of our explicative
model in 1977, 1996, 2004 and 2009) and the size of the mosquito-
vector and susceptible human populations were still sufficient for a
large spread of dengue viruses. In these four examples of recurrent
outbreaks during two consecutive years, it is more likely that the
end of the epidemic was driven by limiting climatic factors and
intricate entomological factors rather than by the depletion of the
susceptible population.

The relationship betweenAedesdensity and the intensity of
dengue transmission remains unclear [47,58–60]. Although
dengue viruses cannot circulate if mosquito vectors are not
present, the vector density of adult femaleA. aegyptinecessary for
dengue viruses to become endemic or epidemic remains unknown.
In Noumea, entomological indices (HI, BI and API) were not
correlated with the incidence rate of dengue, they were sometimes
lower during epidemic than during non epidemic periods and
lowest values were measured during the largest outbreak in 2009.
The fact that these usual entomological surveillance indices
(particularly API) are good indicators of adult density in Noumea
suggests that the mosquito density threshold under which dengue
viruses cannot spread widely may be very low and has never been
reached up to now. Moreover, mosquito populations are
influenced by human behaviours and meteorological variables
alone cannot account for their geographical distribution and
abundance [14,61]. At the domestic level,A. aegyptipopulations are
also influenced by global trends in urbanization, socioeconomic
conditions, and vector control efforts. For instance, the outbreak
predicted in 2002 with a probability close to 90% did not occur. A
possible explanation is that strong vector control policies (e.g.
increased efforts to reduce mosquito breeding sites and undertake
human population education, development of perifocal spraying of
insecticides) were undertaken in New Caledonia at the time of
large dengue outbreaks in the other Pacific French overseas
territories (French Polynesia in 2001, Wallis and Futuna in 2002).
A relaxation in vector control efforts at the end of 2002 may have
allowed the resurgence of dengue in the East coast and the spread
of the virus through the archipelago during the next year.

Overall, our results suggest that the local climate had a major
effect on dengue dynamics in Noumea during the last forty years.
It is likely that other factors, not included in the input dataset of
the models, had a lower influence on dengue epidemic dynamics.
The introduction of dengue viruses may have been relatively
constant, and the number of human hosts susceptible to a given
serotype and of mosquito-vectors may have been always sufficient
for an epidemic to occur when suitable climate conditions were
met. It is likely that the susceptibility of human populations
influenced the serotype involved in the outbreak and the epidemic
magnitude. The variability of the length of the gonotrophic cycle,
the extrinsic incubation period, and the life span of infected
mosquitoes under climate change rather than the overall vector
density may play a major role on the epidemic dynamics of dengue
at the seasonal scale.

Epidemics forecasting model
Although the meteorological variables contemporaneous to the

epidemic season provide crucial information on local dengue
dynamics as discussed above, prediction models are needed to
anticipate the risk before the dengue outbreak onset and to make
the model useful for health authorities in New Caledonia. In this

study, we were able to build such a predictive model relying on
maximal temperature and relative humidity measured in Noumea
at the end of the previous year.

Biological interpretations about statistical associations between
specific climatic conditions and the yearly risk of dengue outbreak
in Noumea can be made in the frame of the explicative model as it
uses relevant climatic variables that occur within the period of
outbreak onset. The meteorological variables selected in the frame
of the predictive model are tightly connected with the explicative
meteorological variables (Figure S5).

As Noumea concentrates the majority of inhabitants and of
dengue cases, as this city has been affected by all dengue outbreaks
that occurred in New Caledonia during the last 40 years, and as
dengue epidemics usually begin in Noumea, our predictive model
is useful to anticipate the risk of dengue outbreak in New
Caledonia. However, climatic conditions in Noumea can not
account for dengue epidemics in other localities in New Caledonia
that would not involve Noumea, even if this situation has never
been observed in 40 years.

Depending on the user’s objectives, different detection thresh-
olds corresponding to a probability of dengue outbreak can be
used. In the case of dengue, it is likely that decision makers would
prefer to choose a detection threshold with high true positive rate
and low false positive rate, as obtained with a detection threshold
of 65% (Figure 7b). The model initialized in December 2009
indicated no risk of dengue outbreak for 2010 that was in
accordance with the current epidemiological situation. To note, a
high risk of dengue outbreak is predicted for 2011 (74%, Figure 9).
Up to now, only a few cases of dengue fever have been reported.
Only one case imported from the Philippines was possible to type
and belonged to the serotype 1. It is likely that a significant part of
the human population is immunized against the serotypes 1 and 4
involved in the largest dengue outbreaks reported in New
Caledonia in 2008 and 2009 but the introduction of a new
serotype (DENV-2 or DENV-3) may lead to another epidemic.
However, several important confusing factors may interfere with
dengue dynamics this year such as the massive rainfalls brought by
the tropical cyclone Vania in middle January 2011 with its
unknown effects on vector populations, the introduction and
worrying local diffusion of Chikungunya viruses transmitted by the
same mosquito and the subsequent enhancement of vector control
policies.

Conclusions and perspectives
In conclusion, the epidemic dynamics of dengue fever were

strongly influenced by climate variability in Noumea during the
1971–2010 period. Local thresholds of maximal temperature and
relative humidity have been identified with precision allowing the
development of explicative and predictive climate-based models of
dengue outbreak risk. The health authorities of New Caledonia
have now integrated these models into their new decision making
process in order to improve their management of dengue, in
combination with clinical, laboratory (e.g. serotype determination),
and entomological surveillance data. This work provides an
example of the practical utility of research projects in operational
public health fields and reinforces the need for a multidisciplinary
approach in the understanding and management of vector-borne
diseases. Our results provide also new insights for future
experimental studies. It seems important now to study the impact
of maximal temperatures exceeding 32uC and maximal relative
humidity exceeding 95%, and the influence of their duration
(more or less than 12 days) on the length of the extrinsic
incubation period, feeding frequency and longevity ofA. aegypti
from New Caledonia.
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The epidemic dynamics of dengue are driven by complex
interactions between human-hosts, mosquito-vectors and viruses.
These interactions are influenced by environmental and climatic
factors that may have more or less burden according to the
geographical localisation, the local climatic conditions, the vector
characteristics (e.g.Aedesspecies and strains), the size and
movements of human populations and the epidemiology of
dengue. Consequently, our results can not be applied to other
ecosystems. However, the methodology of analysis used in this
study could be extended to other localities highly threatened by the
emergence of dengue in the South Pacific, like in other tropical
and subtropical countries. As global atmospheric reanalyses
climate based data exist, there is hope for the development of
local predictive models of dengue outbreak in countries where no
reliable weather data are available.

Supporting Information

Figure S1 Evolution of House Index, Adult Productivity Index
and dengue cases reported in Noumea (2000–2009). The monthly
incidence rate of dengue cases (histograms) reported in Noumea
from March 2000 to December 2009 was not significantly
correlated (time-lag being equal to 0, 1, 2, or 3 months) with the
value of HI (orange line) reflecting the abundance of larval resting
places, and API (green line) reflecting the vector density. Although
highest dengue incidence rates and highest values of entomological
surveillance indices were observed during the same period of the
year (from January to July), no relevant entomological patterns
were identified during dengue outbreaks. A decreasing trend of
entomological indices was observed that may reflect the impact of
strengthened vector control policies. Sometimes, higher indices
were measured during non epidemic than during epidemic years,
and lowest indices were observed in 2009 whereas a major dengue
outbreak occurred suggesting that the minimal vector density
allowing the occurrence of dengue outbreaks may be very low.
(TIF)

Figure S2 Relationship between monthly cumulative precipita-
tions, mean relative humidity and dengue outbreaks in Noumea.
Averages and 95% confidence intervals (IC95%) of Precip (Figure
S2a) and mean RH (Figure S2b) calculated monthly during
epidemic and non epidemic years were compared from August
(year y-1) to July (yeary). Highest Precip and mean RH were
observed during the epidemic phase of dengue.
(TIF)

Figure S3 SVM explicative model of dengue outbreaks in
Noumea (complete dataset). The model estimates the probability
of dengue outbreak occurrence (red bars) each year according to
the number of days with maximal temperature exceeding 32uC
during the first quarter of the year (NOD_max Temp_32_JFM),
and the number of days with maximal relative humidity exceeding
95% during January (NOD_max RH_95_January). Results
obtained with the complete dataset are presented in Figure S3a.
The black line indicates the annual dengue incidence rate, and
black diamonds indicate epidemic years according to the median
method. The ROC curve (Figure S3b) indicates the rates of true
and false positives for different detection thresholds.
(TIF)

Figure S4 SVM predictive model of dengue outbreaks in
Noumea (complete dataset). The model estimates the probability
of dengue outbreak occurrence (red bars) each yeary according to
the quarterly mean of maximal relative humidity during October–
November–December (max RH_OND), and the monthly mean of
maximal temperature in December (max Temp_December) of the

yeary-1. Results obtained with the complete dataset are presented
in Figure S4a. The black line indicates the annual dengue
incidence rate, and black diamonds indicate epidemic years
according to the median method. The ROC curve (Figure S4b)
indicates the rates of true and false positives for different detection
thresholds.
(TIF)

Figure S5 Relationships between predictive climate variables
(yeary-1) and explicative climate variables (yeary). Line-curves
indicate the probability of dengue outbreak occurrence estimated
by the SVM predictive model. Blue colour indicates low risk,
yellow colour indicates intermediate risk, and red colour indicates
high risk of dengue outbreak. The values of the quarterly mean of
maximal relative humidity during October–November–December
(max RH_OND), and the maximal temperature in December
(max Temp_December) of the yeary-1 used to build the SVM
predictive model were calculated each year during the 1971–2010
period. The point coordinates were associated each year with the
letter A, B, or C according to the value of the two climate variables
used to build the SVM explicative model, i.e. the number of days
with maximal temperature exceeding 32uC during January–
February–March (NOD_max Temp_32_JFM) and the number
of days with maximal relative humidity. 95% during January
(NOD_max RH_95_January). As in Figure 7, members of group
A correspond to yearsy with a low NOD_max Temp_32_JFM
and a low NOD_max RH_95_January. Members of group B
correspond to yearsy with high NOD_max Temp_32_JFM and
low NOD_max RH_95_January. Members of group C corre-
spond to yearsy with high NOD_max Temp_32_JFM and high
NOD_max RH_95_January. Most of members of the group A
correspond to non epidemic years whereas most of members of the
group B or C correspond to epidemic years. This figure illustrates
the strong relationship existing between the predictive and the
explicative climate variables used to build the models. Low max
RH_OND and max Temp_December (yeary-1) were predictive
of low NOD_max Temp_32_JFM and NOD_max RH_95_Jan-
uary (years y, group A). High max RH_OND and max
Temp_December (yeary-1) were predictive of either high
NOD_max Temp_32_JFM and low NOD_max RH_95_January
(yearsy, group B), or low NOD_max Temp_32_JFM and high
NOD_max RH_95_January (yearsy, group C).
(TIF)
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