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Abstract

Background: Serological studies for influenza infection and vaccine response often involve microneutralization and
hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including
H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based
assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from
different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed.

Methodology/Findings: We have carried out mutational analysis to delineate the molecular determinants responsible for
efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results
demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the
ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp.
Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is
detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of
evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue
134.

Conclusions: We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation
into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of
the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the
whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our
results may have implications for the understanding of human host adaptation of avian influenza H5N1 viruses.
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Introduction

H5N1 influenza virus is highly pathogenic in poultry, certain

bird populations, and has occasionally infected human causing

severe clinical outcomes [1–3]. Since the first human outbreak in

1997, there have been more than 600 confirmed human cases of

H5N1 infection with a mortality rate of approximately 60% [4].

To initiate an infection, like all other subtypes of influenza viruses,

H5N1 virus first binds to cell surface glycan receptors via its

surface glycoprotein hemagglutinin (HA) and is subsequently

internalized via endocytic pathways [5–7]. HA is a homotrimeric

type I transmembrane glycoprotein, which can be cleaved into

HA1 and HA2 subunits [8]. A furin-dependent polybasic cleavage

site has been shown to be characteristic of highly pathogenic avian

influenza viruses [9,10], although not all H5-HAs contain the

polybasic cleavage site. In cells infected by influenza virus, HA

protein is first synthesized as a precursor (HA0), which is then

oligomerized, glycosylated and ultimately transported to the

plasma membrane where assembly and budding of progeny

virions takes place [11]. Then, during the final stage of the virus

life cycle, neuraminidase (NA), the second major envelope

glycoprotein of influenza, cleaves the terminal sialic acids from
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the cell surface glycans to allow release of the virus from the host

cell [12].

Following the first report of H5N1 outbreak in 1996, the virus

has evolved into different clades as shown by the phylogenetic

analysis of H5-HA protein sequences [13–15]. Currently the

spread of H5N1 virus in human population is limited. However,

through mutation and reassortment, the virus may become more

easily transmissible from bird to human or from human to human,

posing a potential pandemic threat to public health worldwide

[2,3]. It is therefore important to fully understand the biology of

H5N1 viruses and to develop sensitive and rapid diagnostic

methods. However, an obstacle to the study of H5N1 viruses is the

stringent safety requirement to work with them. Recently, we and

other research groups have developed retroviral particles pseudo-

typed with H5-HA (H5pp) as an alternative strategy for large scale

serological studies [16–21]. Similar to the replication-competent

virus, H5pp entry requires alpha-2,3 sialic acids, is pH-dependent,

and can be neutralized by sera containing anti-H5N1 antibodies

[18], thus validating H5pp as very useful and safe tool for a wide

range of applications, including entry mechanism studies, sero-

diagnosis and drug discovery [16,18].

In our previous work, we have produced H5pp using the H5-

HA of A/Cambodia/40808/2005 (H5Cam), which was isolated

from a patient with a lethal infection of H5N1 virus [18]. In the

current study, we have analyzed the ability of H5-HAs from

different clades of avian influenza virus to pseudotype lentiviral

particles and have found that they do not give rise to the same

level of efficient H5pp production when compared with H5Cam.

In particular, we have carried out a detailed comparison of the

expression and cleavage of two H5-HAs, i.e., H5-HA of A/Anhui/

1/2005 (H5Anh) and H5Cam, and of their ability to pseudotype

lentiviral vector in HEK293T cells. Through several independent

lines of evidence we have identified the molecular determinants in

H5-HA for efficient incorporation into H5pp envelope and have

delineated the underlying mechanism. Our results are discussed in

the context of the understanding of human host adaptation of

avian influenza H5N1 viruses.

Results

The ability of H5-HA to pseudotype lentiviral particles
does not correlate with HA protein expression level in
producer cells

Similar to HA of other subtypes of influenza viruses, H5-HA

is highly mutable as a result of antibody-selection pressure,

leading to the rise of divergent H5N1 viruses that are

categorized into various strains and clades [13,14,22]. To

ascertain the flexibility and adaptability of H5pp production as

an alternative approach for serological studies in the event of

novel emerging H5N1 viruses, we sought to develop clade-

specific H5pp and compared the ability of three other H5N1

viruses belonging to different clades to pseudotype lentiviral

particles. H5-HA from clade 1 (H5Cam), clade 2.1 (H5Ind),

clade 2.2 (H5Qin) or clade 2.3 (H5Anh) (see Table 1) was

expressed in 293T cells together with lentiviral backbone

plasmid to allow the production of H5-pseudotyped lentiviral

particles (H5pp). Expression levels of H5-HAs in transfected

293T cells was monitored by Western blot using anti-FLAG

antibody directed against the C-terminal tag (Fig. 1A, upper

panel). Supernatants containing H5pp were harvested 48 hr

post-transfection, and used to transduce MDCK cells for

luciferase reporter activity assay (Fig. 1A, lower panel), as

described in Materials and Methods. Unexpectedly, we

observed significant differences in the transduction of MDCK

cells by H5pp, depending on the clades of H5-HAs. In

particular, H5Anh from A/Anhui/2005/01 resulted in very

low luminescence levels after particle transduction in MDCK

cells; whereas H5Cam from A/Cambodia/40808/2005 was the

most efficient, inducing a consistent 3–4 log increase in

luciferase activity compared with H5Anh (Fig. 1A–B, lower

panels). Analysis of cell lysates by Western blots, however,

demonstrated that all H5-HAs tested were well expressed in the

producer cells and, consequently, that luciferase reporter

activity in MDCK target cells did not correlate with the level

of HA protein expression in the cells (Fig. 1A). Two main

protein bands were detected, consistent with the expected

electrophoretic mobility of the uncleaved protein (HA0) and the

C-terminal portion of the cleaved form (HA2 subunit), whereas

the N-terminal fragment (HA1 subunit) could not be recognized

by the anti-FLAG antibody due to C-terminal tagging (Fig. 1A).

We next decided to compare in detail the behaviour of H5Cam

and H5Anh. To determine whether the difference in luciferase

reporter activity was due to the level of H5pp production,

culture supernatants containing H5Cam-pp and H5Anh-pp

were concentrated by ultracentrifugation, and the resulting

H5pp pellets were analyzed by Western blotting. Our results

showed that the number of particles produced in the culture

supernatant was significantly less for H5Anh than for H5Cam in

presence of soluble bacterial neuraminidase, as indicated by

lower levels of p24 in concentrated supernatants to detect the

lentiviral core and lower luciferase reporter activities in MDCK

cells (Fig. 1B). More importantly, incorporation of H5Anh into

the pseudotyped lentiviral particles was not observed using anti-

FLAG antibody (Fig. 1B, upper panel). Altogether, these data

suggest that H5Anh cannot be efficiently incorporated into

pseudotyped particles and released into the cell culture

supernatant.

Swapping of HA2 domain (including the polybasic
cleavage site) does not increase production of H5Anh-pp

Sequence analysis of the polybasic cleavage site reveals that

H5Anh has a deletion of a lysine residue when compared to

H5Cam and moreover, there is an additional amino acid

difference in the HA2 region at position 533, which is located

at the border between the ecto-domain and the transmembrane

domain (TMD) (Fig. 2A). Thus, H5Cam has an isoleucine at

position 533 (I533), while H5Anh has a threonine (T533).

Cleavage of HA into HA1 and HA2 subunits by host protease is a

critical step for influenza viruses to gain membrane fusion

capability [23,24]; whereas the TMD of HA is important for its

association with lipid rafts at the plasma membrane [25]. To test

the potential influence of these differences in the cleavage site and

at position 533, we generated several chimerical constructs in

which either the entire HA2 region including the cleavage site

was replaced with that of H5Cam (AnhCam1), or only the

cleavage site (AnhCam2) or a single T533I amino acid change

was introduced (AnhCam3). All constructs were FLAG-tagged at

the C-terminal end of H5 sequences as described in the Materials

and Methods section (Fig. 2A). When transfected into 293T cells,

all three mutant H5Anh proteins were well expressed in the

producer cell lysates (Fig. 2B); however, analysis of transduction

levels of MDCK target cells by H5pp produced with these

H5AnhCam chimerical proteins suggests that none of them was

able to increase the production of pseudotyped particles (Fig. 2C).

These data indicate that differences in the HA2 domain cannot

account for the reduced ability of H5Anh to form pseudotyped

particles.

Mutations of H5N1 Hemagglutinin and Pseudotyping
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Two amino acid substitutions in the 130-loop of the
receptor binding domain (RBD) are sufficient to confer
H5Anh pseudotyping ability

Sequence alignment of H5-HA proteins revealed a striking

amino acid divergence at 9 positions over a short stretch of only

33-amino-acid-long region around the 130-loop of RBD (Table 1),

which accounted for over 30% of the amino acid differences found

in the entire HA molecule (576 amino acids in length). Therefore

this region was chosen for site-directed mutagenesis to generate a

series of H5Anh mutants that were subsequently tested for their

ability to pseudotype lentiviral vectors. The level of protein

expression for all H5Anh mutants in producer cells was

comparable, albeit slightly lower for AnhM1 and AnhM6

(Fig. 3A). Interestingly, all H5Anh mutants that harbored residues

alanine-valine at positions 133–134 (AnhM1-5, Table 1) displayed

a largely restored ability of H5Anh to produce pseudotyped

particles, despite other sequence differences at the 130-loop

flanking region (Fig. 3B). By contrast, AnhM6, which contains

H5Cam-like 130-loop flanking sequences but serine-alanine at

positions 133–134, did not generate efficiently H5Anh-pp in

culture supernatant (Fig. 3B). These data clearly demonstrate that

amino acid residues at positions 133–134 are crucial for efficient

H5pp production. More specifically, substitution of the two amino

acids S133-A134 of H5Anh with A133-V134, which are unique to

H5Cam sequence, confers H5Anh the ability to be incorporated

into the lipid envelope of lentiviral particles and is essential for

efficient production of transduction-competent H5Anh-pp.

A single A134V mutation in the 130-loop of the RBD of
H5-HA is the critical determinant for H5pp production

To further delineate the respective roles of A133 and V134 for

efficient pseudotyping, two additional H5Anh mutants were

generated with a single amino acid substitution either at position

133 (S133A, AnhM7) or 134 (A134V, AnhM8) (Table 1). These

experiments revealed that the A134V mutation was sufficient to

confer H5Anh the ability to be incorporated into transduction-

competent pseudo-particles; whereas the S133A mutation was not

(Fig. 4A). We also generated reciprocal mutants of H5Cam that

contained either the two residues found at positions 133–134 of

H5Anh (viz., S133-A134; CamM1), or only one single V134A

change (CamM2), or A133S substitution (CamM3) (Table 1).

Again, the presence of valine at position 134 was found to be

Figure 1. The efficiency of H5pp production does not correlate with protein expression level in producer cells. HEK293T cells were
transfected with a lentiviral vector containing gag/pol/luciferase reporter gene, and a plasmid coding for H5-HA from different clades: A/Indonesia/5/
2005 (Ind); A/Bar-headed goose/Qinghai/60/2005 (Qin); A/Anhui/1/2005/01 (Anh); A/Cambodia/408008/2005 (Cam). Bacterial neuraminidase from
Vibrio cholerae (NAvb) was added 16 hr post transfection where indicated. Supernatant containing H5pp was harvested at 48 hr and used to
transduce MDCK target cells. (A) HA protein expression in cell lysate was analysed using anti-FLAG antibody (upper panel). Cyclophilin B antibody was
used as the loading control. Luciferase activity in target MDCK cells was measured 72 hr post transduction (lower panel). Results are shown as means
6 SD (n = 4 independent experiments); *p,0.01 compared with H5Cam by the unpaired Student’s t-test. (B) H5Anh-pp and H5Cam-pp were
concentrated by ultracentrifugation. Incorporation of HA into H5pp was determined by western blotting of H5pp pellets using anti-FLAG antibody, as
described under Materials and Methods (upper panel). Luciferase activity in MDCK cells was measured 72 hr post transduction (lower panel) and
results are shown as means 6 SD (n = 4 independent experiments); *p,0.01 by the unpaired Student’s t-test.
doi:10.1371/journal.pone.0043596.g001

Mutations of H5N1 Hemagglutinin and Pseudotyping
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crucial for efficient H5pp production, whereas the A133S

substitution had only a marginal effect, consistent with the results

obtained with H5Anh mutants (Fig. 4A). To confirm that the effect

of valine at position 134 was indeed on the production of H5pp,

we analyzed by Western blot both cellular lysates and culture

supernatants containing H5pp that were concentrated by ultra-

centrifugation (Fig. 4B). This series of experiments showed that

incorporation of the ‘‘Anhui-like’’ single mutant CamM2 into the

pseudotyped lentiviral particles was below the antibody detection

limit, as also seen for wild-type H5Anh; whereas the ‘‘Cambodia-

like’’ single mutant AnhM8 induced H5pp production with an

efficiency similar to H5Cam (Fig. 4A–B). Altogether, these

experiments demonstrate that valine at position 134 (V134) is a

critical residue for efficient H5pp production.

The A134V mutation affects cell surface expression level
of HA

Because influenza virus, as well as particles pseudotyped with

HA, buds from the plasma membrane [11,18], we reasoned that

changes in surface expression of H5-HA could have an impact on

the production of H5pp. Thus, we have compared by flow

cytometry plasma membrane expression levels of HA protein in

cells transfected with H5Anh and H5Cam. Cells were labelled

with an anti-H5N1 antibody, fixed and then stained with a PE-

conjugated secondary antibody. As assessed by measuring mean

fluorescence intensity (MFI), cell surface expression of H5Anh was

significantly less compared to H5Cam (Fig. 4C; p,0.01).

Interestingly, introduction of the A134V mutation into H5Anh

(AnhM8) increased its cell surface expression (Fig. 4C; p,0.02),

and conversely, a V134A mutation in H5Cam (CamM2) reduced

transport to the plasma membrane to a level that was not

significantly different from that measured with H5Anh (Fig. 4C).

These data demonstrate that the Ala to Val substitution at position

134 enhances surface expression of H5-HA.

The A134V mutation leads to reduced binding to sialic
acid receptors

As residue 134 is in the 130-loop of the receptor binding site, we

next investigated the impact of A134V mutation on receptor

binding properties. We employed a cell-based assay using soluble

H5-HA proteins that were engineered by removing TMD and C-

tail of HA (Fig. 5A) as described in Material and Methods. Stable

cell lines were generated to express sH5Anh, sH5Cam and their

reciprocal single amino acid mutant forms (sH5AnhM8 with

A134V and sH5CamM2 bearing V134A; see also Table 1), and

soluble HA proteins were affinity-purified as described under

Material and Methods. When analyzed on native gels, purified

soluble H5-HA proteins contained mostly the homotrimeric form

(Fig. 5A) that can bind to the sialic acid-containing cellular

receptors. We observed that sH5Anh bound strongly to MDCK

cells, whereas the A134V mutation reduced the binding to a much

lower level (Fig. 5B). By contrast, sH5Cam bound weakly to

MDCK cells and, as predicted, the single V134A change induced

a major increase in the binding of sH5Cam to MDCK cells

(Fig. 5B).

The binding assay was also performed in MDCK-SIAT-1 cells

which express two-fold higher amounts of alpha-2,6-link sialic

acids than parental MDCK cells [26]. The results obtained were

similar to that in parental MDCK cells (Fig. 5C–D). When cells

were treated with bacterial neuraminidase NAvb before fixation

with PFA, the binding of sHA proteins was diminished to

background level in both MDCK and MDCK-SIAT-1 cells,

indicating that the binding of sHA proteins is sialic acid dependent

(Fig. 5C–D).

Inefficiency of H5Anh-pp production is independent of
the lentiviral backbone used

Because we had previously found that H5pp with HIV-

backbone bud from the plasma membrane in 293T cells [18], a

Table 1. Sequence comparison at the 130-loop region of the receptor binding site of H5 hemagglutinin from different clades and
list of mutants tested.

HA Strain Clade 130-Loop region (Residue 124–156)*

Wild type

H5Cam A/Cambodia/408008/2005 1 –SHEASLGVSAVCPYQGKSSFFRNVVWLIKKNST–

H5Anh A/Anhui/1/2005/01 2.3 –DHEASSGVSSACPYQGTPSFFRNVVWLIKKNNT–

H5Qin A/Bar-headed goose/Qinghai/60/2005 2.2 –DHEASSGVSSACPYQGRSSFFRNVVWLIKKNST–

H5Ind A/Indonesia/5/2005 2.1 –DHEASSGVSSACPYLGSPSFFRNVVWLIKKNNA–

Mutants

AnhM1 A/Anhui/1/2005/01 –SHEASLGVSAVCPYQGKSSFFRNVVWLIKKNST–

AnhM2 A/Anhui/1/2005/01 –SHEASLGVSAVCPYQGKSSFFRNVVWLIKKNNA–

AnhM3 A/Anhui/1/2005/01 –SHEASLGVSAVCPYQGKSSFFRNVVWLIKKNNT–

AnhM4 A/Anhui/1/2005/01 –DHEASLGVSAVCPYQGTPSFFRNVVWLIKKNNT–

AnhM5 A/Anhui/1/2005/01 –DHEASSGVSAVCPYQGTPSFFRNVVWLIKKNNT–

AnhM6 A/Anhui/1/2005/01 –SHEASLGVSSACPYQGKSSFFRNVVWLIKKNST–

AnhM7 A/Anhui/1/2005/01 –DHEASSGVSAACPYQGTPSFFRNVVWLIKKNNT–

AnhM8 A/Anhui/1/2005/01 –DHEASSGVSSVCPYQGTPSFFRNVVWLIKKNNT–

CamM1 A/Cambodia/408008/2005 –SHEASLGVSSACPYQGKSSFFRNVVWLIKKNST–

CamM2 A/Cambodia/408008/2005 –SHEASLGVSAACPYQGKSSFFRNVVWLIKKNST–

CamM3 A/Cambodia/408008/2005 –SHEASLGVSSVCPYQGKSSFFRNVVWLIKKNST–

*H5 numbering.
doi:10.1371/journal.pone.0043596.t001

Mutations of H5N1 Hemagglutinin and Pseudotyping
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reduced cell surface expression of viral envelope proteins (see

Fig. 4C) would be expected to influence the formation of

pseudotyped particles and, hence, could account for the observed

differences in pseudotyping. It has been reported that retroviruses

including HIV and Murine Leukemia Virus (MLV) can also bud

from intracellular compartments [27,28], depending on the cell

type and Gag expression systems. Therefore, we also used MLV-

based pseudotyping system to compare the efficiency of H5pp

production between H5Anh and H5Cam. As demonstrated in

Fig. 6A, the results obtained with the MLV-backbone were similar

to those with HIV-backbone, thus, indicating that inefficiency of

H5Anh-pp production is not a mere consequence of the lentiviral

system used for pseudotyping. However, co-transfection of the

viral NA from A/Cambodia/JP52a/2005, rescued the inefficiency

of H5Anh-pp production (Fig. 6A).

Production of H5Anh-pp is enhanced in a sialylation-
deficient cell line

To further test whether reduced binding to sialic acid receptors,

as a result of A134V mutation, is a major contributing factor for

pseudotyping efficiency of H5-HA, we examined the production of

H5Cam-pp and H5Anh-pp in Lec2 cells which are sialylation-

deficient mutants of CHO cells [29]. As H5Cam binds weakly to

sialic acid receptors (Fig. 5), NAvb added exogenously post

transfection was sufficient to release H5Cam-pp into culture

supernatant in CHO cells; and the level of H5Cam-pp in CHO

cells was not significantly different from that in Lec2 cells (Fig. 6B).

Similar to the results obtained in 293T cells, production of

H5Anh-pp was lower than H5Cam-pp in CHO cells. By contrast,

H5Anh-pp production in Lec2 cells was significantly increased in

comparison to that in parental CHO cells and the level of H5Anh-

pp obtained in Lec2 cells was similar to that of H5Cam-pp, as

indicated by the values of luciferase activity detected in MDCK

cells 72 hr post H5pp transduction (Fig. 6B). Together, these

findings further suggest that binding of H5-HA to cellular sialic

acid containing glycans is a major determinant of H5-HA

incorporation into pseudo-particles.

H5N1 viruses carrying the A134V mutation exhibit
reduced capability to agglutinate horse red blood cells

The reduced binding to sialic acid receptors as a result of the

A134V mutation not only leads to changes in pseudotyping

Figure 2. Swapping of HA2 domain (including the polybasic cleavage site) does not increase production of H5Anh-pp. (A) Schematic
diagrams of H5Cam (Cam), H5Anh (Anh) and chimerical constructs. (B) HEK293T cells were transfected as described in Fig. 1. NAvb was added 16 hr
post transfection. At 48 hr post transfection, cell lysates were harvested and analyzed for HA protein expression using anti-FLAG antibody. GAPDH
antibody was used as the loading control. (C) MDCK cells were transduced with H5pp containing culture supernatant and luciferase activity was
measured at 72 hr post transduction. Results are shown as means 6 SD (n = 3 independent experiments). No significant differences were found
between Anh and any of the three chimerical constructs AnhCam1, AnhCam2 or AnhCam3.
doi:10.1371/journal.pone.0043596.g002

Mutations of H5N1 Hemagglutinin and Pseudotyping
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efficiency, but is also found to have an impact at the whole virus

level. Reverse genetics generated RG-A/Cambodia/408008/2005

with the A134V mutation has been shown to agglutinate to the

same degree both human red blood cells (RBCs), which express

alpha-2,6-sialic acid, and guinea pig RBCs, which exhibit both

alpha-2,3 and alpha2,6-linked sialic acid, but failed to agglutinate

horse RBCs, which carry only alpha-2,3-sialic acid [30]. These

observations provide an experimental evidence to support the

notion that the A134V mutation leads to a reduced alpha-2,3-

sialic acid binding of the virus. To confirm the effect of A134V

mutation on H5N1 viruses, we performed similar hemagglutina-

tion assays using another H5N1 virus strain A/Cambodia/

V0401301/2011, which also contains the same A134V mutation.

Similar to A/Cambodia/408008/2005, A/Cambodia/

V0401301/2011 could agglutinate human and guinea pig RBCs

but failed to agglutinate horse RBCs; whereas two other strains of

H5N1 viruses without the A134V substitution, isolated in 2011

from human clinical specimens (A/Cambodia/V0203306/2011

and A/Cambodia/V0219301/2011), could also agglutinate horse

RBCs (Figure 7).

Discussion

In previous studies, we have reported the generation of H5pp

and have characterized it as a safe alternative to the use of

replicative H5N1 virus for sero-surveillance [16,18]. Because

H5pp mimics the entry mechanism of the avian virus while

carrying only the H5-HA as envelope protein, it offers the

advantage to be specifically neutralized only by anti-hemagglutinin

antibodies, avoiding the confounding effect of antibodies directed

against N1 neuraminidase due to infection of influenza virus

subtypes other than H5N1. We report here that the efficiency to

generate HA-only H5pp varies with HAs derived from different

H5N1 virus clades, regardless of the lentiviral backbone used.

Through serial mutagenesis of two H5-HAs, we have uncovered

that differences in receptor binding ability, due to mutations in the

receptor-binding domain of HA, may be the underlying mecha-

nism.

It is widely believed that HA is targeted to lipid rafts at the

plasma membrane and the transmembrane domain has been

described to be important for lipid rafts association of HA [25].

Therefore, we first swapped the transmembrane regions between

H5Anh and H5Cam. We also noticed that the cleavage of H5Cam

appears to be more efficient (Fig. 1A, 2B). Thus, mutants with or

without sequence variations found at the poly-basic cleavage site

(AnhCam1, AnhCam2 and AnhCam3) were generated and

analysed. However, none of these H5Anh mutants showed

appreciable improvement in their ability to generate H5pp, when

compared with wild type H5Anh. In fact, the production of H1

and trypsin-dependent H5 pseudo-particles has been reported

[31,32], hence indicating that HA cleavage is not a determining

factor for pseudotyping efficiency. Then by multiple sequence

alignment, we identified a small region around the 130-loop of the

receptor binding site of HA which appeared to be a ‘‘hot-spot’’,

harboring several sequence variations among different H5N1

clades. Through a series of mutagenesis studies, we have found

that one single residue at position 134 is a critical switch to dictate

the ability of H5 HA to pseudotype lentiviral vectors for the

production of H5pp.

Similar to influenza virus, H5pp generated with an HIV-

backbone bud at the plasma membrane [18]; therefore the

simplest explanation is that the mutation at position 134 may

result in a change in cell surface expression of HA. Indeed we have

observed a small but consistent change in cell surface HA

expression due to mutations at position 134 (Fig. 4C). To exclude

the possibility that this finding merely reflected a differential

binding to the two HA of the rabbit anti-H5 polyclonal serum

(described in Material and Methods), we used another polyclonal

serum from a different source (a duck anti-H5 serum described in

Ref. 18) and found that the results of cell surface HA staining were

similar (data not shown). The fact that the A134V mutation

increased cell surface expression of H5Anh, may partially explain

the effect of this amino acid substitution on H5pp production.

Considering that the variation between H5Cam-pp and H5Anh-

pp production resulted in a 3 to 4 log difference in luciferase

activity, it is likely that A134V mutation may have an impact on

other properties of H5-HA, including binding to sialic acid

receptors, which contribute to the observed phenotype. It has been

reported in the case of H3-HA pseudotyping that lentiviral

particles which incorporate sialic acid binding-incompetent H3-

HA (derived from A/Aichi/2/68) can be efficiently generated and

released into culture supernatant in the absence of exogenous

bacterial NA; whereas the wild-type Aichi-HA fails to do so [33].

Although the difference in pseudotyping observed with wild-type

Aichi-HA and its receptor binding-incompetent mutant is

diminished when bacterial NA is added, the study by Bosch et

al. [33] implies that changes in receptor binding properties can

affect pseudotyping efficiency of lentiviral vectors by influenza HA.

Regarding the potential influence of mutations at position 134

of H5-HA on receptor binding properties, there have been reports

Figure 3. Two amino acid substitutions in the 130-loop of
receptor binding domain of H5Anh are sufficient to induce
H5Anh-pp production. HEK293T cells were transfected with lentiviral
gag/pol with luciferase reporter gene and a plasmid coding for either
wild-type or H5Anh mutants described in Table 1. NAvb was added
16 hr post transfection. (A) Cell lysates at 48 hr post transfection were
analyzed for HA protein expression using anti-FLAG antibody. GAPDH
antibody was used as the loading control. (B) Supernatant containing
H5pp was harvested and used to transduce MDCK cells. Luciferase
activity was measured at 72 hr post transduction and results are shown
as means 6 SD (n = 3 independent experiments); *p,0.01 compared
with H5Anh by the unpaired Student’s t-test.
doi:10.1371/journal.pone.0043596.g003
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Figure 4. Amino acid residue V134 is a critical determinant for efficient H5pp production. (A) H5pp was produced using H5Anh, H5Cam,
their single or double mutants at position 133 and 134. NAvb was added 16 hr post transfection. Culture supernatant containing H5pp was harvested
at 48 hr post transfection and luciferase activity in MDCK cells was measured at 72 hr post H5pp transduction. Results are shown as means 6 SD
(n = 3 independent experiments); **p,0.01 compared to their respective wild type HA by the unpaired Student’s t-test. (B) Cell lysates at 48 hr post
transfection were analyzed for HA protein expression using anti-FLAG antibody. GAPDH antibody was used as the loading control. H5pp produced in
the supernatant were concentrated by ultracentrifugation and the H5pp pellets were analyzed by western blotting using anti-FLAG and anti-p24
antibodies. (C) HA protein expression at the cell surface was analyzed by immunofluoresent staining followed by flow cytometry as described in
Material and Methods. Left and right histograms in the same graph depict cells transfected with pcDNA and H5-HA respectively. Results of mean
fluorescence intensity (MFI) are presented as means 6 SD (n = 5 independent experiments); **p,0.01; *p,0.02 by the unpaired Student’s t-test.
doi:10.1371/journal.pone.0043596.g004
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with contradictory results. First, Yamada et al. [34] found that

A134T mutation did not change alpha-2,3 sialic acid binding

preference of H5-HA. Then, Auewarakul et al. [35] reported that

L129V/A134V allowed for dual binding to both alpha-2,3 and

alpha-2,6-sialic acid receptors, although in their study, the effect of

A134V mutation alone was not assessed. More recently, using

virus elution assay, Imai and colleagues [36] found that H5N1

viruses containing alanine at position 134 (A134) show stronger

binding than those harbouring threonine (T134) to both chicken

erythrocytes (expressing both alpha-2,3 and alpha-2,6-sialic acid)

and horse erythrocytes (expressing only alpha 2,3-sialic acid).

Similar to the observation by Imai et al., we found in the current

study that H5Anh which contains A134 displayed a strong binding

to both MDCK and MDCK-SIAT-1 cells (expressing an increased

Figure 5. Purification and cell surface binding analysis of
recombinant soluble H5-HA (sH5-HA) proteins. (A) Run on a
native gel, purified sH5-HA proteins contain mostly the trimeric form.
(B) Dose dependent binding of sH5 HA proteins to MDCK cells. Alanine-
134 containing HAs (sAnh and sCamM2) bind strongly to MDCK cells,
whereas valine-134 containing HAs (sCam and sAnhM8) bind only
weakly. Results are plotted as mean values of two independent
experiments. (C) Cell surface binding of sAnh and sAnhM8 proteins to
MDCK or MDCK-SIAT-1 cells (more alpha-2,6 linked sialic acid than
parental MDCK). Cells were seeded in 96-well plate and grown until
confluence with or without NAvb treatment for 2 hrs prior to fixation in
4% paraformaldehyde. Results are shown as means 6 SD (n = 3
independent experiments). (D) Cell surface binding of sCam and
sCamM2 to MDCK or MDCK-SIAT-1 cells. Cells were grown and treated
as in (C). The results are shown as means 6 SD (n = 3 independent
experiments). Binding of sH5-HA proteins is dependent of sialic acid at
cell surface. Similar results were obtained in MDCK and MDCK-SIAT-1
cells. *p,0.01 by the unpaired Student’s t-test.
doi:10.1371/journal.pone.0043596.g005

Figure 6. Inefficiency of H5Anh-pp production is independent
of the lentiviral backbone used but can be rescued by co-
transfection with viral N1 or in sialylation-deficient Lec2 cells.
(A) Comparison of H5pp production using HIV and MLV pseudotyping
systems. 293T cells were transfected with a plasmid coding for either
H5Cam or H5Anh (empty pcDNA vector was used as the negative
control, NC), together with either an HIV or MLV lentiviral backbone, as
described in Material and Methods. Viral N1 plasmid was included in the
transfection mixture where indicated to produce pseudoparticles
containing both HA and NA. Culture supernatant containing H5pp
was harvested at 48 hr post transfection and luciferase activity in MDCK
cells was measured at 72 hr post H5pp transduction. Results are
presented as means 6 SD (n = 3 independent experiments). No
significant differences were found between MLV- and HIV-backbone
at all conditions tested. (B) Production of H5Anh-pp is enhanced in
sialylation-deficient Lec2 cells. Cells were transfected with HIV gag/pol
containing luciferase reporter gene and a plasmid coding for either
H5Cam or H5Anh. NAvb was added 16 hr post transfection. At 48 hr
post transfection, supernatant containing H5pp were harvested from
CHO or Lec2 cells and used to transduce MDCK target cells. H5anh-pp
production in Lec2 cells was restored to a level similar to that of
H5Cam-pp as shown by similar luciferase activity detected in MDCK
cells. Results are presented as means 6 SD (n = 4 independent
experiments); *p,0.01 by the unpaired Student’s t-test.
doi:10.1371/journal.pone.0043596.g006

Mutations of H5N1 Hemagglutinin and Pseudotyping

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e43596



level of alpha-2,6 and a decreased level of alpha-2,3-sialic acid

than parental MDCK) [26]. As predicted by these observations,

the A134V mutation reduced H5Anh binding to a dramatically

lower level in both cell lines. It is likely that strong binding of

H5Anh to cell surface sialic acid receptors makes it difficult to

release H5pp from the producer cells even in the presence of

exogenous bacterial NA; and the A134V mutation reduces

binding, thus allowing for the release of H5pp. In keeping with

this hypothesis, co-transfection with the viral NA gene from H5N1

led to the production of similar amounts of mixed HA-NA

pseudoparticles for both H5Anh and H5Cam. Moreover, we did

not observe an increase in binding to MDCK-SIAT-1 cells, which

contain more alpha-2,6-sialic acids on the cell surface. In fact both

sH5Anh and sH5CamM2 bind with slightly lower efficiency to

MDCK-SIAT-1, compared with parental MDCK cells, suggesting

that A134V mutation probably leads to a decreased binding of

H5-HA to alpha-2,3-sialic acid rather than a switch to alpha-2,6-

sialic acid binding. Consistent with this notion, we observed an

increased level of H5Anh-pp production in Lec2 sialylation-

deficient cells, when compared with parental CHO cells (Fig. 6B).

We have found that the A134V mutation not only exerts a

critical influence in the determination of pseudotyping efficiency,

but has also an impact on H5N1 viruses. Both A/Cambodia/

408008/2005 and A/Cambodia/V0401301/2011, two different

H5N1 isolates carrying the same A134V mutation could

agglutinate human and guinea pig RBCs but failed to agglutinate

horse RBCs [30] (also Figure 7 of this paper); whereas two other

strains of H5N1 viruses without the A134V mutation could also

agglutinate horse RBCs (Figure 7). These observations indicate

that A134V mutation in H5-HA reduces virus binding to alpha-

2,3-sialic acid. Although co-transfection with viral NA enables

efficient lentiviral pseudotyping by H5Anh (Fig. 6A), the

differential RBC binding properties observed at the whole virus

level, when both HA and NA are present, support the idea that

A134V mutation in H5-HA can be biologically relevant.

Interestingly, alanine at position 134 (A134) is highly conserved

in avian H5N1 viruses and so far A134V mutation has only been

found in human isolates of H5N1 viruses, both clade 1 and clade 2

viruses isolated from 2004 to 2011. Almost all avian H5N1 isolates

possess A134 in the HA. So far only one avian H5N1 virus in the

NCBI database has serine instead at position 134 of the HA

protein. Notably, more diversity is observed at this position for

human isolates of H5N1 viruses: three H5N1 viruses isolated from

human patients have a threonine and eleven a valine at position

134 [36]. At least in two cases (A/Cam/408008/2005 and A/

Thailand/676/2005), viruses found in the original patient

specimens were mixtures of both wild type, containing A134 in

the HA, and mutant virus, containing V134 [30,35]. It is possible

that other human isolates of H5N1 viruses may actually contain

the A134V mutation but failed to be detected in the process of

either virus isolation or traditional capillary sequencing of viral

genomes. Thousands of H5-HA sequences are available in the

NCBI Influenza Database (http://www.ncbi.nlm.nih.gov/

genomes/FLU/FLU.html) from non-human isolates of H5N1

viruses, none of which contains this particular mutation.

Altogether, these observations suggest that a valine at residue

134 of the receptor-binding domain is unlikely to be a random

sequence variation but may be selected as the avian H5N1 viruses

adapt for replication in human hosts. We speculate in general

terms that changes in cell surface receptor binding of H5-HA, as a

result of A134V mutation, may lead to changes in virus entry and

virus release and, therefore, be considered an important factor for

determination of host range. It is not clear whether intracellular

sialic acid content and distribution may also influence this feature.

As our data focus on the pseudotyping system, further studies are

required to understand more precisely the biological consequences

of A134V mutation and its potential influence on the adaptation of

H5N1 viruses in humans.

Our findings have also implications for the applicability of

H5pp assay in serological surveys. H5pp has several advantages

over the microneutralization method, which is the current gold

standard serological assay for the detection of antibodies against

avian influenza viruses [37,38]. Pseudotyped particles are

produced from synthetic genes without the need to have access

to the virus and can be safely used in BSL-2 containment, making

them ideal for widespread use, especially in areas where BSL-3

facilities are not available. Moreover, it has been reported that the

H5pp assay is more sensitive than micro-neutralization [16,39]. It

appears, however, that its use in sero-epidemiological studies and

to monitor the efficacy of candidate vaccines may be limited by the

strain under investigation. Although we and others have found

that production of mixed HA-NA pseudo-particles is consistently

successful using N1 from either H1N1 or H5N1 [17,20,21] (also

Fig. 6A of this paper), the production of HA-only pseudotypes

would be necessary to eliminate potential cross-reactivity that may

be displayed by circulating anti-NA antibodies against N1 from

avian H5N1 or seasonal influenza H1N1 [40]. We are cognizant

that a single A134V mutation may result in a change of

antigenicity but this limitation is not different from that of the

microneutralization assay, which is the gold-standard to detect

anti-H5 neutralization antibodies and utilizes an available H5N1

virus strain that may not be a perfect match of the viruses

associated with the serum samples being tested. In fact, serologic

surveys often use a collection of serum samples from human or

animals without necessarily knowing the exact virus strain(s)

involved. Moreover, if positive, samples shall contain polyclonal

antibodies against multiple epitopes to an H5N1 virus, further

minimizing the likelihood that a single amino acid substitution

would compromise the usefulness of a pseudotype-based serolog-

ical assay as a safer alternative to the microneutralization test.

Figure 7. Hemagglutination assay of H5N1 viruses with or
without A134V substitution. Comparative hemagglutination ability
of four wild-type Cambodian H5N1 isolates: A/Cambodia/408008/2005
(A134V; HA accession number: HQ664938), A/Cambodia/V0401301/
2011 (A134V; HA accession number: JN588807), A/Cambodia/
V0203306/2011 (A134; HA accession number: JN588805) and A/
Cambodia/V0219301/2011(A134; HA accession number: JN588806).
Suspensions (0.75%) of human type O, horse and guinea pig blood
were used for hemagglutination assays. The two isolates with valine at
position 134 were unable to agglutinate horse red blood cells. Results
represent the average of two independent experiments.
doi:10.1371/journal.pone.0043596.g007
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Careful assessment of the H5pp-based assay should obviously be

performed when new strains emerge.

In conclusion, by comparing the ability of different H5-HA to

produce pseudotyped particles, we have demonstrated that when a

single A134V mutation is introduced in the receptor binding site,

the ability of the usually inefficient H5Anh to generate H5pp is

largely restored. It is likely that the A134V mutation leads to an

increased level of cell surface HA expression and reduced binding

to sialic acid receptors, both of which contribute to the production

of H5pp. The A134V mutation has been reported as a naturally

occurring mutation in human host; and importantly, this mutation

is so far only found in human isolates of H5N1 viruses. Our data

with hemagglutination assays further demonstrate that viral

isolates from human cases with avian influenza carrying the

A134V substitution exhibit a reduced binding to alpha-2,3 linked

sialic acids. Therefore, our results may have implications for the

understanding of human host adaptation of avian influenza H5N1

viruses. It is possible that other mutations leading to reduction in

receptor binding may exist and cause a change in pseudotyping

efficiency. Thus, H5pp production together with soluble HA

protein cell binding analysis may serve as convenient functional

assays to screen for mutations with potential consequences on

receptor binding properties and host adaptations of H5N1 viruses.

Although zoonotic transmission from poultry to humans remains

inefficient for H5N1, it may be of importance to monitor closely

mutations in regions of the receptor binding site of H5-HA.

Materials and Methods

Cells
293T, MDCK, CHO and Lec2 cell lines were obtained from

ATCC (Manassas, VA, USA). MDCK-SIAT-1 cells were gener-

ated by stable transfection of human alpha-2,6-sialyltransferase in

MDCK cells and was described elsewhere [26]. This cell line over-

expresses alpha-2,6-linked sialic acid compared to parental

MDCK [26]. 293T, MDCK and CHO cells were cultured at

37uC with 5% CO2 in Dulbecco’s Modified Eagle’s Medium

(DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with

10% fetal bovine serum (FBS, Invitrogen) and 1% penicillin-

streptomycin. MDCK-SIAT-1 cells were grown in DMEM

containing 10% FBS and 1 mg/ml G418. Lec2 cells, which lack

terminal sialic acid in their glycoproteins and gangliosides due to a

defect in the CMP-sialic acid transporter [29], were cultured in

Minimum Essential Medium (MEM-alpha, Invitrogen) supple-

mented with 10% FBS and 40 ug/ml L-proline.

Plasmids
H5Cam (HQ664938, see also ref. 30), H5Anh (ABD28180),

H5Ind (ABP51969), H5Qin (ABE68923)), mutants AnhM1-M6,

CamM1-M3 (Table 1) and N1 gene (ABO10176) from A/

Cambodia/JP52a/2005 were synthesized as human codon opti-

mized genes (GENEARTH, Regansburg, Germany) and sub-

cloned into the mammalian expression vector pcDNA3.1 (Invitro-

gen). Mutants AnhM7 and AnhM8 were generated by site-

directed mutagenesis using QuikChange site-directed Mutagenesis

Kit (Stratagene, Santa Clara, CA, USA) according to the

manufacturer’s instructions. To generate soluble H5-HA con-

structs, the transmembrane domain (TMD) of the HA was

removed, and the polybasic cleavage site was changed into a

monobasic cleavage site RESR by site-directed mutagenesis to

avoid the potential influence of H5-HA cleavage in cells on the

purification of sHA proteins, which involve multiple steps. The

truncated HAs were then subcloned into pcDNA3.1 (Invitrogen).

All H5 plasmids were tagged with the FLAG-epitope at the C-

terminal and sequenced to confirm that they contain only the

expected mutations as indicated in Table 1.

Production of H5pp
The production of lentiviral particles pseudotyped with H5

hemagglutinin was performed as previously described [18]. Briefly,

HEK293T cells were co-transfected with a plasmid containing the

coding sequence of the indicated H5-HA and a lentiviral backbone

plasmid pNL-Luc E2 R2 which carries a modified proviral

genome of HIV with env deleted and is engineered to express the

firefly luciferase reporter. Alternatively, MLV-backbone plasmids

(a kind gift from Dr. Michael Farzan, Harvard Medical School)-

described in [41] were used where indicated. To release particles

into the culture medium, either soluble bacterial NA from Vibrio

cholerae (NAvb; Roche, Mannheim, Germany) was added to the

producer cells at a concentration of 6.25 mU/ml or co-transfec-

tion of N1 gene was used where indicated. Supernatants

containing H5pp were harvested 48 hr post-transfection, filtered

and used to transduce MDCK cells for luciferase reporter activity

assay or concentrated by ultracentrifugation as indicated.

Luciferase reporter activity assay
MDCK cells (4000 cells/well) were seeded in 96-well white

assay plates one day before H5pp transduction. Luciferase

reporter activity assay was performed 72 hr post transduction

using Bright-Glow Luciferase substrate (Promega, Mandison, WI,

USA) according to the manufacturer’s instructions. Samples were

measured using a Microbeta Luminometer (PerkinElmer, Wal-

tham, MA, USA) and data were expressed as Relative Lumines-

cence Units.

Western blots
Equal amounts of protein from total cell lysates or equal

volumes of H5pp concentrated by ultracentrifugation were

subjected to sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE). Proteins were then transferred onto

Hybond-P polyvinylidene difluoride (PVDF) membranes (Invitro-

gen) that were blocked with 5% milk for 30 min at room

temperature. H5-HA was detected by incubation for 2 hr at room

temperature with a mouse monoclonal anti-FLAG M2 antibody

(Sigma, St.Louis, MO, USA; 1:1000 dilution) conjugated with

horse radish peroxidase (HRP) (Sigma). The core protein in the

pseudotyped particles was detected using an anti-p24 antibody

(Abcam, Cambridge, UK) for 1 hr at room temperature at a

1:1000 dilution, followed by an additional 1 hr incubation with a

goat-anti-mouse secondary antibody conjugated with HRP

(ZymedH, Invitrogen) at a 1:5000 dilution. The levels of

cyclophilin B (detected with a rabbit anti-cyclophilin B antibody

from Abcam, 1:5000 dilution) or GAPDH (detected with a mouse

anti-GAPDH antibody from Abcam, 1:10000 dilution) were

measured on the same blots to verify that equal amount of

samples had been transferred. Proteins were visualized by

chemiluminescence using ECL Western blot detection reagents

(Invitrogen). The relative electrophoretic mobility was estimated

using NovexH Sharp Pre-stained Protein Standards (Invitrogen).

Surface labelling of H5-HA
293T cells transfected with H5 HA were detached with and

resuspended in PBS, blocked in 10% horse serum and then

labelled with a polyclonal rabbit anti-H5N1 antibody (Sino

Biologicals Inc., Beijing, China) at a 1:400 dilution for 1 hr at

4uC. Unbound antibodies were removed by washing three times

with cold PBS, followed by staining with a phycoerythrin (PE)-
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conjugated, donkey-anti-goat secondary antibody (Jackson Im-

munoresearch Laboratories, Suffolk, UK) for 30 min at 4uC. Data

were collected from at least 5000 cells on an LSRII flow cytometer

(BD Biosciences, Franklin Lakes, NJ, USA) and post-acquisition

analyses of cell surface expression of H5-HA was performed using

FlowJo software (TreeStar, Ashland, OR, USA).

Expression and purification of soluble H5-HA proteins
HEK293T cells stably expressing soluble HA (sHA) proteins

were generated by selection of transfected cells in culture medium

containing 300 ug/ml hygromycin for at least 1 month. To purify

sHA proteins, cells were grown in DMEM with 5% FBS until 90%

confluence. Culture supernatant containing secreted sHA proteins

was cleared by centrifugation at 4000 rpm for 15 minutes at 4uC,

concentrated by Amicon Ultra-15 Centrifugal Filter Units with

Ultracel-100 membrane (Millipore, Billerica, MA, USA; 100 kDa

cut-off) and stored at 280uC until use. Soluble HA proteins were

affinity purified from concentrated supernatant using anti-FLAG

M2 affinity gel (Sigma). Because it has been shown that HA-bound

sialic acid could interfere with the accessibility of the receptor-

binding site to cellular receptors [42], anti-FLAG M2 resins bound

with sHA proteins were washed twice in cold PBS and subjected to

treatment with NAvb (Roche, 62.5 mU/ml) at 37uC for 45 min-

utes to remove terminal sialic acid residues, followed by three

washes in cold PBS. Bound sHA proteins were eluted with 150 ml

FLAG peptide (International Laboratory, USA, 0.4 mg/ml in

PBS) for four times. To remove the FLAG peptides, all eluates

were pooled and concentrated using Amicon Ultra-0.5 mL with

Ultracel-100 membrane (Millipore, 100 kDa cut-off). To examine

the oligomeric state of sHAs, proteins were resolved on a

discontinuous native PAGE (6% of acrylamide) followed by

western blot detection using a HRP-conjugated anti-FLAG M2

antibody (Sigma).

Cell-based HA binding assay
MDCK cells were grown in 96-well plate until complete

confluence, then fixed with 4% paraformaldehyde (PFA, Sigma),

washed three times in PBS and blocked for at least 2 hrs in 5%

BSA. The indicated amount of purified soluble HA proteins,

measured by the Bradford assay, were added to the wells in

duplicates or triplicates and incubated overnight at 4uC. Cells

were washed three times in PBS and then incubated with anti-

FLAG antibody (Origene, Rockville, MD, USA; 1:1000 dilution

for 2 hrs at room temperature) to detect sHA proteins bound to

cell surface. After washing for three more times in PBS to remove

unbound sHA proteins, cells were incubated with goat-anti-mouse

secondary antibody conjugated with HRP (ZymedH, Invitrogen) at

a 1:5000 dilution for 1 hr at room temperature. Unbound

secondary antibody was removed by washing three times in

PBS, and ABTS substrate (Invitrogen) was added to the plate

according to the manufacturer’s instructions. Forty minutes after

the addition of substrate, absorbance at 415 nm (OD415) was

measured using a SunriseTM plate reader (Tecan, Männedorf,

Switzerland).

Virus isolation
Cambodian H5N1 virus strains were isolated from human

clinical specimens by inoculation in Madin-Darby canine kidney

(MDCK) cells in the biosafety level 3 laboratory of the Institut

Pasteur in Cambodia, according to conventional protocols [43].

Hemagglutination assay
Hemagglutination titres were measured using 0.75% suspen-

sions of human (type O), horse and guinea pig red blood cells, as

previously described [30,43].

Statistical analysis
Results are presented as mean values 6 SD of the indicate

number of observations. Statistical difference between groups was

determined by the unpaired Students’s t-test with a 0.05

significance level.
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