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Abstract

Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative
information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies
has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-
pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes
in bacteria. In this work we determined presence/absence patterns of 814 different virulence-related genes among more
than 600 finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different
taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold
validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A
reduced subset of highly informative genes (120) is presented and applied to an external validation set. The statistical model
was implemented in the BacFier v1.0 software (freely available at http : ==bacfier:googlecode:com=files=Bacfier v1 0:zip),
that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the
presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for
the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of
the core set of genes, corresponding to eight functional categories, all with evident and documented association with the
phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for
pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to
important evolutionary conclusions.
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Introduction

Several factors, including globalization and sanitation condi-

tions, have been shaping the world’s landscape of infectious

diseases over the years. In developed countries, 90 percent of

documented infections in hospitalized patients are caused by

bacteria. These cases probably show only a small proportion of the

actual number of bacterial infections occurring in the entire

population, and they usually represent the most severe cases. In

developing countries, a variety of bacterial infections often provoke

a devastating effect on the inhabitants’ health. The World Health

Organization (WHO) has estimated that each year, 1:3 million

people die of tuberculosis, 0:2 million die of pertussis and

0:1 million die of syphilis. Diarrheal diseases, many of which are

of bacterial etiology, are the second leading cause of death in the

world (after cardiovascular diseases), killing 2:5 million people

annually (WHO, 2008). This scenario evidences that even today,

infectious diseases are a permanent threat for human health

around the world.

Understanding the biology of the causative agents of these

diseases has been a permanent challenge since the beginning of

bacteriology. Nowadays, the mechanisms involved in the virulence

(defined as the relative capacity of a microbe to cause damage in a

host) of pathogenic bacteria are widely studied in clinical

bacteriology, but the advent of new technologies has enabled

their study from different perspectives. In this context, bacterial

genomics have greatly contributed to the better understanding of

pathogenicity due to the possibility of generating and comparing

whole genome sequences. The onset of this discipline started with

the automation of Sanger sequencing chemistry and the comple-

tion of Haemophilus influenzae and Mycoplasma genitallium genomes

[1,2] in the mid-1990 s; since then, projects to sequence the

genomes of a large number of organisms were undertaken by

means of this method [3–5]. However, during the last decade, to

cover the increasing sequencing demands, new non-Sanger high-

throughput sequencing systems have been developed under the

name of ‘‘second generation’’ or ‘‘next-generation’’ sequencing

technologies [6,7]. These developments have significantly reduced

the cost and simultaneously increased the speed of DNA

sequencing. In this sense, the great majority of organisms whose

genomes have been sequenced so far are bacteria, with 1505
complete and published genome sequences and 6037 ongoing
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projects (http://www.genomesonline.org/cgi2bin/GOLD/bin/

gold.cgi).

Comparative genomics, including comparison at the DNA,

transcriptome, and proteome levels, have emerged as a key to give

a biological sense to all this massive information. Focused on

improving the knowledge on pathogenicity determinants two

bioinformatic approaches have been used, based on two comple-

mentary explanations for bacterial pathogenesis. On the one hand,

pathogenicity has been related to amino acid substitutions which

lead to modified protein structures, and probably modified

functions [8–10]. In this case, a particular gene shared by a

human pathogenic species and a non-pathogenic species, could be

causing a pathogenic phenotype in the first one, determined by

non-synonymous mutations that modify key aminoacids and alter

protein function. Based on this, our group has recently published a

method that detects variable regions inside protein sequences

which can be potentially related to pathogenicity [11].

On the other hand, trying to give an integrative view of

bacterial pathogenicity prediction from a bioinformatic’s perspec-

tive, in this work we exploit an alternative explanation for bacterial

pathogenicity. Pathogenicity has been attributed to the presence or

absence of genes which confer particular pathogenic phenotypes,

like toxins [12]. In this case, these genes would be present in

pathogenic species but absent in non-pathogenic ones. The most

widely spread approach to evaluate this is the pairwise comparison

between genomes of pathogenic and non-pathogenic bacteria or

even multiple comparisons between different strains of the same

species [13–15]. These kinds of approaches can give information

regarding the presence or absence of genes involved in pathoge-

nicity of a particular species or even a genus. However, it is

difficult to extrapolate this information to higher taxonomic levels,

which keeps us from drawing conclusions about general features

that are determining bacterial pathogenicity.

For this reason, our motivation was: i) try to identify presence/

absence patterns of virulence-related genes which could explain

the pathogenic phenotype of bacteria at higher taxonomic levels

than species or genus, ii) discuss the biological significance of those

genes giving an integrative view of genetic determinants of

bacterial pathogenicity, iii) use this information to develop a

machine learning model to classify bacterial genomes into human

pathogens and non-pathogens and iv) implement this model in a

software that can be used to predict pathogenicity in the upcoming

sequenced bacterial genomes. The last two points are particularly

interesting because a statistical model implemented in an easy-to-

use software, capable of predicting bacterial pathogenicity based

on genomic information, can be helpful for practical purposes. For

example, in food or pharmaceutical industries it is essential to

know the pathogenic potential of bacterial strains used in

bioengineering.

Results and Discussion

The idea that bacterial species can be effectively grouped into

human pathogens and non-pathogens based on their virulence-

genes composition, arises from preliminary results that indicated

differential patterns in presence or absence of these kind of genes

among both groups (human pathogens and non-pathogens).

All finished and annotated genomes of human pathogenic and

non-pathogenic bacteria were used to perform a presence/absence

analysis over 814 groups of orthologous genes belonging to 8
functional categories (toxins, two-component systems, ABC

transporters, motility, flagellar assembly, LPS biosynthesis, secre-

tion systems and chemotaxis), in order to determine which ones

are strongly related to pathogenicity in different bacterial

taxonomic groups (Actinobacteria, Alphaproteobacteria, Betaproteobacteria,

Bacteroidetes/Chlorobi, Chlamydiae/Verrucomicrobia, Deltaproteobacteria,

Epsilonproteobacteria, Firmicutes, Gammaproteobacteria, Spirochaetes, etc.).

Figure 1 shows phylogenetic relations and the proportion of

pathogenic and non-pathogenic organisms in studied taxa.

The analysis was accomplished by calculating the frequency of

genes belonging to each functional category in pathogenic and

non-pathogenic species of each taxon. The assumed null

hypothesis was that, if a certain gene is not related to

pathogenicity, its frequency would not be biased towards

pathogenic or non-pathogenic species; furthermore, it would be

almost equally distributed within both classes. Genes presenting a

high frequency among pathogens and a low frequency in non-

pathogens are probably contributing to a pathogen-related

phenotype, for example genes coding for toxins. Conversely, a

gene that presents low frequency among pathogens and high

frequency in non-pathogens could be indicating the loss of genes

coding for redundant functions. For example, proteins that

transport certain molecules across membranes, which are essential

for a free-living style, are often dispensable when bacteria are well-

adapted to the environment inside their hosts. The frequency

distribution of ABC transporter genes in Alphaproteobacteria and

Gammaproteobacteria clearly exemplifies this situation. Figure 2 shows

the frequency of each gene in pathogenic and non-pathogenic

organisms. Points falling on the diagonal line represent genes

whose frequency is balanced between pathogens and non-

pathogens. Points closer to the Y axis are more represented in

non-pathogens and points closer to the X axis are more frequent in

pathogens. As it is shown in this figure, ABC genes are strongly

related to non-pathogenic species in Alphaproteobacteria, while there

are overrepresented in pathogenic species in Gammaproteobacteria

(Figure 2).

As shown in Figure 3 the number of present genes is highly

variable among classes (pathogens and non-pathogens) and even

between taxonomic groups. Moreover, a great number of these

present genes, belonging to the 8 functional categories, presented a

frequency bias towards either pathogenic or non-pathogenic

species (Figure 4), deviating from the proposed null hypothesis.

These findings supported the idea that presence/absence patterns

of virulence-related genes are informative enough to discriminate

between human pathogenic and non-pathogenic bacterial species

(Table 1), indicating that this data can be used to construct a

classification model based on highly significant biological infor-

mation.

Classification Model
We used a machine learning approach based on a cross-

validation scheme with in-fold feature selection together with a

linear Support Vector Machine (SVM) classifier. Preliminary

models were constructed using the whole 814 set of genes, but the

number of genes was systematically reduced by means of a feature

selection process. The definitive model included the first 120 genes

ranked by their significance for classification (Table S1). However,

since the number of variables is still high, problems associated with

chance correlation might arise. For these reason a y-randomiza-

tion test was implemented. Figure S1 shows the performance

obtained in the test (50% accuracy), indicating the absence of

chance correlation. Section Model construction further explains

these methodologies.

The number of correctly/incorrectly classified genomes in the

complete set was 618/30, obtaining an accuracy of 95:4% (Table

S2). Table 2 describes the classification performance related to all

bacteria taxonomy considered in the dataset. The last column of

the table indicates the classification success rate for each group

Prediction of Bacterial Pathogenicity in Humans
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considered in the taxonomy; all values were obtained using the 10-

fold cross validated SVM model, not by retraining the model using

only organisms of the particular taxon. The performance is

preserved across the whole taxonomy, ranging from 91% in

Epsilonproteobacteria, up to 100% in Bacteroidetes/Chlorobi. Mid-size

groups like Betaproteobacteria, Actinobacteria and Alphaproteobacteria

showed a prediction success rate similar or better than the general

performance rate. Finally the Firmicutes, the biggest group, showed

an excellent classification level of 97:4%. Classification perfor-

mance according to class labels is shown in Table 3, the general

error rate is almost equal for false positives and negatives and the

general success rate is also equal for pathogens and non-

pathogens.

Model Testing and Comparison
To further test the SVM model we evaluated its performance by

analyzing genomes originally not included in the dataset used to

construct the model. On the one hand, we defined a Group I of

124 genomes with known labels for human pathogen or non-

pathogen, originally excluded from the dataset due to reduced

number of genomes per group or misrepresentation of one of the

two classes. On the other hand, we defined a Group II of 232
‘‘blind’’ genomes without previous information for pathogenicity.

Group I genomes were classified with an accuracy of 98%

(Table 4), even better than the average 95.4% obtained during

cross-validation procedure using the original dataset. Only in two

taxonomic groups (Chlamydiae/Verrucomicrobia and Fusobacteria) the

model showed an accuracy lower than 100%, and in each case

only one genome was misclassified. Group II genomes were

previously subjected to an exahustive bibliographic search in order

to assign them to human pathogens or non-pathogens (Table S3).

Application of SVM model over this group resulted in 92% of

average accuracy (Table 4), ranging from 87% in Epsilonproteo-

bacteria to 100% in Deltaproteobacteria, Bacteroidetes, etc. The fact that

accuracy is preserved in both test groups reaffirms the results

obtained when performing the cross-validation scheme, indicating

that our model is robust and the high performance in classification

and prediction of human pathogens and non-pathogens is

independent of the dataset used to build the model.

The SVM model was also compared to a method developed by

Andreatta et al. [16], which is the unique tool reported so far with

the same purpose of predicting bacterial pathogenicity. Andreatta

et al. proposed a classifier for the prediction of pathogenicity

restricted only to Gammaproteobacteria, considering a dataset of 155
organisms and obtaining an accuracy of 87%. This is lower than

the 96:5% achieved for the same taxonomic group (using 172
organisms) with our SVM model, and even worse than the general

performance of our classifier (95.4%). Furthermore, in the

particular case of Gammaproteobacteria, our method presented a

lower error rate in misclassifying human pathogens as non-

pathogens (only
1

50
), than the other way around (

1

15
non-pathogens

classified as pathogens). This is of crucial importance in practical

applications (such as for clinical or industrial purposes), since the

Figure 1. Phylogenetic relations of bacterial groups used in this work. Chart sizes are proportional to the number of genomes present in
each taxonomic group. The precentage of pathogenic organisms is shown in red and green is used for non-pathogenic.
doi:10.1371/journal.pone.0042144.g001
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social costs of misclassifying a pathogenic strain as non-pathogenic

are usually higher than the opposite scenario.

Biological Interpretation
The eight pathogenicity-related functional categories investigat-

ed in this work were represented in the set of 120 genes selected for

the classifier. Forty genes belonged to ABC transporters, 41
corresponded to two-component systems and chemotaxis proteins,

11 corresponded to toxins, 6 belonged to the LPS biosynthesis

pathway and 22 coded for flagellar assembly proteins, motility

proteins and proteins from secretion systems. We selected from

each group the most distinctive genes and discussed their

biological meaning considering their implications in bacterial

pathogenesis (Table 5).

ABC transporters. ABC transporters are specialized proteins

that function as either importers, which bring nutrients and other

molecules into cells, or as exporters, which pump toxins, drugs and

lipids across membranes [17]. Based on the kind of substrate ABC

transporters are specific for: i) metallic cations, iron-siderophore and

vitamin B12, ii) phosphate and amino acids, iii) oligosaccharides and

polyol, iv) monosaccharides, v) mineral and organic ions, vi) peptides

and nickel and vii) others (ABC-2). Our classification model selected

those ABC transporters related to transport of metallic cations,

vitamin B12, phosphate and amino acids as the most important.

It is widely known that metallic ions, are essential for

prokaryotic cell physiology. The amount of these ions is not

constant inside the hosts of pathogenic bacteria, and their

concentration is sometimes considerably lower than needed [18].

The presence of systems implied in metallic cations scavenging is

mandatory for bacterial survival inside host cells, and it is a key

feature for downstream processes like the development of

pathogenic phenotypes [19].

The emergence of most pathogenic species is associated with an

evolutionary transition from a free-living to a host dependent

lifestyle, to a certain extent. Bacterial genomes, and especially

those from pathogens, abide by the maxim ‘‘use it or leave it’’,

where genes or even whole gene pathways are lost if their products

are not essential for cell maintenance, or can be taken from the

environment [20]. Two examples are amino acid and vitamin

biosynthesis pathways, which have been lost in most pathogens

[21]. In this sense, the high representation of these types of ABC

systems support the idea that it is more convenient for pathogens

to incorporate these compounds from the host environment than

to produce them de novo.

Figure 2. Frequency distribution of ABC transporter genes in Alphaproteobacteria and Gammaproteobacteria. For each gene, abcisse
value is the number of pathogenic strains inside a certain taxonomic group in which it is present, divided by the total number of pathogenic strains
inside the taxonomic group. The ordinate value is the same but for the non-pathogenic strains inside the group. White circles show that genes
coding for ABC transporters are more frequent in pathogenic species of Gammaproteobacteria than in non-pathogenic species of this group. The
opposite pattern is observed for Alphaproteobacteria in black circles.
doi:10.1371/journal.pone.0042144.g002
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Two component systems and chemotaxis. Two-compo-

nent systems (TCS) are widespread signal transduction pathways

among bacteria, which play a crucial role in adaptation to

fluctuating surroundings by sensing changes in environmental

conditions [21], like those experimented during process of entry,

colonization and spread [21]. Genes belonging to 9 TCS families

were selected by the classifier as most informative, being OmpR

and NtrC the families with the highest TCS representation.

Osmolarity sensors EnvZ-OmpR and CpxA-CpxR (OmpR

family) regulate the expression of outer membrane porins in

Gram-negative bacteria. Porins control osmolar pressure in

response to environmental changes, like from a free-living context

to inside a host cell [22].

Gene vicK is part of Bacillus subtilis VicR-VicK system (also a

member of OmpR family). It has been widely related to

exopolysaccharide biosynthesis, biofilm formation and virulence

factors expression in Gram-positives [23,24]. Gene vicK is absent in

an important group of non-pathogenic Firmicutes, including most

non-pathogenic species of genus Clostridium. Seemingly, this feature

allows the correct classification of these species and is also

indicating a certain importance of the VicR-VicK system in some

point of Clostridium pathogenesis.

Figure 3. Boxplot representing the presence of genes per taxonomic group. The length of each box represent the number of genes present
in both pathogenic (red) and non-pathogenic (blue) organisms for each taxonomic group considered. The number of organisms inside each group
are shown leftside, this number is proportional to box width. Dark vertical lines show the median for the amount of present genes per group, box
limits represent quartiles and whiskers extend to the most extreme data point which is no more than 1:5 times the interquartile range.
doi:10.1371/journal.pone.0042144.g003
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The QseB-QseC system is involved in regulation of motility

proteins [25], which are key virulence factors of many bacterial

pathogens. Often, this system has pleiotropic effects over

phenotypes including chemotaxis, adherence, host cell invasion,

colonization and innate immune signaling [26]. It was identified in

most distinctive pathogenic members of Gammaproteobacteria,

including Salmonella, Escherichia, Vibrio, and Shigella. Surprisingly,

it was absent in Yersinia pestis’ genomes.

Genes representing 5 TCS for NtrC family were selected.

Among them we found PilS-PilR, another TCS involved in

adherence and cell invasion. This system is essential for type IV

secretion systems induction in Neisseriaceae species, like Kingella

kingae an increasingly common cause of septic arthritis, bacteremia,

and osteomyelitis in young children [27]. Interestingly, ortholo-

gous genes of pilR were found in a small group of Gammaproteo-

bacteria, including Pseudomonas aeruginosa, Acitnetobacter baumanii and

Legionella pneumophila.

Toxins. Pathogenic bacteria have been developing a variety

of strategies to manipulate host cell functions, often involving

toxins [12]. These proteins have a wide range of action, causing

different effects, like host cells deregulation, protein synthesis

interruption or membrane damage [28–30]. A total of 76 different

bacterial toxins were included in this work. Feature selection

analysis selected 11 toxins for the model.

Streptolysin O (SLO) is a thiol-activated cytolysin, the effect of

this pore-forming toxin is more subtle than simple lysis of host

Figure 4. Frequencies of each of 814 genes per bacterial taxonomic group. Frquency calculation was performed for each gene as in Figure 2.
Red triangles show significative genes that apart from the null distribution (same frequency in pathogens and non-pathogens) by exact Fisher test,
black circles are non significative genes.
doi:10.1371/journal.pone.0042144.g004

Table 1. Statistical overview of data distribution among taxonomic groups.

Class NP Class HP

Taxon Purpose1 n median IQR min max n median IQR min max

Actinobacteria M 43 17.0 7.00 9 28 33 12.0 4.00 5 20

Alphaproteobacteria M 60 28.5 13.50 0 49 28 10.0 23.00 5 37

Bacteroidetes/Chlorobi M 26 10.5 3.75 0 15 5 8.0 4.00 7 11

Betaproteobacteria M 28 29.5 11.50 11 47 23 39.0 25.00 14 49

Epsilonproteobacteria M 6 17.5 9.75 7 20 16 14.0 0.25 13 20

Firmicutes M 93 20.0 10.00 0 30 100 16.0 10.00 3 30

Gammaproteobacteria M 63 25.0 15.00 1 47 109 43.0 24.00 9 51

Spirochaetes M 2 20.0 6.00 14 26 13 9.0 1.00 8 14

Chlamydiae/Verrucomicrobia T – – – – – 14 11.0 0.00 10 12

Deltaproteobacteria T 28 22.0 5.25 6 31 – – – – –

Statistical variation is measured as the interquartile range (IQR) in human pathogens (HP) and non-pathogens (NP).
1M: used in model construction and testing, T: used only in model testing.
doi:10.1371/journal.pone.0042144.t001
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cells, and may include interference with immune cell function

[31]. SLO is synthesized by more than 20 species of Gram-positive

bacteria [32], and it is intimately involved in pathogenesis of

Arcanobacterium pyogenes, Clostridium perfringens, Listeria monocytogenes

and Streptococcus pneumoniae [31]. In this work, SLO was identified

in pathogenic Firmicutes and absent in non-pathogenic species of

this group. This gene is present in most pathogenic strains of S.

pyogenes, S. pneumoniae and those species described by Billington

et al. [31], but it is also present in pathogenic Bacillus cereus,

Streptococcus dysgalactiae and Gardnerella vaginalis, the latter belonging

to Actinobacteria.

Hemolysin II and thermolabile hemolysin are also pore-forming

toxins selected by the model. The first is produced by pathogenic

species of genus Bacillus, [33,34] although, in this work, genes

extremely similar to hemolysin II were also identified in all

pathogenic strains of Staphylococcus aureus. Thermolabile hemolysin

is characteristic of Vibrio species [35] as confirmed by the

identification of this gene exclusively in V. cholerae and V. vulnificus

strains.

Cytolethal distending toxin is able to block the host cell cycle

between G2 and mitosis [28]. As described in previous works it

was identified in a broad range of pathogenic bacteria including

Campylobacter spp., Salmonella enterica, Haemophilus ducreyi and

Actinobacillus actinomycetemcomitans [31]. A/B toxins have similar

effects in cell-cycle deregulation, affecting migration, morphogen-

esis, cell division [36] and membrane trafficking [37]. These were

identified in Clostridium difficile and in many pathogenic strains of

Escherichia coli, including O157:H7, O55:H7, O127:H6 and

O103:H2. In addition to the contribution for classification, the

presence of A/B toxin in these phylogenetically distant groups of

possibly indicates horizontal gene transfer events between them.

LPS biosynthesis. Lipopolysaccharides (LPS) are major

components of the outer membrane of Gram-negative bacteria,

which can be recognized by the host’s toll-like receptor 4 (involved

in inflammatory response). High concentrations of LPS can induce

fever, increase heart rate, and lead to septic shock and death [38].

The model selected six (lpxK, wapR, rgpA, gmhB, rfe and rfbP) out

of 94 genes, which code for proteins comprising different steps of

typical Gram-negative LPS biosynthesis. Tetraacyldisaccharide 49-

kinase (lpxK) catalyzes one of the last steps for Lipid A biosynthesis

[39]. Genes wapR and rgpA produce rhamnosyltransferases, which

add rhamnose to the polysaccharide backbone. In particular cases,

Table 2. Classication performance for each taxonomic groups used to construct the model.

Class NP Class HP

Number Predicted as NP Predicted as HP Predicted as NP Predicted as HP correct classif. rate

Actinobacteria 76 42 1 1 32 97.4%

Alphaproteobacteria 88 54 6 0 28 93.2%

Bacteroidetes/Chlorobi 31 26 0 0 5 100%

Betaproteobacteria 51 27 1 0 23 98.1%

Epsilonproteobacteria 22 6 0 2 14 91%

Firmicutes 193 91 2 3 97 97.4%

Gammaproteobacteria 172 59 4 2 107 96.5%

Spirochaetes 15 2 0 0 13 100%

Inside each class the number of correct and incorrect classified genomes are shown.
doi:10.1371/journal.pone.0042144.t002

Table 3. Confusion matrix showing average classification
performance across all taxonomic groups.

Classified as Pathogenic Non-pathogenic

Pathogenic 313 (95.2%) 15 (4.8%)

Non-pathogenic 15 (4.9%) 308 (95.1%)

doi:10.1371/journal.pone.0042144.t003

Table 4. Classification performance for Group I and Group II.

Taxon
Correctly
classified

Wrongly
classified Accuracy

Chlamydiae 14 0 100%

Deltaproteobacteria 26 0 100%

Planctomycetes 3 0 100%

Deinococcus-Thermus 3 0 100%

Acidobacteria 3 0 100%

Group I Deltaproteobacteria 4 1 80%

Chloroflexi 8 0 100%

Cyanobacteria 27 1 96.4%

Thermotogae 9 0 100%

Other bacteria 19 0 100%

Actinobacteria 26 4 87%

Alphaproteobacteria 24 2 92%

Bacteroidetes 13 0 100%

Betaproteobacteria 22 2 91%

Deltaproteobacteria 5 0 100%

Group II Epsilonproteobacteria 8 1 89%

Firmicutes 42 4 91%

Gammaproteobacteria 38 4 90.5%

Chloroflexi 6 0 100%

Cyanobacteria 11 1 91%

Deinococcus-Thermus 7 0 100%

Other bacteria 13 0 100%

doi:10.1371/journal.pone.0042144.t004

Prediction of Bacterial Pathogenicity in Humans

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42144



the incorporation of L- or R-rhamnose determines different

glycoforms of the core region, leading to LPS variability, hence

virulence [40]. Two genes are involved in O-antigen biosynthesis:

rfbP codes for a glycosyltransferase responsible for the first step in

O-antigen biosynthesis [41], while rfe (wecA) catalyzes the first

membrane step of O-antigen and enterobacterial common antigen

biosynthesis in E. coli. Its involvement in the virulence of Gram-

negative bacteria has also been reported [42].

In spite of being selected by the model as relevant for

classification, none of these genes showed a clear presence/

absence pattern among pathogenic and non-pathogenic species.

However, this does not mean they are not informative; on the

contrary, these genes may be contributing to classification by an

additive effect, being their individual inputs restricted to more

particular groups.

Flagellar assembly and motility. Bacterial motility is a

major factor in pathogenesis. This feature is involved in processes

like biofilm formation, host cell colonization and bacterial spread

inside the host [43]. Flagellar macromolecular machinery is the

paradigm of bacterial motility, being present in a wide range of

human pathogens, including E. coli, S. enterica and P. aeruginosa [44–

46]. In the present work, 34 different genes involved in flagellum

formation were investigated. Additionally, other 137 genes

involved in different mechanisms related to bacterial motility

(fimbrial proteins, adhesins, chemosensory proteins and regulatory

proteins) were included.

Five genes directly involved in flagellar biosynthesis (fliA, fliD,

fliK, fliL and fliW) were selected by the model. Gene fliA codes for

s28, responsible for the regulation of flagellin biosynthesis.

Inactivation experiments of fliA in P. aeruginosa cause non-motility,

due to inability of expressing the flagellin gene [47]. The fliD gene

codes for a structural component of the flagellar cap, which is

important in host cell adhesion and colonization [48]. Gene fliL is

dispensable for swimming in pathogenic species like E. coli and S.

enterica [49], but it is essential for swarming (flagellar-dependent

motility in solid medium) in these species. Gene fliK is responsible

for controlling flagellar hook length, which directly affects the

performance of the flagella in producing translational motion [50].

Gene fliW codes for a new flagellin assembly protein in Treponema

pallidum which has orthologous in many related species [51].

Gene flbB is part of the flagellar motor exclusively in Spirochaetes

sp. [52]. In this work, this gene was found in pathogenic Spirochaetes

and was absent in many other genomes, suggesting its importance

for the correct classification of this group. Nevertheless, flbB

homologues were also found in Thermoanaerobacter (Firmicutes).

Independently of its role in the classification of pathogens, this

finding questions the evolutionary origin of this flagellar motor,

apparently exclusive for Spirochaetes.

Bacterial motility and host-cell adhesion are intimately related

processes. Fimbria (type I pili) are filamentous proteinaceous

surface appendages present in many Gram-negative bacteria

[53,54] that aid the adhesion process. In E. coli, fimbria are made

of a repeating monomer, FimA, encoded by fimA. This gene is

almost exclusively present in pathogenic Gammaproteobacteria and

Betaproteobacteria, like Escherichia, Salmonella, Acinetobacter and Bur-

khordelia. FimH protein (encoded by fimH) is the most common

adhesin located on the tip of type I fimbriae [55,56]. Its

expression, hence pilus formation, is regulated by gene fimI, which

is essential for fimbriated phenotype. Specific mutations in fimI

lead to pilus-negative phenotype in E. coli and S. enterica [57]. Both

genes, fimH and fimI, were found exactly in the same group of

species belonging to Enterobacteraceae family: Salmonella, Escherichia,

Proteus, Shigella and Klebsiella. This supports the functional

relationship of both genes and also denotes the importance of

them for classification of this family of pathogenic Gammaproteo-

bacteria.

Another relevant pili aparatus is the type IV system. This

macromolecular machinery is present in Gram-negative bacteria

and in at least one Gram-positive [58]. Type IV pili are highly

pleiotropic, being involved in bacterial motility, adhesion, immune

escape, biofilm formation, secretion and phage transduction. The

most relevant selected gene for this pili system was pilA, which

codes for pilin, the major component of filament. It is present in

most pathogenic Clostridium (C. perfringes, C. tetani, C. difficile and C.

botullinum). PilA is also present in pathogenic members of a group

of families belonging to Gammaproteobacteria (Vibrionaceae, Pseudomo-

nadaceae, Francisellaceae, Moraxellaceae). Interestingly, pilA is absent in

pathogenic Enterobacteraceae, so the combination of three genes

(pilA, fimH and fimI) seems to explain the discrimination of most

pathogenic Gammaproteobacteria with respect to the rest of non-

pathogenic bacteria and even distinguishing between two enor-

mous phyolgenetic groups inside this taxon.

Secretion systems. Several differences in secretion systems

exist between Gram-positive and Gram-negative bacteria. Protein

secretion across the inner membrane of both kinds of organisms

generally involves the same Sec-dependent pathway, although

Table 5. Summary of the biological relevance for pathogenicity of a reduced subset of the selected 120 genes.

Functional category Genes Comment

ABC sitC, hrtB, btuD, gluD Strong association between pathogens and the presence of transporters for metallic cations, vitamin
B12, phosphate and amino acids

TCS&CH vicK, qseC VicK absent in most non-pathogenic Firmicutes. QseC is present in most pathogenic
Gammaproteobacteria, but absent in Yersinia

LPS lpxK, wapR, rgpA, rfbP Genes involved in LPS biosynthesis did not show differences in presence/absence patterns between
pathogens and non-pathogens

FLA&MOT flbP, fimH, fimI, pilA FlbP is found in pathogenic Spirochaetes. FimH and FimI are found in Enterobacteraceae. PilA is
present in pathogens of a group of families inside Gammaproteobacteria

SS tatA, yscC, ppkA TatA is found in pathogenic Epsilonproteobacteria. YscC is part of T3SS from Y. pestis and many other
pathogens. PpkA is part of T6SS from Pseudomonas

TOX slo, tlh, cdtC SLO is present in more than 20 pathogenic Gram-positive bacteria, including Firmicutes.
Thermolabile hemolysin is exclusive from Vibrio. CdtC is present in a wide broad of pathogens
including Campylobacter

The functional categories are described in Methods section.
doi:10.1371/journal.pone.0042144.t005
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other routes have been identified, i.e. Twin-arginine translocation

(Tat) [59–61]. Translocation across Gram-negatives inner mem-

brane results in release of products into the periplasmic space.

Hence, these bacteria have developed several types of secretion

systems which carry molecules from the periplasmic space to the

cell surface or extracellular matrix. These secretory pathways of

Gram-negatives can be classified into six different groups: type I to

VI secretion systems (T1SS–T6SS). The presence/absence of 73
different genes coding for both shared secretory pathways (like Sec

or Tat) and for T1SS–T6SS was tested. The model selected 13
genes as the most relevant to explain class differences.

Genes for Sec system were not selected by the model. For Tat

system the tatA gene was selected; it codes the major pore-forming

subunit for translocation complex [62]. Homologues of tatA have

been identified in a wide range of human pathogens, including E.

coli O:157, Vibrio cholerae, Mycobacterium tuberculosis, Listeria monocy-

togenes and Staphylococcus aureus [63]. Moreover, this gene has

orthologous in all Epsilonproteobacteria analyzed in this work, except

for the non-pathogenic Sulfurovum sp. NBC37-1. Even though tatA

was selected as an important feature for classification, a clear

presence/absence pattern between pathogenic and non-pathogen-

ic species was not observed.

Gene yscC encodes a key protein of the archetypical T3SS of

Yersinia pestis, the infective agent of human plague. YscC orthologs

are now identified in more than a dozen of pathogens [64],

including Salmonella enterica, Shigella flexneri [65] and enteropatho-

genic E. coli [66]. Beyond these well-known examples, we

identified the presence of yscC orthologs only in species belonging

to Gammaproteobacteria and Betaproteobacteria, being absent in a great

number of non-pathogenic species.

T4SS have been described in several organisms including

Bordetella pertussis [67], Legionella pneumophila [68], Brucella suis [69],

Bartonella henselae [59], and Helicobacter pylori [70]. VirB2, coded by

virB2, is major component of T4SS pilus and has an important role

in secretion [71]. Beyond its identification in the species

mentioned above, virB2 is present in some genomes of well-known

pathogens with different taxonomic context: Campylobacter jejuni

subsp. jejuni 81–176 (Epsilonproteobacteria), Klebsiella pneumoniae subsp.

pneumoniae NTUH-K2044 (Gammaproteobacteria), Neorickettsia sennetsu

str. Miyayama (Alphaproteobacteria) and three Burkholderia sp. species

(Betaproteobacteria). This suggests an important role of T4SS in

pathogenic processes, even in species with different pathogenic

mechanisms.

T6SS have been found in species from a wide taxonomic range

[72], comprising most bacterial groups included in this work. Two

T6SS genes were selected: ppkA codes for a serine/threonine-

protein kinase that phosphorylates protein FHA (encoded by fha1).

The phosphorylation initiates a signal transduction cascade that

results in T6SS assembly and function. Mutation of P. aeruginosa

fha1 gene resulted in defective secretion of Hcp1, an essential

protein for pathogenesis as demonstrated by attenuated virulence

phenotype observed in vivo [73]. Both fha1 and ppka were identified

in P. fluorescens and P. mendocina and all strains of P. aeruginosa.

Interestingly, the absence of these genes in other genomes shows

the great importance of their presence for the classification of these

organisms exclusively. Moreover, the high correlation in the

presence of both genes in the same genomes evidences their

functional relationship.

Phylogenetic Distribution of Virulence Genes
In the sections above we disscused the biological meaning of

some genes selected by the model, emphasizing their presence/

absence patterns among pathogens and non-pathogens and their

importance in the development of pathogenic phenotypes. Here

we give an integrative overview of virulence genes distribution

along bacterial phylogeny, taking into account their frequency bias

among pathogenic and non-pathogenic organisms. Fisher exact

test (p-valuev0:001) was used to select genes with significant

differences in their presence/absence patterns for each functional

category inside each taxonomic group. Then, gene frequency was

calculated among pathogens and non-pathogens for those selected

genes, separated by functional category. Finally, individual genes

frequencies were added inside each group and normalized over the

total number of genes belonging to each functional category.

Figure 5 shows normalized frequency values for genes belonging

to each functional category, taking into account the phylogenetic

relationships between studied taxonomic groups. Some expected

patterns arise from these results, for example toxins are exclusively

overrepresented in pathogenic species. This is expectable taking

into account the biological purpose of toxins; it would be highly

improbable that pathogenicity in a certain species was determined

by the absence of a toxin that is present in the non-pathogenic

species of the group. ABC transporters seem to be the most

variable functional category along the phylogeny, it is positive

(associated to pathogenic organisms) in Gammaproteobacteria,

Betaproteobacteria and Firmicutes, and negative (associated to non-

pathogenic organisms) in Alphaproteobacteria and Actinobacteria. This

is coherent with the wide range of functions that ABC transporters

can perform; for example the presence of aminoacid importers can

be essential for pathogenesis of species that have lost biosynthetic

genes, however, it is not contradictory with the presence of these

kind of transporters in non-pathogenic species.

The most powerful association between pathogens and high

gene frequencies is observed in Gammaproteobacteria, evidencing the

importance of these kinds of genes for pathogenic species of this

group, which is mainly composed of enteropathogens. The most

striking result of this analysis is the pattern observed for

Alphaproteobacteria, totally opposite to the phylogenetically related

Gammaproteobacteria. The first question that rises is why genes

previously thought of as mostly present in pathogenic species, are

highly frequent in non-pathogenic species of this taxon. Marine

environments contain the major component of non-pathogenic

Alphaproteobacteria biodiversity. A recent study [74] showed that out

of 119 marine bacteria, 60 had homologues to known virulence

genes from pathogenic bacteria. Interestingly, new insights in host-

pathogen interactions propose a wider ecological and evolutionary

perspective to better understanding the life strategy of pathogenic

bacteria [75], suggesting that functions have evolved over a long

time in nature and then recruited through horizontal gene transfer

to perform similar or different functions in more recently emerging

pathogenic species. This hypothesis opens a three-step way of

thinking about how natural selection plays a role in the emergence

of bacterial pathogens. First, the random appearance and fixation

of new genes in bacteria colonizing inaccessible environments

generate a reservoir of species carrying potentially virulent genes.

Second, these bacteria can contact human hosts by movement

through intermediate hosts in which they live as commensals or

they can transfer virulent genes horizontally to other human-

adapted bacteria. Third, positive selection over the most successful

species determines the fixation of virulence genes that let bacteria

to damage or survive inside human cells. The high frequency of

virulence-related genes in non-pathogenic Alphaproteobacteria might

be explained by the emergence of these kinds of genes in common

ancestors for Gammaproteobacteria and Alphaproteobacteria. Then, the

branch that originated Alphaproteobacteria conserved these genes in

both pathogenic and non-pathogenic species. In contrast,

Gammaproteobacteria could have acquired these functions by
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horizontal gene transfer, to produce the actual scenario of high

frequency in pathogenic species and low frequency in non-

pathogenic ones.

Two groups (Spirochaetes and Epsilonproteobacteria) showed very few

genes with significant differences according to Fisher exact test.

This reveals that for these two taxonomic groups there are no clear

presence/absence patterns among genes of pathogenic and non-

pathogenic species but, in spite of this, our model is able to assign

each organisms to the correct class with high accuracy. This is

particularly interesting because our model is using information

coded in high-dimensional spaces, leaving behind the simple

presence/absence patterns. Moreover, here we could identify only

some particular associations between phylogeny topology and

functional categories, suggesting that, in general, the functional

importance of these genes varies along bacterial taxonomy. The

lack of general patterns between the presence of functional

categories and phylogenetically related groups supports the notion

that most virulence-related genes are spread among bacteria by

horizontal gene transfer. Probably our method is taking benefit of

this scenario, being able to correctly classify organisms indepen-

dently of their taxonomic context, based on widely spread genes

along bacterial phylogeny.

Misclassified Organisms
A group of 28 out of the 648 genomes tested were systematically

misclassified by the model. We defined a genome to be

misclassified if it was assigned to the wrong class, at least in 50%

of 20 consecutive classifications (Table S4). Ten out of these 28 are

labeled as human pathogens but the model returned them as non-

pathogenic, while 18 out of 28 are labeled as non-pathogenic but

were classified as human pathogens. Most cases of misclassification

are observed in species with a big number of sequenced genomes

of different strains. This is the case of Staphylococcus aureus, an

important human pathogen. Thirteen out of the 14 genomes of

different strains of this species were well classified as human

pathogens. Nevertheless, the strain S. aureus subsp. aureus

MRSA252 was assigned to the non-pathogenic class. Comparison

of present/absent genes for all S. aureus genomes showed that gene

hlyII (coding for hemolysin II) was absent in S. aureus subsp. aureus

MRSA252 while present in the rest. This was the only difference

between these genomes; moreover gene hlyII was one of the 11
toxin-coding genes selected as more informative during the feature

selection process. On the one hand, this fact shows that for a

particular species even the presence of a single feature is

determining the classification of the genome as pathogenic or

non-pathogenic, indicating a great power of some genes in

determining the class assignment by the model. On the other

hand, it is possible to misclassify genomes due to a particular gene

loss, especially in those cases of high genetic variability among

strains of certain species.

For misclassified genomes that do not have other well-classified

strains belonging to the same species, it is not possible to assess the

present/absent comparison to find differences in gene patterns. In

these cases, misclassification can be explained by inherent errors of

SVM model construction or because the features (groups of

orthologous genes) originally used to determine the presence/

absence matrix, might not be informative enough to reach a 100%
classification performance. However, in some cases it is possible to

propose a biological explanation for misclassification, based on the

particular ecological and genetic features of some species.

The first example is Bordetella petrii (Betaproteobacteria) which is

originally labeled as non-pathogenic, but the model classifies it as

pathogenic. This could be primarily seen as a classification error,

but there is strong evidence that supports this species is an

emerging human pathogen. Though being an environmental

isolate, the sequenced B. petrii DSM12804 strain also encodes

proteins related to virulence factors of the pathogenic Bordetellae,

including the filamentous hemagglutinin, which is a major

colonization factor of B. pertussis. The genomic analysis of B. petrii

suggests an evolutionary link between free-living environmental

Figure 5. Phylogenetic distribution of virulence genes. Each functional category of virulence-related genes is represented as a vertical bar.
Positive values denote association of a particular functional category with pathogenic species of a certain taxonomic group, while negative values
with non-pathogenic species. Taxons are grouped according to phylogenetic relationships. In graph legend: ABC: ABC transporters, TCS&CH: two-
component systems and chemotaxis, MOT&FLA: motility and flagellar assembly, TOX: toxins, SS: secretion systems, LPS: LPS biosynthesis.
doi:10.1371/journal.pone.0042144.g005
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bacteria and the host-restricted obligate pathogenic Bordetellae [76].

Moreover, clinical isolates of B. petrii have been recently described

to cause, for example, mandibular osteomyelitis [77] or supurative

mastoiditis [78].

Other example comprises a group of 6 marine non-pathogenic

Alphaproteobacteria (Rhodobacter capsulatus, Erythrobacter litoralis, Rho-

dopseudomonas palustris, Novosphingobium aromaticivorans, Parvularcula

bermudensis and Sphingobium japonicum), wrongly classified as path-

ogenic. As explained in the section above, Alphaproteobacteria have

the highest frequency of virulence-related genes in non-pathogenic

species. The 6 misclassified species shared the presence of 9 genes

involved in secretion processes, supporting the findings of Persson

et al. [74] regarding the extensive appearence of these kinds of

genes in marine bacteria. Despite this, only 6 out of 88
Alphaproteobacteria were misclassified, indicating that the classifica-

tion model can deal with unexpectedly biased gene frequencies

towards non-pathogenic organisms without compromising classi-

fication performance.

Model Sensitivity
A simple approach to evaluate the sensitivity of the constructed

model is to assess the propensity of label shift (pathogens to non-

pathogens and vice versa). This experiment was implemented for

each taxonomic group in the dataset by artificially modifying

presence/absence vectors. For each genome those present genes

were systematically ‘‘turned off’’ one at a time, running the

classification model each time and recording in which cases a

category shift occurred. The same strategy was used to ‘‘turn on’’

those genes which were originally absent.

The change from non-pathogen to pathogen was lead by a

group of 14 genes, which were mainly toxin-coding genes (5) and

TCS (5). These two functional categories together comprise
2

3
of

the genes that influence the category shifting in the mentioned

direction, evidencing a great importance of these features as

exclusive determinants of bacterial pathogenicity. Individually, the

presence of any of these genes is able to change a number of

organisms ranging from 78 to 153, depending on the gene. The

most extreme is the case of SLO toxin, whose presence determines

that 153 species change from non-pathogens to pathogens.

Changing from pathogen to non-pathogen is mainly determined

by gene ‘‘turn off’’. A group of 9 genes are responsible for category

shifting in this direction, changing the classification of 10 to 96
species. It is worth mentioning that the gene coding for the SLO

toxin is one of the most influential; this makes sense, since the gain

of this gene provoked a label change to pathogen, it is expectable

that losing it defines a label change to non-pathogen.

Software Development: The BacFier
BacFier v1.0 was implemented as a Java software, and hence

platform independent, in order to make it easier for the common

user to work with the model. A simple interface allows the user to

upload the genome sequence (finished or unfinished) of the

organism of interest. The genome is used as query to perform

BLAST against the final set of 120 orthologous groups (selected as

explained in section Model construction) creating a presence/

absence vector for the genome. The vector is evaluated with a

SVM model, and an outcome (pathogen/non-pathogen) is

produced associated to a probability.

Moreover, the sensitivity analysis described in the previous

section can be automatically performed with the software, this is

assessed by selectively ‘‘turning off’’ or ‘‘turning on’’ desired genes

in the presence/absence vector and re classifying the result. This

might indicate genes that are likely to change the label of the

organism, so that one can pay more attention to them and

corroborate their status of presence/absence. Furthermore, this

strategy becomes crucial when inputing an unfinished genome. In

this situation, the absence of some genes important for pathoge-

nicity could be determined by the unfinished status of the genome,

so if prediction result is non-pathogenic, the user can sistematically

‘‘turn on’’ those absent genes until the model shift to pathogenic.

Then, the real presence of genes that determined the shift can be

investigated by a more refined search or by other methods, like

PCR.

BacFier v1.0 is freely available under http://bacfier.google

code.com/files/Bacfier_v1_0.zip.

Conclusions
The constructed SVM model classifies bacterial genomes in

human pathogens and non pathogens with 95.4% of average

accuracy. To the best of our knowledge, this is the statistical model

with this purpose that achieves the highest accuracy reported so

far. Moreover, our method classifies bacterial genomes indepen-

dently of their taxonomic context, in contrast to other similar

approaches that only take into account a certain part of bacterial

diversity, being useful only to classify specific taxa [6]. Our

statistical learning approach is grounded on the biological

meaning of the selected genes and supported by the fact that

bacterial pathogenicity can be explained by the presence or

absence of a set of specific genes that code for virulence

determinants. The application of BacFier v1.0 may be useful for

clinical or industrial purposes, for example to determine if a new

sequenced strain could be pathogenic for humans.

Methods

Data Selection and Matrix Construction
Complete genome sequences from all available bacteria were

downloaded from the National Center for Biotechnology Infor-

mation (NCBI). Over 1000 genomes were obtained and from

those organisms, we originally kept 848 that were labeled as

human pathogens or non-pathogens. This set of bacteria

comprehends 22 taxonomic groups. In this work, we focused only

on human pathogens; if a certain species was a multi-host

pathogen including humans, it was considered human pathogen.

By the contrary, if a certain species was a multi-host pathogen or a

pathogen of other host different from human, it was excluded from

the dataset considered.

Eight gene functional categories that we considered related to

pathogenicity were determined. These are toxins, chemotaxis

proteins, ABC transporters, motility proteins, LPS biosynthesis,

two-component systems, flagellar assembly and secretion systems.

Orthologous groups from proteins coded by genes belonging to

these categories were downloaded from KEGG Orthology

database (http://www.genome.jp/kegg/ko), all the categories to-

gether resulted in 814 orthologous groups. With this data, we built

a presence/absence table showing which orthologous groups

(genes/proteins) were present or absent in the organisms

considered. We selected local protein BLAST [79] searches to

perform orthologous genes determination. Not only does this

approach absolve us from using a refined orthologous search

method (which can be much more laborious and time-consuming),

but it also provides good enough accuracy in orthologous

determination. In this case, our method must be robust and

tolerant enough to identify possible false positive or false negative

orthologs.

BLAST searches were performed formatting the 814 ortholo-

gous groups and querying the organisms. If an alignment between
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an organism and a gene (member of an orthologous group) was

‘‘good enough’’ (see below), then we considered the gene

(orthologous group) as present in the organism, otherwise as

absent. This, is represented as a 0/1-matrix with dimensions

DorganismsD|DorhologousgroupsD. We defined ‘‘good’’ align-

ments as the ones having a percentage of identity higher than

90%, length of the alignment larger than 90% of the gene’s length

and an e-value smaller than 0:001. Further analyses were made on

648 genomes belonging to 8 of the 22 taxonomic groups:

Actinobacteria, Alphaproteobacteria, Bacteroidetes/Chlorobi, Betaproteobac-

teria, Epsilonproteobacteria, Firimicutes, Gammaproteobacteria and Spiro-

chaetes, since there were not enough genomes available for the

other groups. However, these excluded genomes were then used as

part of external groups to further test the constructed model.

Model Construction
In this work a machine learning approach based on a cross-fold

validation with in-fold feature selection was developed. This

technique ensures that particular predictions are not biased by

overselected features or overfitting since each prediction is

performed without using the sample in neither the feature

selection nor the classifier building process. Algorithm 1 shows

the methodology.

Algorithm 1. General overview of cross-fold validation with in-

fold feature selection (be X = whole set of samples).

for i r1R nfolds do
Define validation set VS/ samples in fold i

Define training set TS/ X{VS

Perform feature selection over TS samples

Train classifier using TS

Perform prediction of VS samples with previous classifier

end for

The number of folds (nfold) was set to 10 and the feature selection

routine was SVMAttributeEval from Weka [80]. Regarding the

classification algorithm, a Support Vector Machine (SVM) was

employed. The SVM method performs the classification by

constructing an N-dimensional hyperplane that optimally separates

the data into two classes. In this case classes are labeled as human

pathogens and non-pathogens. The raw dataset of variables is

defined by the presence/absence of orthologous groups in the

genomes of the organisms considered. It is important to note that

the taxonomy is not used as another variable in the model since it

would introduce an artificial separation in the SVM model training.

Following the spirit of Occam’s razor, in this work a linear SVM

model is proposed. Although the number of genes looks relatively

large, it is worth to mention that the model variables encode low

level information related to gene presence/absence in each

organism. Also, it is well known that linear SVM models benefit

from using these kinds of variables since higher dimensions allow

easier class separation. The subroutine libsvm in Weka was also

employed [80].

A final analysis was done in order to determine an appropiate

number of features to retain. Experiments were carried out considering

30, 60, 90, 120, 150, 200 and 841 (entire set of genes) features. The

accuracy obtained in each case was 90%, 93.5%, 94.4%, 95.4%,

95.5%, 94.9% and 92.1% respectively. A set of 120 genes was then

considered, as they represent a reasonable tradeoff between accuracy

prediction and the number of genes used for prediction.

From Algorithm 1 is clear that a different set of features can be

selected in each loop of the cross-validation procedure. However,

it is necessary to find a final set of genes to build a classification

model and check and external validation set (for practical purpose)

or predict pathogenicity of new sequenced bacteria. A common

solution is to employ a voting scheme that sums how many times a

feature is selected in each loop of Algorithm 1. In this particular

case, the list of genes selected is available in Table S1.

Y-randomization test. Since in this work a binary occur-

rence matrix is used to represent the presence/absence of genes in

a set of organisms, the number of calculated variables is high, as

expected. In this particular case, the number of genes is 814. A

feature selection technique further reduced the set to the 120 most

significant variables. Although this meets the rule of thumb that

states the ratio between number of samples (648 organisms) and

variables (120) must be greater than 5 [81], problems associated

with chance correlation could still arise. This is a major concern

when the prediction model is expected to be reliable in terms of

generalizability.

The y-randomization validation method tries to observe the

influence of chance when fitting any given data. This is done by

deliberately destroying the relationship between the target y and

the independent variables x (genes, in this case). This is done by

randomly shuffling the y data, preserving all x data untouched,

and retraining the learning algorithm. A common pitfall is to apply

the y-randomization procedure but using the same set of variables

resulting from the feature selection process. Following the good-

practice procedures, in this work the test was carried out using the

full set of variables, so there was no ‘‘overestimation’’ (in the sense

of chance correlation).

In this work we have two classes, so the expected behavior was

to obtain an accuracy of roughly 50% in the y-randomization test

(since 50% is the probability of a ‘‘good’’ prediction when no

relation is found between variables and targets, the same as a

random assignment of predicted labels). In this work the y-

randomization procedure was carried out 100 times (Figure S1).

Genes Significance and Frequency Calculation
In order to weight the importance of each functional category

for each taxonomic group, we selected those genes with statistically

significant presence/absence patterns inside pathogens and non-

pathogens. Fisher exact test was applied to genes belonging to each

functional category for each taxonomic group. Those genes with

p-value v0:001 were taken into account. Then, the frequency of

those genes was calculated for pathogenic and non-pathogenic

species of each taxonomic group, as the number of presences over

the total number of organisms inside the group. Finally, for a

certain functional category, the significance value was calculated

as the accumulated frequency of those genes significant to the

category, and normalized over the total number of genes

belonging to it. For a better graphical visualization of Figure 5,

frequencies in non-pathogenic organisms were multiplied by {1,

in this way positive values are associated with pathogenic

organisms while negative with non-pathogenic ones.

Supporting Information

Figure S1 Y-randomization performance over 100 runs.

(TIF)

Table S1 Description of the subset of 120 selected genes.

(XLS)

Table S2 Classification results for each tested genome in 10-fold

cross validation.

(XLS)
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Table S3 Prediction for each organism belonging to test Group

II. These organisms were previously subjected to a bibliography

revision to determine their assignation to human pathogens or

non-pathogens. When organism resulted to be pathogen, citation

is reported. Column Prediction shows the result after model

prediction, correctly classified organisms are highlighted in green

while wrongly classified are in red.

(XLS)

Table S4 List of misclassified organisms.

(XLS)
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