
HAL Id: pasteur-00734544
https://riip.hal.science/pasteur-00734544

Submitted on 24 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Climate-based models for understanding and forecasting
dengue epidemics.

Élodie Descloux, Morgan Mangeas, Christophe E. Menkès, Matthieu
Lengaigne, Anne Leroy, Temaui Tehei, Laurent Guillaumot, Magali Teurlai,

Anne-Claire Gourinat, Justus Benzler, et al.

To cite this version:
Élodie Descloux, Morgan Mangeas, Christophe E. Menkès, Matthieu Lengaigne, Anne Leroy, et al..
Climate-based models for understanding and forecasting dengue epidemics.. PLoS Neglected Tropical
Diseases, 2012, 6 (2), pp.e1470. �10.1371/journal.pntd.0001470�. �pasteur-00734544�

https://riip.hal.science/pasteur-00734544
https://hal.archives-ouvertes.fr


Climate-Based Models for Understanding and
Forecasting Dengue Epidemics
Elodie Descloux1,2*, Morgan Mangeas3, Christophe Eugène Menkes4, Matthieu Lengaigne5, Anne Leroy6,

Temaui Tehei6, Laurent Guillaumot7, Magali Teurlai3, Ann-Claire Gourinat8, Justus Benzler9, Anne

Pfannstiel10, Jean-Paul Grangeon10, Nicolas Degallier5, Xavier De Lamballerie1

1 UMR190, Emergence of Viral Pathologies, Institute of Research for the Development, Aix-Marseille University, Marseille, France, 2 Department of Internal Medicine,

Territorial Hospital Centre of New Caledonia, Noumea, New Caledonia, 3 UMR ESPACE-DEV 228, Institute of Research for the Development, Noumea, New Caledonia,

4 UMR 7159/UR 182, LOCEAN, Institute of Research for the Development, Noumea, New Caledonia, 5 UMR 7159/UR 182, LOCEAN, Institute of Research for the
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Abstract

Background: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses
that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the
relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an
early warning system.

Methodology/Principal Findings: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea.
Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the
distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2
months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-
annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative
humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue
outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature
exceeding 32uC during January–February–March and the number of days with maximal relative humidity exceeding 95%
during January. The best predictive variables were the maximal temperature in December and maximal relative humidity
during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-
out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the
predictive model 79% and 65%, respectively.

Conclusions/Significance: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last
forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in
outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to
anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue
management in other countries.
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Introduction

Dengue viruses are the most important arthropod-borne viruses

affecting humans. During the past century, the four serotypes

(DENV 1 - DENV 4) have spread to about a hundred countries in

the tropical and subtropical world including Asia, Africa, the

Americas and the Pacific. Each year, an estimated 50 million

people contract dengue fever with at least 500,000 cases of dengue

haemorrhagic fever or dengue shock syndrome leading to 25,000

deaths [1]. The spatial distribution of this emerging infectious

disease largely reflects the distribution of its primary urban

mosquito vector, Aedes aegypti [2]. As no effective vaccine and

specific treatment exist, vector control currently represents the

only resource to mitigate dengue outbreaks.

Epidemic dynamics of dengue, like those of other vector-borne

diseases, are driven by complex interactions between hosts, vectors

and viruses that are influenced by environmental and climatic

factors. Several determinants in dengue fever emergence have

been identified including human population growth, accelerated

urbanization, increased international transport, weakened public

www.plosntds.org 1 February 2012 | Volume 6 | Issue 2 | e1470



health infrastructure as well as a lack of effective vector control and

disease surveillance [3–6]. On the other hand, there is growing

interest in the impact of climate change on the emergence or re-

emergence of vector-borne infectious diseases such as dengue [7–

10]. It has been shown that climate-induced variations in modelled

A. aegypti populations were strongly correlated to reported

historical dengue cases (1958–1995) at the global scale [11], and

a potential increase in the latitudinal and altitudinal distribution of

A. aegypti and dengue are expected under global warming [5,12].

In a specific ecosystem, the required conditions for the

occurrence of a dengue outbreak include i) the presence of a

dengue virus, ii) the presence and a sufficient density of competent

vectors, iii) a sufficient number of susceptible humans that is

serotype-specific, and iv) favorable environmental and climatic

conditions for dengue transmission. Despite evidence that climate

can influence dengue like other vector-borne diseases (i.e. vector

population size and distribution, vector-pathogen-host interac-

tions, and pathogen replication [7,10,13–14]), the relationships

between climate, Aedes mosquitoes density and behaviour, human

populations and dengue incidence are not well understood.

Previous studies have shown that temperature influences the

lengths of the mosquito gonotrophic cycle and the extrinsic

incubation period of the virus within the mosquito, the survival

rate of adults, the mosquitoes population size and feeding

behaviours and the speed of virus replication [7,13,15–19]. Water

is necessary for eggs and larva development, mosquito breeding,

and humidity affects adult mortality [16–17,20–22]. Temperatures

and precipitations have been identified as influencing incidence

rates of dengue in several endemic areas in the world (i.e. Thailand

[23–24], Taiwan [25–27], Singapore [28], and Puerto Rico

[24,29]). On a broader scale, it is plausible that El Niño-Southern

Oscillation (ENSO) also influences patterns of dengue transmission

[23–24,30–31]. This coupled ocean-atmosphere phenomena

results in warm waters displacement and changes in sea surface

temperatures (SST) across the Pacific Ocean, and has a strong

influence on regional climates, particularly in the Pacific. ENSO

can induce large temperature, humidity and precipitation changes

for months (see the websites of the International Research Institute

for Climate and Society (IRI, www.iri.org), and the National

Oceanic and Atmospheric Administration (NOAA, www.noaa.

gov) for more details). Importantly, previous studies revealed a

positive correlation between ENSO, as measured by the Southern

Oscillation Index (SOI), and dengue outbreaks in the South Pacific

islands [30–31].

Our study was conducted in New Caledonia where dengue

represents a major public health problem like in many Pacific

Islands Countries and Territories [32]. The first dengue outbreak

in New Caledonia occurred in 1884–1885 [33]. Disease

transmission increased after World War II, and successive waves

of epidemics involving all four serotypes were reported. Since

2000, serotype 1 has been predominant [34] causing more than

6,000 cases during the 2003–2004 epidemics [35] and about one

thousand of cases in 2008. Although the serotype 4 [36] was

involved in a major outbreak in 2009 (8,456 cases), the serotype 1

is still circulating. New Caledonia has had an effective surveillance

system for dengue and access to high quality meteorological data

for many years. Since 2000, regular entomological surveillance is

performed. This provides an opportunity to study the influence of

climate variations on dengue dynamics.

We analyzed the epidemiology of dengue fever in Noumea, the

capital of New Caledonia, from 1971 to 2010 together with local

and remote climate influences. The objectives of this study were i)

to improve our knowledge of the relationships between meteoro-

logical variables, entomological surveillance indices and dengue

fever dynamics at seasonal to inter-annual time scales, ii) to

identify suitable conditions for an epidemic occurrence, and iii) to

develop a predictive model for dengue outbreaks that can be

integrated in an early warning system in New Caledonia.

Methods

Study area
New Caledonia is a French overseas territory located in the

subregion of Melanesia in the southwest Pacific, about 1,200 kilo-

metres east of Australia and 1,500 kilometres northwest of New

Zealand. It lies astride the Tropic of Capricorn, between 19u and

23u south latitude. Its climate is tropical.

This archipelago of 18,575 square kilometres is made up of a

main mountainous island elongated northwest-southeast 400 kilo-

metres in length and 50–70 kilometres wide, the Loyalty Islands

(Mare, Lifou, and Ouvea), and several smaller islands (e.g. Isle of

Pines). The population was estimated in January 2009 to be

245,580 [37]. Approximately half of inhabitants are concentrated

in the southeast region of the main island around Noumea, the

capital.

A. aegypti is the only mosquito vector of dengue in New

Caledonia. The two others vectors of dengue present in the Pacific

region, A. albopictus and A. polynesiensis, have never been detected in

this archipelago [38–40]. In Noumea, most of A. aegypti breeding

sites are outdoors and therefore rainfall dependent.

Data collection
Epidemiological data. All cases of dengue fever and dengue

haemorrhagic fever reported from January 1971 to December

2010 were collected from the Pasteur Institute, the Health

Department of the Direction of Health and Social Affairs of

New Caledonia, and the Communicable Disease Surveillance

Division, Secretariat of the Pacific Community. A clinical case was

defined as sustained fever and at least two of the following criteria:

nausea or vomiting, myalgia or arthralgia, headache or retro-

orbital pain, rash and/or spontaneous bleeding. A laboratory

Author Summary

Dengue fever is a major public health problem in the
tropics and subtropics. Since no vaccine exists, under-
standing and predicting outbreaks remain of crucial
interest. Climate influences the mosquito-vector biology
and the viral transmission cycle. Its impact on dengue
dynamics is of growing interest. We analyzed the
epidemiology of dengue in Noumea (New Caledonia)
from 1971 to 2010 and its relationships with local and
remote climate conditions using an original approach
combining a comparison of epidemic and non epidemic
years, bivariate and multivariate analyses. We found that
the occurrence of outbreaks in Noumea was strongly
influenced by climate during the last forty years. Efficient
models were developed to estimate the yearly risk of
outbreak as a function of two meteorological variables
that were contemporaneous (explicative model) or prior
(predictive model) to the outbreak onset. Local threshold
values of maximal temperature and relative humidity were
identified. Our results provide new insights to understand
the link between climate and dengue outbreaks, and have
a substantial impact on dengue management in New
Caledonia since the health authorities have integrated
these models into their decision making process and
vector control policies. This raises the possibility to provide
similar early warning systems in other countries.
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positive case was defined as a single or paired serum sample

positive in serological assays (hemagglutination inhibition, IgM

detection by indirect immunofluorescence or ELISA), or direct

detection of dengue virus by reverse-transcriptase polymerase

chain reaction (RT-PCR using a pandengue technique), virus

isolation, or NS1 antigen detection (ELISA or rapid

immunochromatographic test). The serotyping of positive

samples using RT-PCR with specific primers for DENV-1, 2, 3,

and 4 was regularly performed at the Pasteur Institute over the

1971–2010 period.

Since 1995, a georeferencing of dengue cases per council has

been performed. To identify the possible origin of dengue

infection, travel history and first day of illness were determined

by the Health Department of the Direction of Health and Social

Affairs of New Caledonia. Imported dengue cases were defined as

laboratory positive dengue cases with travel history to endemic

countries within 14 days before the date of disease onset.

Incidence rates of dengue were calculated each year in New

Caledonia (number of dengue cases per 10,000 inhabitants per

year) using population data based on linear extrapolations of local

census reports (1969, 1976, 1983, 1989, 1996, 2004, 2009 [37]). In

Noumea, annual dengue incidence rates were computed for the

1995–2010 period from observed data. As georeferencing was not

available before 1995, and as there is a strong linear relationship

between incidence rates observed in Noumea and those observed

in the entire territory over the 1995–2010 period, we used a linear

fit to estimate dengue incidence rates in Noumea for the 1971–

1994 period (Figure 1).

Two methods were used to separate the years during which

dengue outbreaks occurred (denoted epidemic years) or did not

occur (denoted non epidemic years) on the basis of annual

incidence rates of dengue cases computed from January to

December in Noumea. The first method denoted ‘‘tercile method’’

divided the years into three groups: epidemic years when the

dengue incidence rate belonged to the upper tercile, non epidemic

years when the dengue incidence rate belonged to the lower

tercile, and unclassifiable years when the dengue incidence rate

belonged to the central tercile. The second method denoted

‘‘median method’’, divided years into two groups: epidemic years

when the annual incidence rate was greater than the median of the

annual dengue incidence rates over the 1971–2010 period, and

non epidemic years when the annual incidence rate was lower

than the median. The first method allowed the problem of

epidemic threshold to be minimised and to ensure a clear

separation between epidemic and non epidemic years but with a

30% data loss while the second one allowed models to be built

using the whole set of data.

Meteorological data. Two types of meteorological data were

used: meteorological data measured at the reference weather

station of Météo-France in central Noumea, and ENSO indices.

Data collected at the Noumea weather station for the period

January 1971 to December 2010, the time period of the available

dengue data, were analyzed. This station provides observations

that are representative of the local climate around Noumea which

contributes the most dengue cases in New Caledonia (Figure 1),

and where dengue outbreaks usually begin. From these daily data,

monthly, quarterly and annual means were calculated as well as

monthly and quarterly number of days with a daily parameter

greater than a given threshold. Quarterly data were generated

with a sliding window each month. Monthly and quarterly

parameters were named ‘‘parameter_month’’, and ‘‘parameter_

first letter of each month of the quarter’’, respectively. The

meteorological parameters of interest were daily minimum, mean,

and maximum temperatures (min Temp, mean Temp, max

Temp), daily minimum, mean, and maximum relative humidity

(min RH, mean RH, max RH), and cumulative precipitations

(Precip). Other parameters that may influence the productivity of

larval breeding sites and mosquitoes populations were also

Figure 1. Epidemiology of dengue fever and evolution of annual mean temperature in Noumea-New Caledonia (1971–2010). The
predominant circulating serotype (DENV-1, DENV-2, DENV-3 or DENV-4) is indicated in black characters. When other serotypes were detected, they
are indicated in little grey characters. Annual dengue incidence rates observed in Noumea over the 1995–2010 period are highly correlated with
dengue incidence rates observed in New Caledonia (Spearman coefficient rho = 0.99, p-value = 1*10214). Annual dengue incidence rates in Noumea
(1971–1994) were estimated (green dotted line with circles) on the basis of the relationship between incidence rates observed in New Caledonia (grey
line) and those observed in Noumea (blue dotted line with crosses) using a linear model. During the 1971–2010 period, dengue incidence rates and
annual mean temperatures (from January to December) were significantly correlated in Noumea (Spearman’s coefficient rho = 0.426, p-value = 0.007).
An increasing trend of dengue outbreaks amplitude and annual mean temperatures were observed during this 40-year study period.
doi:10.1371/journal.pntd.0001470.g001
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considered such as mean daily wind force at 10 meters (WF),

potential evapotranspiration by Penman-Monteith (ETP) and

potential hydric balance sheets (HB = Precip-ETP) reflecting water

resources. Numbers of days with a parameter over a threshold x

were named NOD_parameter_threshold x. Several temperature

thresholds were analyzed for min Temp, mean Temp and max

Temp, ranging from 21 to 25uC, 24 to 28uC, and 25 to 35uC,

respectively. Different thresholds were also analyzed for min RH

(50%, 60%, 70%), mean RH (70%, 80%) and max RH (80%,

90%, 95%), for Precip (0.1, 1, 2, 3, 4, 5, 10, 25 mm/day), ETP (4,

5, 6, 7), HB (25, 0, 5, 10 mm), and WF (3, 4, 5, 6, 7, 8 m/s).

Several ENSO indices were integrated in the analysis: Niño 3,

Niño 3.4, Niño 4, Southern Oscillation Index (SOI), and

Multivariate ENSO Index (MEI). Time series of these monthly

ENSO indices were obtained from the NOAA Climate Prediction

Center [41].

Altogether approximately 4000 meteorological data were

generated for the 1971–2010 period (monthly, quarterly, and

annual values). They were aggregated in seven families: temper-

ature, relative humidity, precipitations, wind force, potential

evapotranspiration, hydric balance sheet and ENSO.

Entomological surveillance data. An entomological

surveillance network was established since 1997 at the initiative

of the Pasteur Institute, the Health Department of the Direction of

Health and Social Affairs of New Caledonia, and councils of

Noumea and its neighbouring towns.

Since March 2000, about one hundred randomly selected

houses in each of three districts of Noumea (East, West, and South)

in a homogeneous and representative panel of 6,608 houses were

visited each month to determine the number and type of larval

developmental places, and the number of A. aegypti larvae, pupae

and female adults. The following surveillance indices were

computed monthly by the Laboratory of Medical Entomology of

the Pasteur Institute:

i) House Index (HI) = number of houses with at least one larval

breeding site positive for A. aegypti x 100)/number of

inspected premises.

ii) Breteau Index (BI) = number of larval breeding sites positive

for A. aegypti/100 inspected premises.

iii) Adult Productivity Index (API) = number of A. aegypti pupae

and stage 4 larvae/number of inspected premises.

Statistical analysis and modelling
Bivariate and multivariate analyses were conducted using the R

software package (R development Core Team version 2.9.1 [42]).

Time series analysis. Time series analysis of monthly,

quarterly and annual data of dengue incidence rates, entomo-

logical indices and climatic variables were studied. Their temporal

evolution was studied at inter-annual and seasonal scales. Global

trends were computed for epidemiological and meteoro-

logical time series using linear regression (trend line).

Bivariate analysis. The relationships between epidemio-

logical and meteorological data, entomological and meteorological

data, and entomological and epidemiological data were studied in

Noumea at different time-scales using a Spearman’s method with

p-values below 0.05 indicating statistical significance. At the

annual scale, time series of annual dengue incidence rates and

annual means of meteorological variables were analyzed from

1971 to 2010. At the monthly scale, time-lagged correlation

analyses (lag being equal to 0, 1, 2 and 3 months) were performed

on time series of monthly means of meteorological variables,

entomological indices and dengue incidence rates from March

2000 to December 2009.

Comparative analysis of epidemic years and non

epidemic years. To minimize the influence of changes in

disease surveillance and diagnosis over the 1971–2010 period, we

decided to use series of epidemic years (0 for non epidemic years, 1

for epidemic years, according to the tercile method described

above) rather than dengue incidence rates.

Epidemic and non epidemic years were compared to identify

suitable seasonal meteorological patterns for dengue outbreak

occurrence. Monthly and quarterly meteorological data observed

in Noumea during epidemic and non epidemic years were

compared from August (year y-1) to July (year y) and means and

95% confidence interval (IC95%) were calculated. Categorical

variables were compared using a two-sided t-test and correlation

analyses were performed using a Spearman’s rank correlation test.

The p-values below 0.05 were considered to indicate statistical

significance.

Multivariate modelling of dengue outbreak risk. The

final objective of this study was to design two types of model to

predict the risk of dengue outbreak in Noumea. The first model

named hereafter ‘‘explicative model’’ was expected to identify

suitable conditions for an epidemic occurrence using data from

September (year y-1) to April (year y), i.e. four months before and

after the outbreak onset (in January). The second model named

hereafter ‘‘predictive model’’ was intended to help the health

authorities of New Caledonia to anticipate the risk of a dengue

outbreak. Only meteorological variables available prior to the

outbreak onset, i.e. from September (year y-1) to December (year

y-1) were used in this framework. On the basis of the bivariate

analysis results, we decided to focus on the monthly and quarterly

meteorological data. Poorly correlated variables such as wind force

were excluded from the pool of potential input variables.

The type of classification method used for both explicative and

predictive models was the Support Vector Machines (SVM) which

is a supervised pattern recognition technique recently introduced

in Statistical Learning Theory [43]. The main advantage of this

method is that SVM are based on the principle of Structural Risk

Minimization rather than on the error rates as do many other

methods. SVM focus on generalizing well rather than correctly

classifying the training dataset (i.e. minimizing the generalization

error rather than the training error). The concept of SVM is to

design a function which correctly classifies all of the objects of the

training dataset. In the linearly separable case, SVM allow the

identification of an hyperplane which is defined by the following

equation: w.x+b = 0 where w is a vector normal to the hyperplane

and b is the bias. In the non linear case, the separating surface is

found by mapping the input points onto a higher dimensional

space where the training dataset become linearly separable and by

using an appropriate kernel (here a Gaussian kernel) in the

optimization process [43].

In our study, the SVM took as input a set of meteorological data

and predicted, for each given input, which one of the two possible

classes the input is a member (epidemic year or non epidemic

year). All the available data (40 years) were used for training the

model and the median method, introduced above, was applied to

separate the years. The results were then supplied as probability

estimates of dengue outbreak occurrence using the method

developed by Wu et al. [44].

The selection of the most relevant model was achieved using a

forward stepwise selection method based on the corrected Akaike

Information Criterion (AICc) [45–46]. This method not only

rewards goodness of fit, but also includes a penalty that

discourages overfitting.

Influence of Climate on Dengue Dynamics
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The robustness of the explicative and predictive models was

estimated using a leave-one-out cross validation method: a single

observation (year y) from the original sample (1971–2010 years)

was retained as a validation data for testing the model, and the

remaining observations were used as training data. This process

was repeated 40 times such that each yearly observation in the

sample was used once as the validation data. The results from the

folds then were averaged to produce a single estimation of dengue

outbreak risk in Noumea each year. The performance of the

models was estimated with the Receiver Operator Characteristics -

Area Under the Curve (ROC-AUC). The sensitivity, specificity,

positive predictive value and negative predictive value were

calculated for each model.

Results

Time series analysis
Dengue data. During the 1971–2010 period, successive

waves of dengue outbreaks involving the four serotypes were

recorded in New Caledonia with an increasing magnitude,

particularly in Noumea where dengue outbreaks usually begin

(Figure 1). The annual dengue incidence rates revealed a global

upward linear trend (mean increase of 65.4 dengue cases per

10,000 inhabitants over the studied period in Noumea). The most

severe outbreaks were caused by DENV-1 and more recently

DENV-4 in 2003 (5673 reported cases, 733 hospitalizations, 19

deaths), 2008 (1170 reported cases, ,100 hospitalizations, two

deaths) and 2009 (8456 reported cases, 470 hospitalizations, three

deaths). On four occasions, dengue outbreaks were repeated in two

successive years: in 1976–1977 (DENV-1), 1995–1996 (DENV-3),

2003–2004 (DENV-1), and 2008–2009 (DENV-1 and DENV-4).

The analysis of monthly reported and laboratory positive cases

revealed a strong seasonal distribution of dengue cases during

epidemic years (Figure 2). The majority of outbreaks displayed a

similar seasonal evolution: beginning in January, an epidemic peak

between March and May, and ending in July. The temporal

distribution of dengue cases during non epidemic years was

different, with an occurrence of cases every month. Imported

dengue cases from different locations in Asia and the Pacific

(particularly Indonesia, the Philippines and French Polynesia) were

recorded once or several times a year without a clear seasonal

pattern.

Entomological data. Entomological surveillance data were

available from March 2000 to December 2009 in Noumea and a

decreasing trend of all entomological indices was observed

(supporting Figure S1). Indices reflecting the distribution and the

abundance of larval developmental places (HI and BI), and the

vector density (API) were strongly correlated (HI versus BI:

rho = 0.98, p-value,0.001; API versus HI: rho = 0.82, p-

value,0.001; API versus BI: rho = 0.84, p-value,0.001).

Monthly means of HI, BI and API revealed a strong seasonal

pattern with highest values between January and July (Figure 3).

Meteorological data. Over the 1971–2010 period, time

series of annual means of daily mean Temp, Precip, and mean RH

were characterized by a strong inter-annual variability. A number

of ENSO events were observed including the strongest El Niño

events of the century (i.e. 1982–1983 and 1997–1998). A global

upward linear trend of annual mean Temp (mean increase of

0.75uC over the studied period, Figure 1) was observed in contrast

with the Precip and mean RH time series that did not display any

trend.

Rainfall is highly seasonal in New Caledonia. There are two

main seasons: a warm and wet season (November–April), and a

cooler and drier season (May–October). From November to April,

max Temp in Noumea commonly reaches 30uC (on average

during 42 days) and 6-month cumulative Precip 630 mm, whereas

from May to October, max Temp rarely reaches 30uC (on average

during only 2 days) and 6-month cumulative Precip are around

430 mm. The peak of mean Temp (February) precedes the peak of

Precip and mean RH (March) with a lag of one month.

Bivariate analysis
During the 1971–2010 period, a significant correlation was

found between dengue incidence rates and mean annual mean

Temp in Noumea (Spearman’s coefficient rho = 0.426, p-val-

ue = 0.007, Figure 1) but there was no significant correlation with

annual mean RH and Precip. Similar results were obtained with

conserved trends and detrended data. Anomalies of annual means

of mean Temp, Precip and mean RH were significantly correlated

with ENSO, as measured by Niño 3.4 (rho = 20.365, p-

value = 0.029; rho = 20.481, p-value = 0.003; rho 20.486, p-

value = 0.003, respectively). During El Niño (positive value of

Niño 3.4), the weather was cooler and drier. During La Niña

(negative value of Niño 3.4), the weather was warmer and wetter.

However, no direct correlation was found between ENSO and

dengue incidence rates at the inter-annual scale (rho = 20.106, p-

value = 0.539). Dengue outbreaks occurred during either El Niño,

La Niña or neutral phases of ENSO.

During the 2000–2009 period, dengue incidence rates,

meteorological and entomological data were analyzed in Noumea

at a monthly scale. A strong seasonal distribution of HI, BI and

API was observed (Figure 3), and significant correlations were

found between monthly entomological surveillance indices and

climate variables (data not shown). Although the highest dengue

incidence rates and the highest values of HI, BI and API were

observed during the same period of the year (from January to July),

no significant time-lagged correlation has been found between

monthly entomological indices and dengue incidence rates

reported in Noumea over the 2000–2009 period (supporting

Figure S1). We did not find relevant entomological patterns during

dengue outbreaks. Accordingly, entomological surveillance indices

were not used for the modelling of dengue outbreak risk.

Comparative analysis of epidemic and non epidemic
years

Based on the tercile method, there were 13 epidemic years

(dengue incidence rate in the upper tercile, i.e. .19.48 cases/

10 000 inhabitants) and 13 non epidemic years (dengue incidence

rate in the lower tercile, i.e. ,4.13 cases/10 000 inhabitants). A

detailed analysis was performed based on monthly and quarterly

meteorological data measured from September (year y-1) to April

(year y), i.e. four months before and after the outbreak onset.

Temperatures (min Temp, mean Temp and max Temp) were

higher during epidemic years than during non epidemic years.

The peak of max Temp, observed usually in February, preceded

the epidemic peak of dengue with a lag of 1–2 months (Figure 4a).

Analysis of daily data allowed identifying important temperature

thresholds. It revealed that the number of days with max Temp

exceeding 32uC, mean Temp exceeding 27uC, and min Temp

exceeding 22uC were significantly higher during epidemic years

than during non epidemic years. The most important and

significant differences were observed during the first quarter of

the year, principally in February for max Temp (p-value,0.01

using a t-test, Figure 4b).

By contrast, the relationships between Precip, mean RH and

dengue dynamics were not clear, as shown in supporting Figure

S2. Highest Precip and mean RH were observed in February–

March–April during the epidemic phase of dengue. Using a t-test,
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Precip and mean RH were significantly lower in February during

epidemic years than during non epidemic years (p-value,0.01

and = 0.04, respectively). Inversely, the ETP was significantly

higher in February (p-value = 0.02). WF, HB, ENSO indices and

entomological surveillance indices were not significantly different

between epidemic and non epidemic years.

Meteorological variables showing strongest correlations with the

epidemic years series, as defined in the Methods section, are

presented for each family of variables in Table 1. Significant

correlations were identified with several local meteorological

variables (particularly Temp, Precip, RH, and ETP) but not with

ENSO indices. No or poor correlation was found with WF and

HB. In accordance with Figure 4 and supporting Figure S2, Temp

were positively correlated with dengue outbreaks in Noumea,

whereas Precip and RH measured in February were negatively

correlated with dengue outbreaks. A positive correlation was found

between the ETP measured in February and the occurrence of

dengue outbreaks.

Multivariate modelling of dengue outbreak risk
First, in order to produce an explicative model of dengue

outbreak, we selected meteorological variables observed within the

period of dengue outbreak onset, i.e. from January to April

(Figure 2). The best SVM model based on the minimum AICc

(279.21) was obtained using two meteorological variables, i.e. the

number of days with maximal temperature exceeding 32uC during

the first quarter of the year (NOD_max Temp_32_JFM), and the

number of days with maximal relative humidity exceeding 95%

during January (NOD_max RH_95_January). The addition of a

third meteorological variable did not improve the performance of

the model. Results obtained in leave-one-out cross validation

(Figure 5) were close to those obtained with the complete dataset

(Figure S3) and were characterized by a high ROC-AUC value

reaching 0.80 and 0.85, respectively. As indicated by the ROC

curves, most of epidemic years were predicted correctly with high

probability and few false alarms. Importantly, with bivariate

analysis, NOD_max Temp_32_JFM was positively correlated with

the occurrence of dengue outbreak (rho = 0.57, p-value = 0.002)

whereas NOD_max RH_95_January did not appear to be a

discriminatory meteorological variable (rho = 20.11, p-val-

ue = 0.58). With multivariate analysis, these two variables were

highly informative and discriminatory. Scatter plots of epidemic

and non epidemic years as a function of these two variables

allowed the identification of three distinct groups (Figure 6):

group A including years characterized by low NOD_max

Temp_32_JFM (,12 days) and low NOD_max RH_95_January

(,12 days), group B including years characterized by high

NOD_max Temp_32_JFM (.12 days) and low NOD_max

RH_95_January, and group C including years characterized by

low NOD_max Temp_32_JFM and high NOD_max

RH_95_January (.12 days). According to the tercile method of

years classification, all non epidemic years belonged to group A

Figure 3. Seasonal evolution of monthly entomological surveillance indices and meteorological data in Noumea (August 2000–July
2009). HI, BI and API evolution display a strong seasonal cycle, with highest values between January and July. Entomological surveillance indices
were significantly correlated with meteorological data at the seasonal scale. The peak of mean Temp preceded the peak of Precip, mean RH and API
with a lag of one month, and the peak of HI and BI with a lag of two months.
doi:10.1371/journal.pntd.0001470.g003

Figure 2. Monthly distribution of laboratory positive dengue cases during epidemic and non epidemic years. A strong seasonality in
the dengue cases distribution was observed during epidemic years with outbreaks occurring usually between January and July. By contrast, dengue
cases occurred almost every month without a clear seasonal pattern during non epidemic years.
doi:10.1371/journal.pntd.0001470.g002
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whereas all epidemic years, except 1973 and 2003, belonged to

either group B or group C. Similar results were obtained using the

median method ensuring the inclusion of all years, preferable for

the development of SVM models. Only four years (1978, 1979,

1985, and 2002) belonging to the middle tercile (dengue incidence

rate ranging from 4.13 to 19.48 cases/10 000 inhabitants/year)

were incorrectly classified using the median method. In 2002,

although favorable climatic conditions for dengue outbreak were

observed, the incidence rate (5.24 dengue cases/10 000 inhabi-

tants/year) was close to the median (7.65 dengue cases/10 000

inhabitants/year). In 1978, 1979 and 1985, the low values of

NOD_max Temp_32_JFM and NOD_max RH_95_January

were not favorable for dengue outbreak. However, incidence rates

(7.74, 10.63, and 11.24 dengue cases/10 000 inhabitants/year,

respectively) were close to the median. Two years (1973 and 2003)

belonging to epidemic years using either a tercile or a median

method of classification were characterized by low NOD_max

RH_95_January and intermediate NOD_max Temp_32_JFM, as

members of group A (non epidemic years). However, dengue

outbreaks occurred with high incidence rates (23.64 and 213.58

dengue cases/10 000 inhabitants/year in 1973 and 2003,

respectively). These mismatches indicate that i) the model fails

for years that are difficult to classify as their dengue incidence rates

were close to the median and in the middle tercile and, ii)

NOD_max Temp_32_JFM and NOD_max RH_95_January

alone cannot account for all dengue outbreaks (Figure 6). It is

likely that other climate events and other factors influencing

dengue dynamics contribute to the epidemic spread of dengue

viruses during these peculiar years. We were thus able to build an

efficient explicative model of dengue epidemics based on

meteorological variables contemporaneous to the outbreak.

Another challenge was to construct a predictive model for

dengue epidemics using variables available prior to the outbreak

onset, i.e. from September (year y-1) to December (year y-1).

Accurate predictive skill (AICc = 266.64) was achieved with the

SVM model built from the value of the two following variables: the

quarterly mean of maximal relative humidity during October–

November–December (max RH_OND), and the monthly mean of

maximal temperature in December (max Temp_December) of the

year y-1 with a ROC-AUC value of 0.83 (supporting Figure S4).

Probabilities obtained in leave-one-out cross validation (Figure 7)

and the corresponding ROC-AUC value reaching 0.69 illustrate

the robustness of this predictive model. Importantly, max

RH_OND and max Temp_December were not significantly

correlated with the risk of dengue outbreak with bivariate analysis

(rho = 0.24, p-value = 0.14; and rho = 0.25, p-value = 0.14, respec-

tively).

Scatter plots of epidemic years and non epidemic years built

from the combination of meteorological variables used for the

SVM explicative model (Figure 8) and for the SVM predictive

model development (Figure 9) show that dengue outbreaks

occurred in distinct climatic conditions in Noumea. With the

SVM predictive model, as noted with the SVM explicative model,

epidemic years belonged to two different groups of data according

to the value of max RH_OND and max Temp_December (see the

two red kernels corresponding to high risk of dengue outbreak in

Figure 9). Dengue outbreaks occurred following either years

characterized by high max Temp_December and relatively low

max RH_OND, or years characterized by high max RH_OND_

December, and max Temp_December. To note, the high value of

max Temp_December (31.2uC) and the relatively low value of

max RH_OND (86.8%) measured in 2010 indicate a high risk

(74%) of dengue outbreak for 2011.

Figure 4. Relationship between maximal temperatures and dengue outbreaks in Noumea. Averages and 95% confidence intervals
(IC95%) of max Temp (Figure 4a) and NOD_max Temp_32 (Figure 4b) calculated monthly during epidemic and non epidemic years were compared
from August (year y-1) to July (year y). The peak of max Temp preceded the epidemic peak of dengue with a lag of 1–2 months. The number of days
with max Temp exceeding 32uC during the first quarter of the year was significantly higher during epidemic years than during non epidemic years,
especially in February (NOD_max Temp_32_February = 7.25 versus 2 days, respectively).
doi:10.1371/journal.pntd.0001470.g004

Table 1. Correlations between meteorological variables and
dengue outbreaks in Noumea.

Spearman’s rank correlation
test

rho coefficient p-value

Temperature (6C)

NOD_min Temp_22_JFM 0.58 ,0.01

NOD_mean Temp_27_NDJ 0.59 ,0.01

NOD_max Temp_32_JFM 0.51 ,0.01

Relative humidity (%)

NOD_min RH_70_February 20.47 0.01

NOD_max RH_95_February 20.47 0.01

NOD_max RH_80_SON 0.47 0.02

Precipitations (mm)

Precip_February 20.57 ,0.01

NOD_Precip_0.1_December 20.43 0.03

NOD_Precip_10_February 20.41 0.04

Potential evapotranspiration (mm)

ETP_February 0.44 0.02

NOD_ETP_4_February 0.50 0.01

NOD_ETP_6_FMA 0.47 0.01

Hydric balance sheet (mm)

NOD_HB_10_February 20.45 0.02

NOD_HB_0.5_FMA 20.37 0.06

NOD_HB_5_ DJF 20.32 0.11

Wind Force (m/s)

NOD_WF_3_NDJ 0.41 0.04

NOD_WF_7_SON 0.37 0.07

WF_September 0.23 0.26

ENSO

NINO.3.4_November 0.20 0.33

NINO.3.4_ASO 0.19 0.34

NINO.4_November 0.18 0.37

Monthly and quarterly meteorological data measured from September (year y-
1) to April (year y), i.e. four months before or after the outbreak onset, were
analyzed from 1971 to 2010 in Noumea. For each family of meteorological
variables, the three variables most correlated with the occurrence of dengue
outbreaks are presented, p-value,0.05 indicating statistical significance.
Monthly and quarterly parameters were named ‘‘parameter_month’’, and
‘‘parameter_first letter of each month of the quarter’’, respectively. Number of
days with a parameter over a threshold x were named
NOD_parameter_threshold x.
doi:10.1371/journal.pntd.0001470.t001
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Figure 5. SVM explicative model of dengue outbreaks in Noumea (leave-one-out cross validation). The model estimates the probability
of dengue outbreak occurrence (red bars) each year according to the number of days with maximal temperature exceeding 32uC during the first
quarter of the year (NOD_max Temp_32_JFM), and the number of days with maximal relative humidity exceeding 95% during January (NOD_max

Influence of Climate on Dengue Dynamics

www.plosntds.org 10 February 2012 | Volume 6 | Issue 2 | e1470



A comparison of the results obtained with the explicative model

and the predictive model was performed together with a detailed

analysis of the relationships between meteorological variables used

to build the explicative model (NOD_max Temp_32_JFM and

NOD_max RH_95_January) and those used to build the

predictive model (max RH_OND and max Temp_December).

As shown in Figure S5, strong relationships exist between the

values of max Temp and max RH measured at the end of the year

y-1, and those measured at the beginning of the year y. Low max

RH_OND and max Temp_December (year y-1) were predictive

of low NOD_max Temp_32_JFM and NOD_max RH_95_Jan-

uary (years y, group A). High max RH_OND and max

Temp_December (year y-1) were predictive of either high

NOD_max Temp_32_JFM and low NOD_max RH_95_January

(years y, group B), or low NOD_max Temp_32_JFM and high

NOD_max RH_95_January (years y, group C). Results obtained

with the predictive model were highly consistent with those

obtained with the explicative model with similar probabilities of

dengue outbreak risk obtained for 30 of the 40 studied years.

Failures of the predictive model can be explained by a lack of

correlation between these meteorological variables on a few

occasions (e.g. 1982, 1983, 1995). For example, although the

predictive model estimated a risk of dengue outbreak close to 5%

in 1995, the explicative model estimated a risk over 90%, and a

major outbreak occurred. The value of max RH_OND and max

Temp_December measured in 1994 (87% and 27.6uC, respec-

tively) were relatively low and therefore not predictive of outbreak

risk. However, climatic conditions were favorable for a dengue

outbreak occurrence (NOD_max Temp_32_JFM = 20 days,

NOD_max RH_95_January = 0 day, group B). This suggests that

RH_95_January). Results obtained in leave-one-out cross validation are presented in Figure 5a. The black line indicates the annual dengue incidence
rate, and black diamonds indicate epidemic years according to the median method. The ROC curve (Figure 5b) indicates the rates of true and false
positives for different detection thresholds. For example, for a probability of dengue outbreak above 65% (0.65), 15 of 20 epidemic years are
predicted correctly (true positive rate = 75%) with only one false alarm (false positive rate = 5%). The sensitivity of the model for this threshold is 75%
(15 epidemic years predicted correctly/20 epidemic years), the specificity 95% (19 non epidemic years predicted correctly/20 non epidemic years), the
positive predictive value 94% (15 epidemic years predicted correctly/16 epidemic years predicted by the model), and the negative predictive value
79% (19 non epidemic years predicted correctly/24 non epidemic years predicted by the model).
doi:10.1371/journal.pntd.0001470.g005

Figure 6. Scatter plots of epidemic and non epidemic years with regards to NOD_max Temp_32_JFM and NOD_max
RH_95_January. Each year, the number of days with maximal temperature exceeding 32uC during January–February–March (NOD_max
Temp_32_JFM) and the number of days with maximal relative humidity exceeding 95% during January (NOD_max RH_95_January) were calculated.
Two methods denoted ‘‘tercile method’’ and ‘‘median method’’ were used to separate the years on the basis of annual dengue incidence rates in
Noumea (see Methods). On the left panel, epidemic years (dengue incidence rate in the upper tercile, i.e. .19.48 cases/10,000 inhabitants/year) and
non epidemic years (dengue incidence rate in the lower tercile, i.e. ,4.13 cases/10,000 inhabitants/year) are presented. The distribution of crosses
(epidemic years) and circles (non epidemic years) permits the identification of three groups (A, B, C). All non epidemic years belonged to group A
whereas all epidemic years, except 1973 and 2003, belonged to either group B or group C suggesting that dengue outbreaks can occur in distinct
climatic conditions. On the right panel, epidemic years (dengue incidence rate greater than the median, i.e. 7.65 cases/10,000 inhabitants/year) and
non epidemic years (dengue incidence rate lower than the median) are presented with the advantage of a whole set of data being usable for
modelling. Years that were not considered with the tercile method (dengue incidence rate in the middle tercile) are coloured in red. Further epidemic
(red crosses) and non epidemic years (red circles) are considered with the median method, and similar groups (A, B, C) were identified. With the
median method, three epidemic years (1978, 1979 and 1985) and one non epidemic year (2002) were incorrectly classified. These four years were
characterized by annual dengue incidence rates closed to the median.
doi:10.1371/journal.pntd.0001470.g006
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Figure 7. SVM predictive model of dengue outbreaks in Noumea (leave-one-out cross validation). The model estimates the probability
of dengue outbreak occurrence (red bars) each year y according to the quarterly mean of maximal relative humidity during October–November–
December (max RH_OND), and the monthly mean of maximal temperature in December (max Temp_December) year y-1. Results obtained in leave-
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other climate variables or meteorological processes may impact on

the local value of NOD_max Temp_32_JFM and NOD_max

RH_95_January.

Discussion

The influence of climate on dengue dynamics in Noumea, the

capital of New Caledonia, over the 1971–2010 period has been

analyzed at different time scales using high quality and high

resolution meteorological observation data, along with epidemio-

logical and entomological surveillance data. During epidemic

years, dengue outbreaks peaked around March–April at the end of

summer season. The epidemic peak lagged the warmest

temperature by 1–2 months and was in phase with maximum

precipitations and maximum relative humidity. The seasonal

one-out cross validation are presented in Figure 7a. The black line indicates the annual dengue incidence rate, and black diamonds indicate epidemic
years according to the median method. The ROC curve (Figure 7b) indicates the rates of true and false positives for different detection thresholds. For
example, for a probability of dengue outbreak above 65% (0.65), 11 of 20 epidemic years were predicted correctly (true positive rate = 55%) with
three false alarms (false positive rate = 15%). The sensitivity of this model for this threshold is 55% (11 epidemic years predicted correctly/10 epidemic
years), the specificity 85% (17 non epidemic years predicted correctly/20 non epidemic years), the positive predictive value 79% (11 epidemic years
predicted correctly/14 epidemic years predicted by the model), and the negative predictive value 65% (17 non epidemic years predicted correctly/26
non epidemic years predicted by the model).
doi:10.1371/journal.pntd.0001470.g007

Figure 8. SVM explicative model probability contours superimposed with NOD_max Temp_32_JFM and NOD_max RH_95_January
during epidemic/non epidemic years. Line-curves indicate the estimated probability of dengue outbreak occurrence given by the model. Blue
colour indicates low risk, yellow colour indicates intermediate risk, and red colour indicates high risk of dengue outbreak. Meteorological parameters
used to build the SVM models are shown for epidemic years (crosses) and non epidemic years (circles). The number of days with maximal
temperature exceeding 32uC during January–February–March (NOD_max Temp_32_JFM) and the number of days with maximal relative humidity
.95% during January (NOD_max RH_95_January) of the year y were used to build the SVM explicative model.
doi:10.1371/journal.pntd.0001470.g008

Influence of Climate on Dengue Dynamics

www.plosntds.org 13 February 2012 | Volume 6 | Issue 2 | e1470



evolution of entomological indices (e.g, Breteau, House and Adult

productivity indices) matched the seasonality of dengue outbreaks.

No relationship was found between the inter-annual variations

of dengue incidence rates and those of the entomological data. On

the other hand, a number of meteorological indices developed

from summertime temperature, precipitation or relative humidity

showed a significant correlation with dengue occurrence.

New explicative and operational predictive models of dengue

outbreak were developed. We used a multivariate SVM model to

identify the best set of meteorological variables explaining dengue

epidemics. We found that a non linear combination of two

meteorological variables strongly outperforms a model based on a

single variable or a linear approach, as commonly employed in the

literature. We found the best explicative variables to be the

number of days with max Temp exceeding 32uC during January–

February–March (NOD_max Temp_32_JFM) and the number of

days with max RH exceeding 95% during January (NOD_max

RH_95_January). When the model gives a probability of dengue

outbreak above 65%, these two variables explain 94% of the

epidemic years and 79% of the non epidemic years (Figure 5).

Most dengue outbreaks occurred within two kinds of distinct

climatic conditions: high NOD_max Temp_32_JFM and low

NOD_max RH_95_January, or low NOD_max Temp_32_JFM

and high NOD_max RH_95_January. We were also able to build

another SVM model based on two variables to predict dengue

outbreaks in advance: the maximal temperature in December

(max Temp_December) and maximal relative humidity during

October–November–December (max RH_OND) of the year prior

to the epidemics. For a probability of dengue outbreak above 65%,

this model can predict 79% of the epidemic years and 65% of the

non epidemic years (Figure 7).

Influence of local meteorological conditions on dengue
dynamics

Overall, the high performance of the climate-based models of

dengue outbreak risk developed in our study suggest that dengue

Figure 9. SVM predictive model probability contours superimposed with max RH_OND and max Temp_December during epidemic/
non epidemic years. Similarly to the SVM explicative model (Figure 8), the quarterly mean of maximal relative humidity during October–
November–December (max RH_OND), and the monthly mean maximal temperature in December (max Temp_December) of the year y-1 were used
to build the SVM predictive model.
doi:10.1371/journal.pntd.0001470.g009
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dynamics were essentially driven by climate during this 1971–2010

period in Noumea. The explicative model provides important and

new information. We have shown that maximal values of

temperature and relative humidity were determinant in dengue

outbreaks occurrence and precise thresholds of their value were

identified. Importantly, we found that the most relevant

meteorological variables explaining dengue outbreaks were built

using the number of days for which the variable was greater than a

threshold value introducing the importance of the persistence of

suitable climatic conditions. Our findings are compatible with the

mosquito biology and viral transmission cycle.

The length of Aedes gonotrophic cycle is shorter at temperatures

above 32uC and feeding frequency is more than twofold at 32uC as

compared to 24uC; pupae development period reduced from four

days at 22uC to less than one day at 32–34uC [16–17,47].

Additionally, the experimental infection of A. aegypti with DENV-2

viruses showed that the extrinsic incubation period shortens from

12 days at 30uC to seven days at 32–35uC leading to an increasing

risk of viral transmission from an infected mosquito to a

susceptible host [15]. The influence of temperature on the rate

of virus replication inside mosquitoes was also evidenced in the

study of Watts et al. Temperatures may also influence the vector

size and its biting rate [19,21]. Consequently, it is likely that the

increased level of viral transmission characterizing dengue

outbreaks in Noumea at temperatures exceeding 32uC may be a

consequence of shortening of the A. aegypti gonotrophic cycle and

extrinsic incubation period, and of increased vector feeding

frequency.

Mortality rate of larvae, pupae and adult mosquitoes as a

function of temperature between 10 and 40uC can be represented

by a wide-base ‘U’ graphical shape with lower mortality rate at

temperature ranging from 15 to 30uC [16–20,22]. Hence, A.

aegypti mortality rate may be relatively constant at temperatures

observed usually in Noumea, and the increasing mortality rate

expected above 32uC is not likely to be an important limiting

parameter in the spread of dengue viruses in this specific

ecosystem.

Larval breeding places are mostly outdoors in Noumea and

mosquito abundance increases during the rainy and humid season.

Moreover, relative humidity may be determinant in A. aegypti egg

development and adult population size that may itself be

correlated with vectorial capacity [48]. High humidity shortens

incubation and blood-feeding intervals; it favours adult mosquito

longevity [20] and thus dengue transmission. This may explain

why a sustained high RH during January is associated with a

higher risk of dengue outbreak in Noumea.

Influence of remote climate conditions on dengue
dynamics

On a broader scale, a growing number of studies have shown

that ENSO may be associated with changes in the risk of mosquito

borne diseases such as dengue [23–24]. By contrast, Hales et al.

[31] further analyzed the relationships between the annual

number of dengue cases in New Caledonia, ENSO, temperature

and rainfall using global atmospheric reanalyses climate based

data, and they did not find any significant correlation between

SOI and dengue (Pearson’s coefficient = 0.20). In accordance with

this study, and with the advantage of observational and long term

data, we found significant inter-annual correlations between

ENSO and our local climate but not between ENSO and dengue

(Table 1). Moreover, the selection process of multivariate models

did not select any ENSO index neither in explicative mode nor in

predictive mode. These findings suggest that, in New Caledonia,

large-scale climate indices such as ENSO cannot account for the

complexity of the local meteorological inter-annual situations.

However, at a larger scale, Hales et al. showed that the number of

dengue outbreaks in the South Pacific islands (aggregated data,

1970–1995) were positively correlated with the SOI [30],

suggesting that La Niña may favour dengue outbreaks in this

region of the world. The impact of ENSO on local weather in the

South Pacific may strongly vary from one place to another. New

Caledonia, located around 20u south latitude in the western Pacific

is relatively far from the main centre of action of ENSO located in

the equatorial central/eastern equatorial Pacific and its local

weather is thus not only influenced by ENSO, but also by other

climate modes such as the Madden-Julian Oscillation which

strongly influences local meteorological parameters at intra-

seasonal (30 to 90 days) time scales [49]. In contrast, ENSO

influence may be stronger in islands located closer to the equator,

the relationship between ENSO and dengue epidemics being

therefore more straightforward [29].

Our long-term study also suggests an increasing risk of dengue

outbreaks in New Caledonia in the context of global warming

(Figure 1). Even though a global upward trend of dengue

incidence rates was noted along the 1971–2010 period, and as

surveillance methods and laboratory tests have evolved, it is

difficult to know if the amplitude of dengue outbreaks is

significantly growing.

Dengue dynamics driven by multiple factors
Even though climate influenced the disease epidemiology in

Noumea during this forty-year period, the reasons of dengue

emergence in New Caledonia are multiple, including population

growth (119,710 inhabitants in 1973 to 245,580 in 2009),

accelerated urbanization particularly around Noumea, tourism

development and increasing international and inter-islands traffic

[50]. The emergence of dengue fever in other parts of the world,

particularly South East Asia where dengue is endemic with a co-

circulation of the four serotypes, represents an increasing source of

virus introduction into New Caledonia. Indeed, multiple and

repeated introductions of dengue viruses have been detected from

several countries in Asia [34]. Moreover, the geographical

distribution of A. aegypti has expanded during recent decades in

New Caledonia (Paupy and Guillaumot, unpublished data).

Well known factors may have contributed to the epidemic

dynamics such as the size of susceptible human hosts and vectors

populations. In the absence of seroprevalence data, and due to the

lack of long term entomological data, these variables were not

included in the input dataset of the models. Nevertheless, as

dengue is known to confer a prolonged serotype-specific immunity

in the long term, herd immunity represents an important factor in

understanding dengue dynamics [51–54]. In New Caledonia,

successive waves of dengue outbreaks involving the same serotype

were reported in 1980 and 1986 (DENV-4), 1989 and 1995

(DENV-3), 2003 and 2008 (DENV-1). This constant interval time

between two epidemics involving the same serotype has already

been observed in other South Pacific Islands [55–57]. Recently, a

large molecular characterization of DENV-1 viruses collected

regularly in French Polynesia between the 2001 and 2006

outbreaks revealed that the virus responsible for the severe 2001

outbreak was introduced from South-East Asia, and evolved under

an endemic mode until its re-emergence under an epidemic mode

five years later [56]. These findings suggest that 5–6 years may be

necessary for the renewal of the susceptible population in these

islands. In New Caledonia, at four occasions, dengue outbreaks

were detected between January and July during two successive

years: in 1976–1977 (DENV-1), 1995–1996 (DENV-3), 2003–

2004 (DENV-1), and 2008–2009 (DENV-1 and DENV-4). This
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suggests that environmental conditions may be not favorable for

dengue transmission all through the epidemic year, particularly

during the second semester of the year characterized by lower

values of entomological indices. It is likely that dengue re-emerged

the following year when climatic conditions were favorable for

dengue transmission (as suggested by the results of our explicative

model in 1977, 1996, 2004 and 2009) and the size of the mosquito-

vector and susceptible human populations were still sufficient for a

large spread of dengue viruses. In these four examples of recurrent

outbreaks during two consecutive years, it is more likely that the

end of the epidemic was driven by limiting climatic factors and

intricate entomological factors rather than by the depletion of the

susceptible population.

The relationship between Aedes density and the intensity of

dengue transmission remains unclear [47,58–60]. Although

dengue viruses cannot circulate if mosquito vectors are not

present, the vector density of adult female A. aegypti necessary for

dengue viruses to become endemic or epidemic remains unknown.

In Noumea, entomological indices (HI, BI and API) were not

correlated with the incidence rate of dengue, they were sometimes

lower during epidemic than during non epidemic periods and

lowest values were measured during the largest outbreak in 2009.

The fact that these usual entomological surveillance indices

(particularly API) are good indicators of adult density in Noumea

suggests that the mosquito density threshold under which dengue

viruses cannot spread widely may be very low and has never been

reached up to now. Moreover, mosquito populations are

influenced by human behaviours and meteorological variables

alone cannot account for their geographical distribution and

abundance [14,61]. At the domestic level, A. aegypti populations are

also influenced by global trends in urbanization, socioeconomic

conditions, and vector control efforts. For instance, the outbreak

predicted in 2002 with a probability close to 90% did not occur. A

possible explanation is that strong vector control policies (e.g.

increased efforts to reduce mosquito breeding sites and undertake

human population education, development of perifocal spraying of

insecticides) were undertaken in New Caledonia at the time of

large dengue outbreaks in the other Pacific French overseas

territories (French Polynesia in 2001, Wallis and Futuna in 2002).

A relaxation in vector control efforts at the end of 2002 may have

allowed the resurgence of dengue in the East coast and the spread

of the virus through the archipelago during the next year.

Overall, our results suggest that the local climate had a major

effect on dengue dynamics in Noumea during the last forty years.

It is likely that other factors, not included in the input dataset of

the models, had a lower influence on dengue epidemic dynamics.

The introduction of dengue viruses may have been relatively

constant, and the number of human hosts susceptible to a given

serotype and of mosquito-vectors may have been always sufficient

for an epidemic to occur when suitable climate conditions were

met. It is likely that the susceptibility of human populations

influenced the serotype involved in the outbreak and the epidemic

magnitude. The variability of the length of the gonotrophic cycle,

the extrinsic incubation period, and the life span of infected

mosquitoes under climate change rather than the overall vector

density may play a major role on the epidemic dynamics of dengue

at the seasonal scale.

Epidemics forecasting model
Although the meteorological variables contemporaneous to the

epidemic season provide crucial information on local dengue

dynamics as discussed above, prediction models are needed to

anticipate the risk before the dengue outbreak onset and to make

the model useful for health authorities in New Caledonia. In this

study, we were able to build such a predictive model relying on

maximal temperature and relative humidity measured in Noumea

at the end of the previous year.

Biological interpretations about statistical associations between

specific climatic conditions and the yearly risk of dengue outbreak

in Noumea can be made in the frame of the explicative model as it

uses relevant climatic variables that occur within the period of

outbreak onset. The meteorological variables selected in the frame

of the predictive model are tightly connected with the explicative

meteorological variables (Figure S5).

As Noumea concentrates the majority of inhabitants and of

dengue cases, as this city has been affected by all dengue outbreaks

that occurred in New Caledonia during the last 40 years, and as

dengue epidemics usually begin in Noumea, our predictive model

is useful to anticipate the risk of dengue outbreak in New

Caledonia. However, climatic conditions in Noumea can not

account for dengue epidemics in other localities in New Caledonia

that would not involve Noumea, even if this situation has never

been observed in 40 years.

Depending on the user’s objectives, different detection thresh-

olds corresponding to a probability of dengue outbreak can be

used. In the case of dengue, it is likely that decision makers would

prefer to choose a detection threshold with high true positive rate

and low false positive rate, as obtained with a detection threshold

of 65% (Figure 7b). The model initialized in December 2009

indicated no risk of dengue outbreak for 2010 that was in

accordance with the current epidemiological situation. To note, a

high risk of dengue outbreak is predicted for 2011 (74%, Figure 9).

Up to now, only a few cases of dengue fever have been reported.

Only one case imported from the Philippines was possible to type

and belonged to the serotype 1. It is likely that a significant part of

the human population is immunized against the serotypes 1 and 4

involved in the largest dengue outbreaks reported in New

Caledonia in 2008 and 2009 but the introduction of a new

serotype (DENV-2 or DENV-3) may lead to another epidemic.

However, several important confusing factors may interfere with

dengue dynamics this year such as the massive rainfalls brought by

the tropical cyclone Vania in middle January 2011 with its

unknown effects on vector populations, the introduction and

worrying local diffusion of Chikungunya viruses transmitted by the

same mosquito and the subsequent enhancement of vector control

policies.

Conclusions and perspectives
In conclusion, the epidemic dynamics of dengue fever were

strongly influenced by climate variability in Noumea during the

1971–2010 period. Local thresholds of maximal temperature and

relative humidity have been identified with precision allowing the

development of explicative and predictive climate-based models of

dengue outbreak risk. The health authorities of New Caledonia

have now integrated these models into their new decision making

process in order to improve their management of dengue, in

combination with clinical, laboratory (e.g. serotype determination),

and entomological surveillance data. This work provides an

example of the practical utility of research projects in operational

public health fields and reinforces the need for a multidisciplinary

approach in the understanding and management of vector-borne

diseases. Our results provide also new insights for future

experimental studies. It seems important now to study the impact

of maximal temperatures exceeding 32uC and maximal relative

humidity exceeding 95%, and the influence of their duration

(more or less than 12 days) on the length of the extrinsic

incubation period, feeding frequency and longevity of A. aegypti

from New Caledonia.
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The epidemic dynamics of dengue are driven by complex

interactions between human-hosts, mosquito-vectors and viruses.

These interactions are influenced by environmental and climatic

factors that may have more or less burden according to the

geographical localisation, the local climatic conditions, the vector

characteristics (e.g. Aedes species and strains), the size and

movements of human populations and the epidemiology of

dengue. Consequently, our results can not be applied to other

ecosystems. However, the methodology of analysis used in this

study could be extended to other localities highly threatened by the

emergence of dengue in the South Pacific, like in other tropical

and subtropical countries. As global atmospheric reanalyses

climate based data exist, there is hope for the development of

local predictive models of dengue outbreak in countries where no

reliable weather data are available.

Supporting Information

Figure S1 Evolution of House Index, Adult Productivity Index

and dengue cases reported in Noumea (2000–2009). The monthly

incidence rate of dengue cases (histograms) reported in Noumea

from March 2000 to December 2009 was not significantly

correlated (time-lag being equal to 0, 1, 2, or 3 months) with the

value of HI (orange line) reflecting the abundance of larval resting

places, and API (green line) reflecting the vector density. Although

highest dengue incidence rates and highest values of entomological

surveillance indices were observed during the same period of the

year (from January to July), no relevant entomological patterns

were identified during dengue outbreaks. A decreasing trend of

entomological indices was observed that may reflect the impact of

strengthened vector control policies. Sometimes, higher indices

were measured during non epidemic than during epidemic years,

and lowest indices were observed in 2009 whereas a major dengue

outbreak occurred suggesting that the minimal vector density

allowing the occurrence of dengue outbreaks may be very low.

(TIF)

Figure S2 Relationship between monthly cumulative precipita-

tions, mean relative humidity and dengue outbreaks in Noumea.

Averages and 95% confidence intervals (IC95%) of Precip (Figure

S2a) and mean RH (Figure S2b) calculated monthly during

epidemic and non epidemic years were compared from August

(year y-1) to July (year y). Highest Precip and mean RH were

observed during the epidemic phase of dengue.

(TIF)

Figure S3 SVM explicative model of dengue outbreaks in

Noumea (complete dataset). The model estimates the probability

of dengue outbreak occurrence (red bars) each year according to

the number of days with maximal temperature exceeding 32uC
during the first quarter of the year (NOD_max Temp_32_JFM),

and the number of days with maximal relative humidity exceeding

95% during January (NOD_max RH_95_January). Results

obtained with the complete dataset are presented in Figure S3a.

The black line indicates the annual dengue incidence rate, and

black diamonds indicate epidemic years according to the median

method. The ROC curve (Figure S3b) indicates the rates of true

and false positives for different detection thresholds.

(TIF)

Figure S4 SVM predictive model of dengue outbreaks in

Noumea (complete dataset). The model estimates the probability

of dengue outbreak occurrence (red bars) each year y according to

the quarterly mean of maximal relative humidity during October–

November–December (max RH_OND), and the monthly mean of

maximal temperature in December (max Temp_December) of the

year y-1. Results obtained with the complete dataset are presented

in Figure S4a. The black line indicates the annual dengue

incidence rate, and black diamonds indicate epidemic years

according to the median method. The ROC curve (Figure S4b)

indicates the rates of true and false positives for different detection

thresholds.

(TIF)

Figure S5 Relationships between predictive climate variables

(year y-1) and explicative climate variables (year y). Line-curves

indicate the probability of dengue outbreak occurrence estimated

by the SVM predictive model. Blue colour indicates low risk,

yellow colour indicates intermediate risk, and red colour indicates

high risk of dengue outbreak. The values of the quarterly mean of

maximal relative humidity during October–November–December

(max RH_OND), and the maximal temperature in December

(max Temp_December) of the year y-1 used to build the SVM

predictive model were calculated each year during the 1971–2010

period. The point coordinates were associated each year with the

letter A, B, or C according to the value of the two climate variables

used to build the SVM explicative model, i.e. the number of days

with maximal temperature exceeding 32uC during January–

February–March (NOD_max Temp_32_JFM) and the number

of days with maximal relative humidity .95% during January

(NOD_max RH_95_January). As in Figure 7, members of group

A correspond to years y with a low NOD_max Temp_32_JFM

and a low NOD_max RH_95_January. Members of group B

correspond to years y with high NOD_max Temp_32_JFM and

low NOD_max RH_95_January. Members of group C corre-

spond to years y with high NOD_max Temp_32_JFM and high

NOD_max RH_95_January. Most of members of the group A

correspond to non epidemic years whereas most of members of the

group B or C correspond to epidemic years. This figure illustrates

the strong relationship existing between the predictive and the

explicative climate variables used to build the models. Low max

RH_OND and max Temp_December (year y-1) were predictive

of low NOD_max Temp_32_JFM and NOD_max RH_95_Jan-

uary (years y, group A). High max RH_OND and max

Temp_December (year y-1) were predictive of either high

NOD_max Temp_32_JFM and low NOD_max RH_95_January

(years y, group B), or low NOD_max Temp_32_JFM and high

NOD_max RH_95_January (years y, group C).

(TIF)
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http://www.isee.nc/tourisme/telechargement/statouristrapid2009.pdf. Ac-

cessed 18 April 2011.

51. Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, et al. (2000) Etiology of

interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci USA 97:

9335–9339.

52. Wearing HJ, Rohani P (2006) Ecological and immunological determinants of

dengue epidemics. Proc Natl Acad Sci USA 103: 11802–11807.

53. Adams B, Holmes EC, Zhang C, Mammen MP, Jr., Nimmannitya S, et al.

(2006) Cross-protective immunity can account for the alternating epidemic

pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci

USA 103: 14234–14239.

54. Lambrechts L, Knox TB, Wong J, Liebman KA, Albright RG, et al. (2009)

Shifting priorities in vector biology to improve control of vector-borne disease.

Trop Med Int Health 14: 1505–1514.

55. Chungue E, Deubel V, Cassar O, Laille M, Martin PMV (1993) Molecular

epidemiology of dengue 3 viruses and genetic relatedness among dengue 3

strains isolated from patients with mild or severe form of dengue fever in French

Polynesia. J Gen Virol 74: 2765–2770.

56. Descloux E, Cao-Lormeau VM, Roche C, De Lamballerie X (2009) Dengue 1

diversity and microevolution, French Polynesia 2001–2006: connection with

epidemiology and clinics. PLoS Negl Trop Dis 3(8): e493.

57. Li DS, Liu W, Guigon A, Mostyn C, Grant R, et al. (2010) Rapid displacement

of dengue virus type 1 by type 4, Pacific region, 2007–2009. Emerg Infect Dis

16: 123–125.

58. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R (2008) Defining

challenges and proposing solutions for control of the virus vector Aedes aegypti.

PLoS Med 5(3): e68.

59. Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ,

et al. (2009) The role of human movement in the transmission of vector-borne

pathogens. PLoS Negl Trop Dis 2009 3(7): e481.

Influence of Climate on Dengue Dynamics

www.plosntds.org 18 February 2012 | Volume 6 | Issue 2 | e1470
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