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ABSTRACT20 

An immuno-modulatory role of arthropod saliva is well-documented, but the evidence for an21

effect on Plasmodium spp. infectiousness remains controversial. Mosquito saliva may orient the 22 

immune response towards a Th2 profile, thereby priming a Th2 response against subsequent23 

antigens, including Plasmodium. Orientation towards a Th1 vs. a Th2 profile promotes IgG and IgE24 

proliferation respectively, where the former are crucial in the development of an efficient anti-25 

parasite immune response. Here we assessed the direct effect of mosquito bites on Plasmodium 26 

falciparum asexual parasite density and the prevalence of gametocytes in chronic, asymptomatic 27 

infections in a longitudinal cohort study of seasonal transmission. We additionally correlated these28 

parasitological measures with IgE and IgG anti-parasite and anti-salivary gland extract titres. 29 

Mosquito biting density was positively correlated with asexual parasite density, but not asexual30 

parasite prevalence, and was negatively correlated with gametocyte prevalence. Individual anti-31 

salivary gland IgE titres were also negatively correlated with gametocyte carriage and were strongly32 

positively correlated with anti-parasite IgE titres, consistent with the hypothesis that mosquito bites33 

pre-dispose individuals to develop an IgE anti-parasite response. We provide evidence that mosquito 34 

bites have an impact on asymptomatic infections and differentially so for asexual and sexual parasite35 

production. Increased research focus on the immunological impact of mosquito bites during36 

asymptomatic infections is warranted, to establish whether strategies targeting the immune response37 

to saliva can reduce the duration of infection and onward transmission of the parasite. 38 

39
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INTRODUCTION40

Parasitic microorganisms, such as Plasmodium spp., use a variety of mechanisms to subvert the host41

immune defences (31). Manipulation of the host to reduce an effective immune response is one such 42 

method by which parasitic microorganisms can successfully exploit its host (1, 30). For arthropod-43 

borne organisms, an immuno-modulatory role of arthropod saliva has been reported for arboviruses44 

(24, 46) and protozoa including Leishmania (3, 14), Trypanosoma (32) and Plasmodium (13). Whilst prior45 

exposure to arthropod saliva can exacerbate the infection, immunity against saliva antigens has also46 

been shown to protect against a severe outcome of disease in both Leishmania (23) and Plasmodium 47 

(16). Interestingly, immunity to saliva does not impact upon sporozoïte infectivity (26).48 

It is recognised that the type of immune balance driven by the parasite operates at a very early stage49

post parasite delivery. The response of sentinel cells, such as dendritic cells, thus determines the50 

evolution of the immune response and can lead to protection, tolerance or immuno-pathology (2).51 

Saliva contains pharmacologically active proteins and peptides (43), which provoke a localised allergic52 

reaction in the skin, and injection of saliva into the skin during a mosquito bite induces the53 

production of IgE and IgG antibodies (8, 9), as well as dermal hypersensitivity reactions (21, 42).54 

This suggests that the saliva can orient the immune response towards a Th2 profile. Dendritic cells55 

that are oriented to a Th2 phenotype by an antigen are more susceptible to orient the immune56 

response towards a Th2 profile when confronted by a second antigen (12). Thus, saliva could orient 57 

the response mounted against the arthropod-borne pathogen. Orientation of the immune response58 

towards a Th1 profile is crucial for immunity to intracellular pathogens (35), whereas orientation59 

towards a Th2 profile drives immunity to extracellular pathogens and antigens resulting in class60 

switching giving rise to IgE-producing B cells (55).61 
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The acquisition of immunity to the human lethal malaria parasite Plasmodium falciparum develops 62 

very slowly and is not sterilising. Even in zones where the transmission intensity is high, the63 

development of immunity only results in a premunition leading to a reduction in the number of64 

clinical episodes and the progressive control of parasite density. Cytophilic immunoglobulins (IgG165 

& IgG3), which are capable of eliminating the parasites by opsonisation, play an important role in66 

this premunition (51). Although individuals living in malaria endemic regions have elevated total and 67 

P. falciparum parasite-specific IgE levels, the role of this class of immunoglobulin is unclear. Elevated 68 

levels are observed in severe acute clinical episodes, suggesting a pathogenic role of IgE (38),69 

whereas high levels in asymptomatic infections are seemingly protective against subsequent clinical70 

episodes (4).71 

Studies on immuno-modulation have focussed on the direct interaction between the host and72

pathogen during the infectious process and immediate consequences thereafter (e.g. 25, 26, 50).73 

Surprisingly, however, no attention has been paid to the longer-term consequences of immuno-74 

modulation that impact upon an existing infection. In malaria endemic areas of highly seasonal75 

transmission, individuals can carry P. falciparum parasites without symptoms for the duration of the76 

non-transmission season. Production of gametocytes, specialised sexual parasite stages, is required77 

for transmission from man to the mosquito. Gametocyte production is associated with non-specific78 

immune responses occurring during febrile episodes of symptomatic infections. Specific immune 79 

responses have also been suggested to induce gametocyte production. Gametocytes are induced80 

following the addition of lymphocytes from naturally infected Gambian children, but not after 81 

addition of the same components from European controls (48). Furthermore, there is some82 

suggestion that parasites increase their conversion rate to gametocytes in individuals with acquired83 

immunity (18).84 
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Here we examine the immuno-modulatory impact of mosquito saliva in a malaria endemic setting85 

and address the hypothesis that saliva impacts upon existing malaria infections over the long-term86 

through orientation of the Th1/Th2 response as revealed through specific IgG3 and IgE. Specifically,87 

we carried out a family-based longitudinal cohort study in a region of endemic P. falciparum malaria in 88 

Senegal to determine whether mosquito biting intensity and individual immunoglobin profiles are 89 

associated with quantitative parasite phenotypes in chronic, long-term, asymptomatic infections.90 

91

MATERIALS AND METHODS 92

Study sites, subjects and ethical clearance93

A family-based longitudinal cohort study was performed in 2005 in Gouye Kouly (N  14°43, W94

16°36), Senegal. Family structures were constructed by using a questionnaire, interviewing each95 

individual or key representatives of the household to obtain both demographic information such as96 

birth date, age, sex and genetic relationships between children, their parents, and sometimes their97 

grandparents or non-relatives in the same household, and other households. The population was 98 

composed of 482 individuals, of which 387 (80.3%) were enrolled into the study. The majority of99 

individuals were Serere ethnic group. Transmission is highly seasonal in this site with an 100 

Entomological Inoculation Rate measured at approximately 2 infectious bites per person per year. P.101 

falciparum prevalence rates in humans varied from 8% to 15% in the dry and wet season. The project102 

protocol and objectives were carefully explained to the assembled village population and informed103 

consent was individually obtained from all subjects by signature on a voluntary consent form written 104 

in both French and in Wolof. The request for volunteers to perform mosquito landing catches, as a105 

specific task within the protocol, was made and discussed during the village meeting and with each106 

individual prior to obtaining written consent. Such volunteers were not placed under 107 

chemoprophylaxis given the long length of the study and the estimated high frequency of Glucose-6-108 
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Phosphate Dehydrogenase deficiency in the region. The installation of a health clinic in the study site109 

enabled treatment of all clinical cases of malaria with appropriate antimalarial treatment according to 110 

the recommendation of the Malaria Division, Ministry of Public Health.  The protocol was approved 111 

by the Ethical Committee of the Ministère de la Santé du Senegal.112 

113

Blood sample collection for P. falciparum parasite analyses114

An intensive sampling schedule was implemented: prior to the rains in June and then every week 115

for 8 weeks following the onset of the rains (first week of July) and after the end of the transmission 116 

season in November. At each time point a thick blood smear was taken from all individuals. In the117 

June survey and every two weeks from July, approximately 300-500 μL of blood were taken by finger 118 

prick from each individual in an EDTA microtainer (Sarstedt), of which 200 μL were mixed with in 119 

one mL TRIzol® (Invitrogen), kept on dry ice and then frozen at -80°C for RNA extraction.  The120 

remainder of the sample was used for DNA extraction and serological analyses. Following DNA121 

extraction and PCR amplification, all samples that were found to be positive for P. falciparum were122 

then analysed for the presence of gametocytes by RT-PCR. The cohort was randomly divided into 123 

two groups (by household) such that half the cohort provided such a blood sample every week of the124 

8-week continuous survey. A final survey on all the population was carried out after the rainy season 125 

in November, at which time another 300-500 μL blood sample was taken for immunoglobulin126 

analysis. In all cases parasite positivity was established as follows. Thick and thin blood smears were127 

prepared and stained by 3% Giemsa stain. Blood smears were examined under an oil immersion128 

objective at ×1000 magnification by the trained laboratory technicians and 200 thick smear fields129 

were examined before being declared negative for asexual or gametocyte stage parasites. The total130 

number of leucocytes and parasites were counted and a parasite/leucocyte ratio established. The131 
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number of parasites per microlitre was then estimated on the basis of a mean number of 8000132 

leucocytes per microlitre of blood.133 

PCR and RT-PCR for P. falciparum gametocyte detection134

DNA was extracted from all samples using the standard phenol-chloroform extraction method and 135

amplified using the ssrRNA gene nested PCR method of Snounou et al., 1993 (49).  RNA extraction 136 

was performed from the TRIzol® (Invitrogen) conserved samples of those found positive, following137 

the protocol recommended by the manufacturer. The extracted RNA was directly analysed or stored138 

at -80ºC. The RT-PCR was carried out as described previously (27). Briefly, “Plasmodium falciparum 139 

meiotic recombination protein DMC1-like protein” gene (AF356553) was selected because it is 140 

exclusively expressed in gametocytes (28) and contains introns. Primers were thus selected spanning141 

an exon-exon junction, amplifying a 101 bp segment, in the middle of which a probe was designed,142 

using Primer3 software (44). Primer sequences were: forward primer GAM8_F 5'143 

ATATCGGCAGCGAAAATGTGT 3’; reverse primer GAM8_R 5'144 

GACAATTCCCCTCTTCCACTGA 3’ and probe GAMPRO 5’  145 

(6-Fam)TGCCCTTCTCGTAGTTGATTCGATTATT(BHQ1) 3’. cDNA was synthesised and the146

reaction primed with GAM8_R. Eight µL of extracted RNA was mixed with buffer, dNTPs (final147 

concentration 1 mM), RNase-free water, AMV Reverse transcriptase (20U; Promega) and148 

Ribonuclease inhibitor (20U; Promega). Amplification cycle conditions were: 10 min at 65°C, 60 min149 

at 42°C, 5 min at 95°C.  Quantification of cDNA was carried out using a fluorescent probe assay.150 

Two µL of synthesised cDNA was mixed with 2X mastermix (ABGene), GAM8_R (final151 

concentration: 400 nM), GAM8_F (final concentration: 400 nM), GAM8_PRO (final concentration: 152 

300 nM) and sterile water.  The reaction was analysed with a Rotor Gene® real-time PCR machine153 

(Corbett Research). Each sample was analysed in triplicate. A dilution series containing 1000, 100, 10,154 

1 and 10-1 gametocytes /µL were used as controls.155 
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Entomological surveys156

Indoor and outdoor mosquito landing catches on volunteers were performed in 5 locations within 157

the village for 2 nights (from 7pm to 7am) every week during the rainy season and 2 nights monthly158 

for the rest of the year. The five sites were selected to provide good coverage of the village. Species159 

identification was performed on each individual mosquito the following day. Anophelines were160 

identified using the key of Diagne et al., (1994)(15). The PCR technique of Paskewitz & Collins161 

(1990) (36) was used to differentiate the members of the Anopheles gambiae species complex. The162 

culicines were identified using the key of Edwards (1941)(19).163 

164

Salivary gland extract preparation for ELISA165

Salivary glands of Anopheles gambiae (Yaounde strain) were dissected under sterile conditions, placed166

in 1×PBS and sonicated 5 × 4 min. The solution was then centrifuged at 8,000 × g for 15 min at 167 

4°C. The protein concentration was determined by Nanodrop and diluted in 1×PBS to a 168 

concentration of 5 µg / mL.169 

Parasite (P. falciparum) preparation for ELISA170

P. falciparum (strain 89F5, Palo Alto) in vitro intra-erythrocytic cultures that were schizont-rich were171

mixed with water (1 packed cell volume of red blood cells to 4 volumes of water) and an equal 172 

volume of lysis buffer (10 mM Tris pH8, 0.4 M NaCl, EDTA 10 mM, 2% triton X-100) and173 

incubated at 4°C for 15 min. The solution was then centrifuged at 4°C for 10 min at 8,000 × g and174 

the supernatant reserved for analysis.175 

IgE ELISA176

Salivary gland (or parasite) extract was diluted in 0.1 M NaHCO3 (pH 9.6), 50 µL added per well177

and incubated at 37°C for 1 hour. Plates were then washed 3× in wash buffer (1×PBS/0.05%178 

Tween-20). 100 µL blocking buffer (1×PBS/1% Bovine Serum Albumin) was added per well,179 
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incubated at 37°C for 1 hour and then washed 3×. Serial dilutions of approximately 5% of pre-180 

season plasma samples enabled the optimal dilution for measurement of IgE titres. Each plasma 181 

sample was diluted 1/5 in 100 µL blocking buffer and 50 µL add per well for 2 duplicate wells. Plates182 

were incubated overnight with gentle agitation at room temperature. The next day, plates were183 

washed 5× and 50 µL goat IgG anti-human-IgE immunoglobulin (pre-coupled with alkaline184 

phosphatase) diluted 1/400 in blocking buffer (Sigma-Aldrich, Saint Quentin Fallavier, France) was185 

added per well and incubated for 2 hours at 37°C. Plates were then washed 5× and 50 µL PNPP (4-186 

nitrophenylphosphate disodium salt hexahydrate)(Sigma-Aldrich, Saint Quentin Fallavier, France), 187 

the substrate of alkaline phosphatase, dissolved in 0.1 M Tris-HCl pH 8.8 at 1 mg / mL, was added188 

per well. Plates were placed in the dark for 3 hours and the reaction terminated with 25 µL 1 N 189 

NaOH and read at 410 nm.190 

IgG ELISA191

Salivary gland (or parasite) extract was diluted in 0.1 M NaHCO3 (pH 9.6), 50 µL added per well192

and incubated at 37°C for 1 hour. Plates were then washed 3× in wash buffer (1×PBS/0.05%193 

Tween-20). 100 µL blocking buffer (1×PBS/1% Bovine Serum Albumin) was added per well,194 

incubated at 37°C for 1 hour and then washed 3×. Again serial dilutions of approximately 5% of pre-195 

season plasma samples enabled the optimal dilution for measurement of IgG titres. Each plasma 196 

sample was diluted 1/50 (for IgG 3 (mouse monoclonal ZG4) & IgG 4 (mouse monoclonal RJ4)) or197 

1/100 (IgG total (mouse monoclonal R10Z8E9)) in 100 µL blocking buffer and 50 µL add per well198 

for 2 duplicate wells. All monoclonals from Skybio Ltd., Wyboston, Bedfordshire, United Kingdom.199 

Plates were incubated overnight at 4°C. The next day, plates were washed 5× and 50 µL mouse anti-200 

human-IgG (diluted 5/1000 in blocking buffer for IgG 3 & 4; 2/1000 for IgG total.) and incubated201 

for 2 hours with gentle agitation at room temperature. Plates were then washed 5× and 50 µL rabbit202 

anti-mouse coupled with HRP (Horse Radish Peroxidase) (DAKO Ltd., Trappes, France) at 1/2000203 
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in blocking buffer was added per well. Plates were then washed 5× and 50 µL O-phenylenediamine204 

(Sigma-Aldrich, Saint Quentin Fallavier, France), the substrate of HRP, dissolved in citrate buffer205 

(5.1 mL 0.1 M citric acid, 14.9 mL 0.1 M Na3Citrate, pH 5.1) at 1 mg / mL plus 2 µL / mL H2O2 206 

(Sigma-Aldrich, Saint Quentin Fallavier, France) was added per well. Plates were then placed in the207 

dark for 7-10 min and the reaction stopped with 25 µL 1 N HCl and read at 490 nm.208 

Statistical analyses209

Statistical analyses and model fitting were conducted using the statistical package Genstat 7.1 (22).210

Mean biting rates (averaged over the two days of each weekly or monthly survey) were not normally211 

distributed (Shapiro-Wilk test P<0.001) and thus were boxcox transformed. Immunoglobulin titres212 

were similarly not normally distributed (Shapiro-Wilk test P<0.001) and thus were also boxcox213 

transformed. When parasite density was used as an explanatory variable it was Ln+1 transformed.214 

For the analysis of the effect of mosquito biting rate (anopheline only or all mosquitoes) on215 

individual parasite density, a Generalized Linear Mixed Model (GLMM) with a Poisson error216 

structure (loglinear regression) was fitted with individual person as a factor in the random model, to217 

account for multiple measures at different time points on the same individual.  Additional fitted218 

explanatory variables were gender and age as a continuous variable. For the analysis of the effect of219 

mosquito biting rate (anopheline only or all mosquitoes) on parasite prevalence rates and the220 

presence/absence of gametocytes in individual blood smears, binomial error structures were221 

implemented (thus a logistic regression).  (Ln+1) transformed parasite density was fitted as an 222 

additional explanatory factor in the gametocyte prevalence analysis.223 

Analyses of the effect of immunoglobulin titre on parasite density, parasite prevalence rates and the224

proportion of parasite infections with gametocytes were similarly performed fitting GLMM with225 

Poisson or binomial error structure.  Immunoglobulin titre measured in June, prior to transmission226 

season was used. In addition, because the duration of gametocyte carriage for a single infection in227 
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endemic settings can last up to 30 days (6, 17), a more conservative analysis on gametocyte positivity228 

was performed: i.e. we analysed the effect of immunoglobulin titre on whether an individual ever229 

carried gametocytes by fitting a Generalized Linear Model (GLM) and weighting for the number of230 

samples for each person. F-statistics in the GLM and Wald statistics, which approximate to a χ2 231 

distribution, in the GLMM were established.232 

The following data exclusion criteria were implemented prior to analyses: (i) data from the week of233

and three weeks following any individual that had suffered a clinical malaria episode; (ii) data from234 

the 2 weeks following an absence from the village. These exclusion criteria enable the analysis of only235 

confirmed asymptomatic infections.236 

237

RESULTS238

Parasite and gametocyte prevalence rates and asexual parasite density239

During nine weeks of survey, a total of 185 samples were found to be positive for P. falciparum by 240

thick smear alone (N=178) or smear and PCR (N=185). Mean parasite density was 4.5 parasites /µl241 

(S.D. 1.4, N=178), increasing from a mean of 3.5 (SD 0.2) pre-transmission season to a mean of 5.0242 

(SD 0.5) during the transmission season. 145 people were positive at least once (range 1-4, median 1).243 

There were only 8 smears positive for gametocytes, zero of which occurred in the pre-transmission244 

season (June). Same day RNA samples for RT-PCR detection of gametocytes were available for 121245 

of the 185 parasite positive samples from 82 of the 145 individuals.  79 of these samples from 49 246 

individuals were gametocyte positive; thus 42 samples from 33 individuals were gametocyte negative.247 

For those parasite positive samples for which a same day RNA sample was not available, RNA248 

samples from the week before and the week after were analysed. Two of these 119 samples were249 

found to be gametocyte positive, both from the same individual.  In addition, 42 randomly selected250 

RNA samples that were parasite negative were tested for gametocytes; none were found to be251 
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positive. 88% of parasite positive infections prior to the rains had gametocytes (none were smear 252 

positive) and comprised 24 of the 81 total gametocyte positive infections. Of the remaining253 

gametocyte positive samples, 30 were from apparently new infections, 12 from infections from254 

previous weeks that were at that time gametocyte negative and 15 that were at that time gametocyte255 

positive.256 

Mosquito biting rates and effect on parasitological measures257

All species mosquito biting rate ranged from 14 bites per person per night during the dry season258

survey to over 100 during the rains. Anopheles biting rates ranged from zero during the dry season259 

to 3 bites/person/night during the rains. The most prevalent mosquitoes were Aedes aegypti and Aedes260 

furcifer, accounting for 71% of all the mosquitoes captured and Culex tritaeniorhyncus and Culex261 

quinquefasciatus accounting for 22%. Other species captured were Aedes metallicus, Aedes unilineatus,262 

Aedes vittatus, Aedes neavei, Aedes decens, Aedes vexans, Aedes argenteopunctatus, Aedes sudanensis Culex lutzia 263 

tigripes, Culex perfuscus, Culex antennatus, Culex univitatus. The only anopheline species observed was264 

Anopheles arabiensis, accounting for 3% of all the mosquitoes captured. Despite some local variation,265 

coefficient of variation (CV) in biting density, whether for culicines or anophelines, was <1,266 

suggesting low variance in mosquito biting rates across the five sampling stations in the study site.267 

The number of anopheline bites per person was found to be positively associated with a significant268

increase in parasite density for the same week (P=0.001), explaining 9% of the overall variation269 

(Table 1). Age was negatively associated with parasite density (P=0.002). Although similar270 

associations were found when using anopheline biting density from the week or 2 weeks before, they271 

were less significant. Age was marginally negatively associated with parasite prevalence rates 272 

(P=0.012); by contrast, there was no effect of mosquito biting rates. The proportion of parasite273 

positive infections that were also gametocyte positive was found to be negatively associated with 274 

anopheles biting rates of that same week (P<0.001), explaining 10% of the observed variation in275 
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gametocyte rates. Parasite density was also negatively correlated with gametocyte presence (P<0.001);276 

there was no effect of age (P=0.50). As before, the association was less significant when using 277 

anopheline biting density from the week or 2 weeks before.  When using all species mosquito biting278 

density, the same patterns were found, but were consistently less significant. All species biting rates 279 

were highly positively correlated with anopheline biting rates (r=0.85).280 

Impact of immunoglobulin titres on parasitological measures281

We then tested the effect of immunoglobulin titres before the transmission season on parasite282

phenotypes, both including and excluding the impact of anopheline biting observed above. Pre-283 

season IgE anti-salivary gland extract (anti-SG) titres were strongly negatively associated with the284 

proportion of parasite positive infections also harbouring gametocytes (P=0.004) (Fig. 1) and this 285 

association was increased when co-analysing with the number of anopheline bites (P=0.002)(Table 2).286 

Similarly, these titres were negatively associated with individuals ever carrying gametocytes when 287 

parasite positive (P=0.003). No other tested immunoglobulin titres against salivary glands or288 

parasites had any significant association with any parasite phenotype. The effect of an 289 

immunoglobulin class may be influenced by the titres of other Igs. Notably the effect of IgE titres290 

can be strongly muted by IgG4 titres. Ratios of anti-SG IgG4 to IgE were not found to be associated 291 

with any parasite phenotype.292 

Immunoglobulin profiles and correlation among anti-salivary gland extract and ant-293

parasite immunoglobulin titres294 

IgE anti-parasite titres were highly positively correlated with IgE anti-SG titres (r=0.72) (Fig. 2).295

There were no other strong correlations (r>0.5) among immunoglobulins. IgE and IgG4 anti-SG 296 

decreased with age (P=0.002 and P<0.001 respectively), whereas IgG3 anti-parasite titres increased 297 

with age (P<0.001); IgE anti-parasite showed a trend to decrease with age, but this was not298 

significant (P=0.15).  There were several striking seasonal changes in immunoglobulin titres. Notably299 
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IgE & IgG4-anti-SG increased as did anti-parasite IgG3. Paradoxically, however, anti-parasite IgE300 

levels diminished. The differences in anti-parasite IgE titre (November vs. June) strongly correlated 301 

with the IgG3 anti-parasite titre in June (r=0.77); i.e. those individuals who showed the lowest302 

decrease in anti-parasite IgE titre had the highest June IgG3 anti-parasite titre.303 

304

DISCUSSION305

In this study, we observed that mosquito biting density was strongly positively associated with306

parasite density but with no impact on parasite prevalence rates. This seasonal trend has been noted 307 

before in a very different setting in Liberia (34). Although new infections could lead to such308 

increased parasite density, the absence of any change in parasite prevalence rates and the association309 

with mosquito biting rates of the same week, rather than the week before (given the development310 

period of at least 1 week in the liver) argue against this. Furthermore, this confirms observations in311 

an experimental mouse model, which found that mosquito bites accelerated malaria parasite asexual312 

replication rate even during primary infections (5), although this was not confirmed (47).313 

We found a strong negative impact of mosquito bites on the production of gametocytes, but which314

was notably due to the large percentage of dry season (when anophelines were absent and other315 

mosquito spp. at much reduced abundances) infections that carried gametocytes. Time since316 

infection (41) and time since treatment (29) have previously been highlighted as increasing317 

gametocyte carriage in symptomatic infections. The relevance of this to chronic, asymptomatic 318 

infections is unclear. We are unable to differentiate the age of infection and the much reduced level 319 

of mosquito biting during the dry season in this study. However, as discussed below, the strong 320 

negative correlation between anti-SG titres and the occurrence of gametocytes does suggest some321 

influence of mosquito bites on gametocyte production.322 
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Individual anti-SG IgE titre was also found to be strongly positively correlated with IgE anti-323 

parasite titre. This is consistent with the hypothesis that mosquito bites pre-dispose individuals to324 

develop an IgE anti-parasite response, potentially by orientation of the immune response to a Th2325 

profile (53). Such an orientation of the immune response would be expected to lead to a reduced326 

Th1 type environment resulting in a lower acquisition of asexual parasite-targeting effectors and thus327 

a more fertile ground for asexual parasite survival. This is consistent with suggestive evidence that328 

individuals with higher acquired immunity induce a higher level of gametocyte conversion in329 

infecting parasites (7). Although IgG3 anti-parasite titres did not impact upon gametocyte prevalence330 

or parasite density, they increased with age, which itself had a significant negative impact on parasite 331 

density.  Interestingly, IgG3 anti-parasite titres were negatively correlated with the seasonal decrease 332 

in IgE anti-parasite titres. Such a seasonal decrease might be indicative of exhaustion of circulating333 

IgE, potentially being bound to effector cells. If this is the case, then there is clearly competitive 334 

interference of anti-parasite IgE by anti-parasite IgG3, with potential consequences on the parasite.335 

There is conflicting evidence concerning a role for mosquito saliva in facilitating the initiation of an 336

infection by Plasmodium sporozoites (26, 50). Here, we provide evidence that mosquito saliva has a337 

demonstrable impact on the parasite during the chronic asymptomatic stage of infection.  We338 

previously proposed that, in malaria endemic regions of seasonal mosquito activity, such chronic339 

infection parasites may respond to the effects of anopheline bites by producing gametocytes in order340 

to transmit rapidly after the expansion of the anopheline population (37). The general effect of all 341 

mosquito spp. bites on parasite phenotypes and the predominance of culicine mosquitoes observed 342 

here, suggests that parasites may respond generally to increased mosquito bites. Parasites need to343 

produce gametocytes to transmit to mosquitoes and they are generated from the circulating asexual344 

parasite population. Consequently, parasites are faced with a trade-off between, on the one hand,345 

producing sufficient asexual parasites to maintain an effective population size to withstand 346 
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immunological destruction, and, on the other, generating sufficient gametocytes to be able to347 

transmit.  Chronic infection parasites persist at very low densities, often only detectable by PCR. The348 

parasite must therefore generate gametocytes (at a density of at least 1/µl) from a very low density349 

asexual population. Accelerated parasite replication following anopheline mosquito bites would350 

provide parasites with a sufficient biomass to generate gametocytes at high enough densities to 351 

ensure transmission, a phenomenon observed in the mouse model studies (5). An alternative352 

explanation for such accelerated parasite replication is that it is a parasite response enabling it to353 

outcompete co-infecting clones either for resources (i.e. direct competition) or for “enemy-free”354 

space (i.e. avoid the immunological consequences induced by another clone - apparent competition 355 

(33)). Investment in asexual stages would thus be at a cost to gametocyte production, hence the356 

observed negative impact of parasite density on gametocyte prevalence.357 

The role of IgE in the immuno-allergic response is well documented but their role in the outcome358

of malaria infection remains controversial and poorly understood. The levels of P. falciparum-specific-359 

IgE are elevated during a malaria episode and it has been proposed that they play a pathogenic role360 

for severe episodes (20, 39, 40), whereas in asymptomatic infections the IgE levels were associated 361 

with protection (4). As described above, an important role for the Th1/Th2 balance in the outcome362 

of infection has been suggested by several studies (20). A recent genome wide linkage study363 

identified several loci that were linked to asymptomatic parasite densities (45) and all these loci have364 

been previously linked to asthma/atopic disease or related phenotypes (e.g. 52, 54). The acquisition 365 

of premunition following successive infections may therefore include the development of immuno-366 

tolerance as well as immuno-protection.367 

Strategies that reduce the development of effective immune responses will not only enable an368

increased duration of the concurrent infection, but also potentially enable re-infection of the same369 

host by the same strain. The extent to which parasites actively manipulate the Th1/Th2 balance, 370 
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rather than simply profit from the allergenic nature of mosquito saliva is not clear. Parasites are371 

known to alter expression of several salivary gland proteins during their development within the372 

salivary gland (10), but their immunogenicity has not been characterized and would in any case only 373 

be relevant for the initial invasion of the host.  It seems more likely that the parasite is profiting from374 

the allergenic nature of mosquito bites to then induce a Th2 response against itself. Whilst repeated375 

infections will eventually lead to the development of an effective immune response, it will be 376 

substantially delayed. A single infection by a clone of P. falciparum can last up to 2 years, a duration377 

which may be facilitated by such immuno-modulation in addition to mechanisms such as antigenic 378 

variation (11). Sterilising immunity, if ever achieved, takes a lifetime of regular exposure to infection 379 

and a single strain can infect the same individual twice. It is thus possible that immuno-modulation380 

can enable repeated infection of the same host and hence is a key mechanism for maintaining a 381 

permissive host population.382 

In conclusion, this work contributes to the on-going debate concerning targeting of mosquito383

saliva components as a strategy of malaria control (16, 26). In contrast to the focus on the initial384 

stages of infection in naïve hosts, our work suggests that there may be longer term effects of 385 

mosquito saliva that promote parasite persistence in chronic infections. Thus, whilst preventing386 

infections is optimal, mechanisms aimed at reducing the duration of infection will contribute to387 

reducing prevalence and onward transmission of the parasite.388 
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Table 1. The effect of anopheline biting density on P. falciparum phenotypes: (A) Parasite density; 567

(B) Parasite prevalence rates; (C) proportion of infections harbouring gametocytes. a  568 

569

Parameter Wald P-value Parameter est. (SE) adj. R2

(A) Anopheles density Same week 10.36 0.001 0.076 (0.023) 0.086

Anopheles density week before 9.49 0.002 0.066 (0.002) 0.082

Anopheles density 2 weeks before 3.89 0.049 0.032 (0.016) 0.055

Age 9.62 0.002 -0.005 (0.002)

(B) Anopheles density Same week 1.77 0.183

Anopheles density week before 0.47 0.495

Anopheles density 2 weeks before 0.98 0.322

Age 6.26 0.012 -0.011 (0.004) 0.004

(C) Anopheles density Same week 14.1 <0.001 -1.08 (0.29) 0.10

Anopheles density week before 12.5 <0.001 -0.886 (0.250) 0.12

Anopheles density 2 weeks before 8.26 0.004 -0.525 (0.183) 0.09

Ln (Parasite density+1) 12.57 <0.001 -0.962 (0.271)

aShown are the Wald statistics, the P-value, the parameter estimates (with standard errors) from the570 

fitted model and the adjusted R2. The statistics for the parameters Age and Ln (Parasite density+1)571 

are those in the best fit model.572 

573

574

575
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Table 2.  Effect of IgE anti-salivary gland extract titre (pre-anopheline season) on the proportion of576 

P. falciparum infections harbouring gametocytes: (A) Excluding the Anopheline biting rate; (B)577 

Including the Anopheline biting rate.a  578 

579

Parameter Wald P-value Parameter est. (SE) adj. R2

(A) IgE anti-SG 8.24 0.004 -2.77 (0.97) 0.082

Ln (Parasite density+1) 34.9 <0.001 -2.17 (0.37) 

(B) IgE anti-SG 9.38 0.002 -0.788 (0.257) 0.131

Ln (Parasite density+1) 13.75 <0.001 -0.502 (0.135)

Anopheles density Same week 11.69 <0.001 -0.580 (0.171)

a Shown are the Wald statistics, the P-value, the parameter estimates (with standard errors) from the580 

fitted model and the adjusted R2. The statistics for the Ln (Parasite density+1) are those in the best581 

fit model.582 

583
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Figure Legends 584 

Figure 1. Boxplot of pre-anopheline season IgE anti-salivary gland extract titres (boxcox 585 

transformed) in individuals who had or had never carried gametocytes during a P. falciparum infection. 586 

The box spans the interquartile range of the values, so that the middle 50% of the data lie within the587 

box, with a line indicating the median. Whiskers extend beyond the ends of the box as far as the588 

minimum and maximum values.589 

590

Figure 2. Correlation between anti-parasite and anti-salivary gland extract titres (boxcox591 

transformed). Shown is the linear correlation (solid line) and the 95% confidence intervals estimated 592 

from a loglinear regression (dashed lines).593 

http://iai.asm.org/


http://iai.asm.org/


http://iai.asm.org/

