%0 Journal Article %T Growth Inhibitory, Antiandrogenic, and Pro-apoptotic Effects of Punicic Acid in LNCaP Human Prostate Cancer Cells. %+ Institut Armand Frappier (INRS-IAF) %A Gasmi, Jihane %A Sanderson, J Thomas %< avec comité de lecture %@ 0021-8561 %J Journal of Agricultural and Food Chemistry %I American Chemical Society %V 58 %N 23 %P epub ahead of print %8 2010-11-10 %D 2010 %R 10.1021/jf103306k %M 21067181 %K Pomegranate %K punicic acid %K SRD5A1 %K PSA %K LNCaP %K apoptosis %Z Life Sciences [q-bio]/ToxicologyJournal articles %X Prostate cancer is a commonly diagnosed cancer in men, and dietary chemoprevention by pomegranate (Punica granatum) extracts has shown noticeable benefits. In this study, we investigated the growth inhibitory, antiandrogenic, and pro-apoptotic effects of 13 pure compounds found in the pomegranate in androgen-dependent LNCaP human prostate cancer cells. Cells deprived of steroid hormones were exposed to increasing concentrations (1-100 μM) of pomegranate compounds in the presence of 0.1 nM dihydrotestosterone (DHT), and the inhibition of cell growth was measured by WST-1 colorimetric assay after a 4 day exposure. Four compounds, epigallocatechin gallate (EGCG), delphinidin chloride, kaempferol, and punicic acid, were found to inhibit DHT-stimulated cell growth at concentrations of 10 μM and above. These four pomegranate compounds inhibited DHT-stimulated androgen receptor nuclear accumulation and the expression of the androgen receptor-dependent genes prostate specific antigen and steroid 5α-reductase type 1 at concentrations ≥10 μM. We determined the possible contribution of apoptosis to the observed decrease in cell growth and found that three compounds, EGCG, kaempferol, and, in particular, punicic acid, induced DNA fragmentation after a 24 h treatment, at concentrations in the 10-100 μM range. Punicic acid, an important fatty acid in pomegranate seeds, was further found to induce intrinsic apoptosis via a caspase-dependent pathway. In conclusion, punicic acid, the main constituent of pomegranate seed (70-80%), exhibited potent growth inhibitory activities in androgen-dependent LNCaP cells, which appear to be mediated by both antiandrogenic and pro-apoptotic mechanisms. %G English %L pasteur-00819575 %U https://riip.hal.science/pasteur-00819575 %~ RIIP %~ INRS-IAF