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Bayesian mapping of pulmonary tuberculosis in
Antananarivo, Madagascar
Rindra V Randremanana1*, Vincent Richard1†, Fanjasoa Rakotomanana1†, Philippe Sabatier2†, Dominique J Bicout2†

Abstract

Background: Tuberculosis (TB), an infectious disease caused by the Mycobacterium tuberculosis is endemic in
Madagascar. The capital, Antananarivo is the most seriously affected area. TB had a non-random spatial distribution
in this setting, with clustering in the poorer areas. The aim of this study was to explore this pattern further by a
Bayesian approach, and to measure the associations between the spatial variation of TB risk and national control
program indicators for all neighbourhoods.

Methods: Combination of a Bayesian approach and a generalized linear mixed model (GLMM) was developed to
produce smooth risk maps of TB and to model relationships between TB new cases and national TB control
program indicators. The TB new cases were collected from records of the 16 Tuberculosis Diagnostic and
Treatment Centres (DTC) of the city from 2004 to 2006. And five TB indicators were considered in the analysis:
number of cases undergoing retreatment, number of patients with treatment failure and those suffering relapse
after the completion of treatment, number of households with more than one case, number of patients lost to
follow-up, and proximity to a DTC.

Results: In Antananarivo, 43.23% of the neighbourhoods had a standardized incidence ratio (SIR) above 1, of which
19.28% with a TB risk significantly higher than the average. Identified high TB risk areas were clustered and the
distribution of TB was found to be associated mainly with the number of patients lost to follow-up (SIR: 1.10, CI
95%: 1.02-1.19) and the number of households with more than one case (SIR: 1.13, CI 95%: 1.03-1.24).

Conclusion: The spatial pattern of TB in Antananarivo and the contribution of national control program indicators
to this pattern highlight the importance of the data recorded in the TB registry and the use of spatial approaches
for assessing the epidemiological situation for TB. Including these variables into the model increases the
reproducibility, as these data are already available for individual DTCs. These findings may also be useful for
guiding decisions related to disease control strategies.

Background
Tuberculosis (TB), the seventh most common cause dis-
ease in the world [1], is the leading cause of death from
a curable infectious disease. In Madagascar, 18,000 to
20,000 new TB cases are detected every year [2]. The
estimated incidence of pulmonary TB in the city of
Antananarivo in 2004, 141 cases per 100,000 inhabi-
tants, is the highest rate in the country [3].
The dynamics of infectious diseases depends on the

spatial distribution of pathogens and hosts, and the
probability of an encounter between them. The

transmission of infectious pathogens from infected to
susceptible hosts declines with increasing distance
between individuals. TB, like many infectious diseases, is
prone to spatial aggregation or clustering [4,5]. However
in large cities, which tend to be overcrowded, with
many highly mobile individuals, the spatial correlation
generated by the transmission of infection may be dis-
rupted, depending on the degree of mixing of the popu-
lation [6]. A recent study based on a spatial scan
statistic method showed that TB cases were highly con-
centrated in many neighbourhoods in Antananarivo [7].
Here, we re-examine this finding using a Bayesian
approach, as previously described for analyses of the
spatial distribution of prostate cancer incidence [8], lung
cancer [9], malaria [10], giardiasis [11], equine infectious
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anaemia in horses [12]; modelling the effects of indica-
tors of tuberculosis [13], schistosomiasis [14] and pre-
dicting the spatial distribution of schistosomiasis [15].
Previous disease mapping work was based on collating,
mapping and analysing prevalence or incidence data
with conventional statistical approaches, which are
affected by random variation due to population variabil-
ity and a loss of statistical power when cases are
assigned to subgroups (e.g., several geographic subareas).
Differences in geographic distribution due to chance
may be incorrectly interpreted as true variation of epide-
miological interest. The observed extreme values may
not reflect the true spatial distribution of the disease,
instead reflecting those of the population area. The
Bayesian method can overcome these problems as it can
model the random and true variation separately [16]
and is an attractive alternative to the frequentist
approach. Bayesian methods can provide some shrinkage
and spatial smoothing of raw standardized incidence
ratio estimates, which are strongly influenced by the size
of the population at risk, resulting in a noisy and
blurred picture of the true unobserved risks [17].
Tuberculosis is a disease with a social dimension, as it

is known to be linked to socio-economic status. In
developing countries, constraints on resources limit the
collection of socio-economic data, which requires speci-
fic and costly investigation. In this study, we analysed
the spatial distribution of pulmonary tuberculosis (TB)
in Antananarivo and investigated the relationships
between the indicators or outcomes and covariates
included in the TB registry and TB incidence rates esti-
mated from epidemiological data. We used indicator
and covariate data from the national TB control pro-
gram incorporated into a TB registry. These variables
were related to both TB transmission and healthcare
system quality. In this study, we investigated whether
the spatial pattern of TB could be explained by consid-
ering indicators from the national control program with-
out taking into account explicitly the socio-economic
status of the concerned neighbourhood. To this end, we
use a Bayesian approach to analyse data for new cases
of TB reported during the period 2004-2006 in the city
of Antananarivo, with the aim of increasing our knowl-
edge of the true underlying geographic distribution of
TB rates and improving prediction indicators.

Methods
Study area
This study was conducted in Antananarivo, the capital
city of Madagascar. Antananarivo is the most densely
populated city in Madagascar, with a population of
1,114,346 spread across 90 km2, giving a population
density of almost 8687 inhabitants/km2. The city counts
six administrative districts, comprising a total of 192

neighbourhoods, and is located at an altitude of 900 m
to 1500 m and has a high-altitude tropical climate [18],
with two seasons: a hot rainy season from April to
October and a cold dry season from May to September.
The average annual temperature is 18°C, with a maxi-
mum of 26°C (in November) and a minimum of 10°C
(in July).
The population is served by three university teaching

hospitals (Centre Hospitalier Universitaire (CHU)), 105
health centres and 16 Tuberculosis Diagnostic and
Treatment Centres (DTC). The city has a good health
service coverage but the neighbourhoods are consider-
ably heterogeneous in terms of socio-economic condi-
tions with some of them subjected to overcrowding,
substandard housing conditions and unemployment.
Epidemiological data sources
The 16 Tuberculosis DTC of the city provided the data
for TB new cases. TB cases are registered in a routine
information system as part of the official TB control
program. The TB registry contains information on the
patient’s place of residence, treatment follow-up and sta-
tus (new cases, retreatment, treatment failure, and
relapse after the completion of treatment) and treatment
outcome (recovery, completion of treatment etc). All
cases were followed up during treatment, and new cases
underwent bacteriological check-ups at 2, 5 and 7
months. Cases of pulmonary tuberculosis were defined
as patients presenting a cough lasting for more than
three weeks and confirmed by a positive sputum smear.
All new cases recorded in DTC registries from 2004 to
2006 corresponding to patients resident in the city of
Antananarivo were included in this study. Approval for
this study was obtained from the National Ethics Com-
mittee of the Ministry of Health of Madagascar.
Demographic and geographical data
Maps of the administrative districts and neighbourhood
boundary lines were provided by the Development
Office of Antananarivo (DOA). Population denominators
for each neighbourhood were obtained from demo-
graphic census data for 2005.
Bayesian approach
Combination of a Bayesian approach and a generalized
linear mixed model (GLMM) was used to assess spatial
heterogeneity in the TB standardized incidence ratio
(SIR) and to investigate associations between the three-
year average TB incidence rates and the following five
variables: number of patients undergoing retreatment
(X1i), number of patients with treatment failure and
those suffering relapse after the completion of treatment
(X2i), number of patients stopping treatment within two
months (lost to follow-up) (X3i), number of households
with more than one case (X4i), and distance from the
patient’s residence to the DTC (X5i). All these Xki (with
k = 1, 2, ..., 5) , calculated for each neighbourhood “i“ (i
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= 1, 2, ..., 192), were obtained from TB registries and
incorporated into the national TB control program.
These Xki were chosen as explicative variables because
they are indicator of healthcare system and, to some
extent, they carry more or less information on the
socio-economic, hygienic status of the neighbourhood
and therefore on the likelihood of TB transmission. The
X5 is considered as a distal variable while the all others
X’s as proximal variables for the TB transmission. For
instance, as the TB is transmitted by close contacts
between infectious peoples and susceptible ones, the
number of households with more than one case can be
informative of the population density, or one may won-
der whether new cases are recruited from populations
among which we find patients undergoing retreatment
and/or with treatment failure. Likewise, the number of
patients stopping their treatment may be indicative of
their socio-economic conditions and/or education level,
or living far away from the DTC could turn out to be
penalizing for accessibility of health care facilities and
thus discouraging patients to complete their treatment.
This study was conducted at the neighbourhood scale.

For each neighbourhood “i“ (i = 1, 2, ..., n), the expected
number of new cases εi was estimated as the mean new
case rate over all districts multiplied by the population
of the neighbourhood (i.e., εi = mean new case rate ×
popi), and the standardized incidence ratio (SIR) li of
each neighbourhood “i“ was calculated as the observed
number of new cases divided by the number of expected
cases. Within the Bayesian framework, the observed
numbers of new cases y = (y1,..., yn) in the n neighbour-
hoods were treated as non-independent Poisson random
variables with means μ = (μ1,..., μn), where each μi is
given by μi = εi × li, or, in the logarithmic form, log(μi)
= log(εi) + log(li). The SIR li is a function of the expli-
cative variables Xki that account for differences and spa-
tial heterogeneity in the disease rate: li = exp(b0 + b1x1i
+ b2x2i+ b3x3i + b4x4i + b5x5i+ θi + νi) with xki = Xki/
SDk, where SDk is the standard deviation (over all
neighbourhoods) of each variable.
For the bk we assumed non-informative Gaussian

prior distributions with a mean of zero and a precision
of 10-5, whereas b0 was assumed to have a flat distribu-
tion. In this context, νi is a non-spatially structured ran-
dom effect, assumed to have an independent Gaussian
distribution of zero mean and variance s2

ν following an
inverse Gamma distribution as 1/sv ~ dgamma(0.5, 5 ×
10-4). This effect was generally included in the models
to account for extra-Poisson variation due to important
explicative variables that were not measured. The spa-
tially structured random effects - θ = (θ1,..., θn) -
accounted for the spatial dependence, with the prior dis-
tribution taken as a conditional intrinsic Gaussian auto-
regressive model, in which the mean value for θi is a

weighted average of the neighbouring random effects
and the variance, s2

θ following an inverse Gamma dis-
tribution of the form 1/sθ ~ dgamma(0.5, 5 × 10-4),
controls the strength of this local spatial dependence, p
(θi/θj≠i)~N(∑j≠i wij θi/∑j≠i wij , s

2
θ/∑j≠i wij). As in most

studies based on areas, we defined “neighbourhoods” as
adjacent census tracts with simple binary adjacency
weights, i.e. wij = 1 if areas i and j share a common
boundary and wij = 0 otherwise.
These prior probability distributions and the likeli-

hood of the data were updated and used in the Bayes’
relation to obtain posterior distributions for the SIR
[19]. The parameters were estimated by Markov chain
Monte Carlo methods, using the public domain software
package WinBUGS (Cambridge, UK) [20]. Two Markov
chain Monte Carlo simulations were carried out in par-
allel, with different initial values, for parameter estima-
tion. The time series plot for each parameter and
Gelman-Rubin statistics showed that convergence
occurred within 6,000 iterations. Thus, the inference of
parameters was based on 20,000 iterations of both
chains after the burn-in phase of 10,000 iterations. Each
neighbourhood SIR was then input into a Geographic
Information System for mapping. When investigating
whether the posterior neighbourhood incidence rates
were significantly higher or lower than the average rate,
we have defined low risk (LR) and high risk (HR) neigh-
bourhoods as follows. A HR neighbourhood was consid-
ered as having a rate significantly greater than the mean
when the SIR was higher than 95% of iterations from
the posterior distribution and SIR > 1. Likewise, a LR
neighbourhood was considered as having a rate signifi-
cantly lower than the mean when the SIR was higher
than 95% of iterations from the posterior distribution
and SIR < 1. In all other cases, the neighbourhood rate
was considered to be not significantly different from the
mean rate.

Results
Antananarivo had 3075 notified new cases of TB during
the study period, for which 2270 neighbourhoods of
residence were identified. The poor quality of the
patient address made the location assignment impossible
for other patients.
Three separate models including/excluding the covari-

ate/random effects were developed to investigate
whether the covariates accounted for part or all of the
spatial correlation in the TB SIR: a Bayesian model with
spatial and non-spatial random effects only (model 1), a
Bayesian model with covariates and non-spatial random
effects (model 2), and a Bayesian model with both cov-
ariates and spatial and non-spatial random effects
(model 3). The three models were quite similar on the
basis of the deviance information criterion (DIC) only
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(see Table 1). However, model 2 had the highest var-
iance of non-spatial random effects followed by model 1
and model 3 (see Table 1). The variance of the spatially
structured effects, s2

θ was 0.0059 for model 1, which
involved random effects but no explicative variables.
The inclusion of explicative variables in model 3
decreased the variance of spatially structured effects to
4.6 × 10-5. Thus, model 3 was retained for the further
analysis.
From model 3, the neighbourhood SIR ranged from

0.44 to 8 (maximal SIR = 18 × minimal SIR). The spatial
distribution of the estimated SIR is displayed in Figure
1, where 83 out of 192 neighbourhoods (43.2%), scat-
tered throughout the city, have SIR > 1. The variance of
non-spatially structured effects which account for the
intrinsic variability of SIR in each neighbourhood was
6.1 × 10-5 (95% CI: 4.7 × 10-7 - 0.05), and the variance
of spatially structured effects was 4.6 × 10-5 (95% CI: 2.7
× 10-7 - 0.66).
As displayed in Figure 2, 21 LR (10.9%) and 16 HR

(8.3%) neighbourhoods were identified. The 21 LR
neighbourhoods had from 37% to 55% fewer cases than
the average (case deficit), whereas the 16 HR neighbour-
hoods had from 55% to 713% more cases than the aver-
age (case excess).
Parameter estimates for association between TB new

cases and explicative indicators (proximal and distal
variables for TB transmission) are reported in Table 1
(note that the b’s are similar in both models 2 and 3).
From model 3, patients living in households with more
than one case were found to be at higher risk (SIR =
1.13, 95% CI: 1.03, 1.24) than those lost to follow-up

(SIR = 1.10, 95% CI: 1.02, 1.19). As a check, these asso-
ciations are plotted in Figure 3 (a, b) using a simple lin-
ear regression model.

Discussion
We used a Bayesian approach to analyse the spatial dis-
tribution of pulmonary TB incidence in Antananarivo
and to investigate association between TB rate and
national TB control program indicators as explicative
variables. Given that the DICs for the three models are
not significantly different, we choose to retain the model
3 with the lowest variances of both random and spatially
structured effects. As the variances of non-spatially
structured and spatially structured effects both signifi-
cantly decrease (by 89% and more than 100%, respec-
tively) when incorporating explicative variables into
model 1 to obtain model 3, this indicates that much of
the dispersion and spatial pattern of the TB incidence
are taken into account by explicative variables. This
finding is also consistent with the fact that the spatial
distribution of explicative variables was heterogeneous
and clustered.
We have found at the neighbourhood scale that there

is a strong geographic heterogeneity in pulmonary TB
risk, with clusters of high risk areas, as previously
reported [7], and two proximal variables the “number of
household with more than one case” and “number of
patients lost to follow-up” are the important explicative
indicators of the TB distribution. Therefore, one may
hypothesize that TB transmission in the context of
Antananarivo would mainly originate from the clustered
risk factors (like households with many cases and/or

Table 1 Estimated Risk Factors Associated With TB Standardized Incidence Ratio by GLMM model, Antananarivo,
Madagascar, 2004-2006

Model 1: with spatial and non-
spatial random effects only

Model 2: with covariates and
non-spatial random effects

Model 3: with covariates, spatial
and non-spatial random effects

Covariates b SIR b SIR b SIR

Intercept -0.055 - -0.350 - -0.289 -

Retreatmenta - - -0.032 0.968 -0.006 0.994

Relapse + treatment failureb - - -0.012 0.988 -0.017 0.982

No households with case > 1c - - 0.134 1.143 0.127 1.135

Patients lost to follow-upd - - 0.101 1.106 0.099 1.104

Distance to DTCe - - 0.042 1.042 0.024 1.025

Non-spatial random effect variance 5.4 × 10-4 0.03 6.1 × 10-5

Spatial random-effect variance 0.006 - 4.6 × 10-5

Deviance Information Criterion(DIC) 960.7 958.5 961.4

b: associated coefficient of the GLMM regression

SIR: standardized incidence ratio
a: number of patients undergoing retreatment/standard deviation of retreatment
b: number of patients with relapse + number of patients with treatment failure/standard deviation of relapse and treatment failure
c :number of households with more than one case/standard deviation of households with more than one case
d: number of patients lost to follow-up/standard deviation of patients lost to follow-up
e: distance from patient’s residence to DTC/standard deviation of patient’s residence to DTC
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patients being lost to follow-up) rather than resulting
from nearest neighbour diffusion. Confirmation of such
a hypothesis will require genetic investigations (genetic
investigation of Mycobacterium tuberculosis strains) and
epidemiological studies (multilevel analysis).
Bayesian spatial modelling is a valuable tool for the

geospatial assessment of disease patterns that can help
to identify community differences. This method investi-
gates spatial disease patterns and evaluates uncertainty
of geographic data. Maps including uncertainty can
allow more informed and objective decision-making in

relation to targeted disease control, as helping program
managers to improve their understanding of decision
risk [15,21,22]. Thematic mapping of the 95 percentile
range of SIR provides the uncertainty associated with
the posterior mean SIR estimates, and identifies LR and
HR neighbourhoods with an SIR significantly higher or
significantly lower than average risk. On the one hand,
most HR neighbourhoods were located in areas for
which pulmonary tuberculosis clusters have been
detected [7]. The risk was significantly higher in some
areas, including the 1st and 4th districts, in which

Figure 1 Bayesian smoothed standardized incidence ratio for pulmonary TB diagnosed from 2004 to 2006 across Antananarivo
neighbourhoods. Mean standardized incidence ratio. “white square": <1. “pale grey square":1-2. “dark grey square":2-4. “black square": >4. “white
rectangle with black bold outline": District boundaries. “white rectangle with black thin outline": Neighbourhood boundaries.
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unhygienic conditions prevail. In addition, the neigh-
bourhoods with high posterior mean SIR estimates were
those for which the Bayesian credible intervals suggested
that pulmonary TB was a potential problem. Objective
decisions are required concerning the active detection,
prevention or control of TB in these areas. On the other
hand, the LR neighbourhoods tended to be located
either in the wealthier central neighbourhoods or at the
edge of the city. Peripheral neighbourhoods had lower

population densities (number of inhabitants/surface
area) than those in the city centre. The lower the popu-
lation density is the less overcrowding should follow
resulting hence in an increase of contact distances and
thus in decrease of TB transmission. However, the den-
sity data may not be reliable because most of this area is
uninhabitable (rice fields, swamp), resulting in an under-
estimation of the true population density. Occupancy
rates such as the number of persons per room used for

Figure 2 Maps of significantly lower risk (LR) and higher risk (HR) neighbourhoods in Antananarivo, 2004-2006. “white rectangle with
black bold outline": District boundaries. “white rectangle with black thin outline": Neighbourhood boundaries. “pale grey square": Significantly
lower risk neighbourhoods (SIR < 1 with high certainty). “dark grey square": Significantly higher risk neighbourhoods (SIR > 1 with high certainty).
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habitation and the percentage of households occupying
only one room may be more suitable indicators in devel-
oping countries [23]. Furthermore, the detection of
neighbourhoods associated with a significantly lower
risk should be interpreted with caution, as TB detection
is passive in Madagascar and the true rate is not actually
known. TB treatments are free in Madagascar so unwill-
ingness to seek medical care probably reflects differ-
ences in educational level rather than the financial

accessibility of health care. The SIR may also be overes-
timated for neighbourhoods close to health care facil-
ities, but our results suggested that the positive
association between TB incidence rates and the distal
variable distance from the patient’s residence to the
DTC was not significant.
Further data collection is required for neighbourhoods

with a low degree of certainty. Unmeasured local factors
(e.g., explicit socio-economic factors) not included in

Figure 3 Neighbourhood TB standardized incidence ratio in Antananarivo Madagascar, as a function of the 2 significant explicative
variables, with linear regression model, 2004-2006.
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the analysis may have a stronger influence in these
areas, as TB is associated with socio-economic status.
Socio-economic data for all neighbourhoods was not
available.
At the district level (ensemble of neighbourhoods), TB

incidence rates were found heterogeneous for all dis-
tricts except the 2nd and 6th districts. The incidence rate
in the 2nd district was low. These differences may reflect
the underlying heterogeneous spatial distribution of
socio-economic status. Uncertainty levels were high for
all neighbourhoods in the 6th district, in the north-east
part of the city; the least populated area district, in con-
sistency with findings in the US [8]. The greater uncer-
tainty associated with peripheral neighbourhoods may
be accounted for by a lack of support from neighbours.
Future studies should include guard areas, external to
the study area to compensate for edge effects [24].
The geographic patterns seen in these maps may have

been influenced by two factors: the number of patients
lost to follow-up and the number of households with
more than one case. The positive association between
households with more than one case and TB risk has
been reported in the same setting [7] and elsewhere
[13]. Patients lost to follow-up remained contagious and
continued to spread the bacillus, resulting in an increase
in the risk of TB in their neighbourhoods. The loss of
large number of patients to follow-up may reflect low
levels of care or a poor follow-up system. As an addi-
tional check, positive associations between TB incidence
rates and the two significant explicative variables or
indicators were confirmed again using a simple linear
regression as shown in Figure 3 (as expected, the
obtained values of regression coefficients are different
from ones in Table 1). Similar checks conducted for the
relation between TB incidence and the retreatment,
relapse and treatment failure turn out all not statistically
significant. The results of our analysis highlight defects
in the health care system in low-income country. In
these areas, the functioning of the health care system is
impaired by diverse factors, including the poor motiva-
tion of health workers, cumbersome organisational
structures and institutional and personal values.
The spatial scan statistic used in previous studies for

determining the spatial distribution of TB has been
shown to be complementary to Bayesian methods. The
spatial scan approach encompassed many neighbour-
hoods and tended to detect larger clusters than
expected, because the surrounding regions were
absorbed, generating false-positives areas due to a lack
of specificity; by contrast Bayesian methods minimise
false positive rates when used to identify risk areas
[17,25,26]. The scan statistic detects general regions in
which the risk is significantly high and the Bayesian pos-
terior distribution helps to identify the neighbourhoods

contributing strongly to the scan statistic circle [8].
Thus, results for cluster analysis should be interpreted
with knowledge of the spatial rate distribution, such as
spatial Bayesian rates in particular [27].

Conclusion
Studies of this type, using a Bayesian approach to esti-
mate both the contribution of variables or indicators
related to the health system and the spatial pattern of
TB, should be encouraged in epidemiology. Our results
confirmed the spatial heterogeneity of TB distribution,
with clustering in particular areas observed in Antana-
narivo, and the importance of covariate effects. The
number of households with more than one case is an
indicator of TB transmission whereas the number of
patients lost to follow up could reflect the efficacy of
the health care system for patient follow-up. All the
indicators studied here were selected with the aim of
ensuring reproducibility of the model, as all were
recorded at the DTC and had already been incorporated
into the information system routinely used by the TB
control program. However, demographic and habitat
censuses should be carried out to obtain socio-economic
data for neighbourhoods, as the occurrence of TB is
known to be linked to both the quality of health care
and socio-economic status. The confirmation of TB
cluster areas in Antananarivo may help public health
authorities to set up priorities regarding to be targeted
for prevention or control measures.
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