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Abstract

With more than 40% of the world’s population at risk, 200–300 million infections each year, and an estimated 1.2 million
deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity
of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of artemisinin-based
drugs in Southeast Asia, there is an urgent need for new antimalarial compounds with novel mechanisms of action to be
developed against multidrug resistant malaria. We present here a novel image analysis algorithm for the quantitative
detection and classification of Plasmodium lifecycle stages in culture as well as discriminating between viable and dead
parasites in drug-treated samples. This new algorithm reliably estimates the number of red blood cells (isolated or clustered)
per fluorescence image field, and accurately identifies parasitized erythrocytes on the basis of high intensity DAPI-stained
parasite nuclei spots and Mitotracker-stained mitochondrial in viable parasites. We validated the performance of the
algorithm by manual counting of the infected and non-infected red blood cells in multiple image fields, and the
quantitative analyses of the different parasite stages (early rings, rings, trophozoites, schizonts) at various time-point post-
merozoite invasion, in tightly synchronized cultures. Additionally, the developed algorithm provided parasitological
effective concentration 50 (EC50) values for both chloroquine and artemisinin, that were similar to known growth inhibitory
EC50 values for these compounds as determined using conventional SYBR Green I and lactate dehydrogenase-based assays.
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Introduction

Malaria remains one of the most widespread infectious diseases

of mankind, with 40% of the world’s population at risk and more

than 240 million infections each year [1]. Recent estimates

indicate a staggering mortality rate of over 1.2 million deaths

annually, of which the majority are children and pregnant women

living in sub-Saharan Africa [1,2]. At least five different Plasmodium

species are known to cause malaria in humans, the most virulent

being P. falciparum [3]. Unfortunately, efforts aimed at controlling

the disease globally are often confounded by lack of vaccines and

the propensity of malaria parasites to rapidly develop resistance to

newly developed drugs [4]. There is, therefore, a continuous need

for new antimalarial drugs with novel mechanisms of action (MoA)

to be developed against multidrug resistance in malaria.

The parasite life cycle includes two asexual replication cycles in

humans (exo-erythrocytic or liver forms, and erythrocytic or blood

forms) and one sexual reproduction cycle in the mosquito vector

[5]. In the human host, P. falciparum preferentially infects mature

and enucleated red blood cells (RBC), where they develop through

a ring and trophozoite stage, and then undergo three to four

rounds of DNA synthesis, mitosis and nuclear division to produce

a syncytial schizont with approximately 12 to 40 nuclei per

infected RBC [5,6]. This asexual cycle occurs over a period of 48

hours resulting in the release of over 16 merozoites (1n) for

additional rounds of host cell invasion and parasite proliferation.

These processes of trophic development, schizogony, egress, and

host cell invasion represent unique opportunities for the develop-

ment of new drugs with novel MoA against the infection.

However, finding novel drug candidates targeting the parasite’s

developmental cycle remains a challenge, as all current antima-

larial screening assays mostly rely on total DNA measurements or

detection of various parasite proteins as a measure of parasite

viability in vitro [7–9].

Automated image acquisition technology and computerized

image mining techniques can provide multi-parametric and highly

accurate information on parasite responses to different drugs

during experimentation. Here, we describe a novel and fully

automated image analysis algorithm for high content screening

(HCS) of drugs against malaria, with the capability of discrimi-

nating between living and dead parasitaemia from in vitro blood

samples. Additionally, we will show that the algorithm is capable

of classifying the different life cycle stages of malaria parasites for

the purpose of assessing the effect of promising antimalarial

compounds on schizont development, parasite egress and host cell
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invasion processes. Such a system will facilitate the current efforts

aimed at identifying new antimalarial drugs, and vaccines

targeting the different erythrocytic stages of P. falciparum parasites.

Materials and Methods

Malaria Parasite Culture, Image Acquisition Process and
Image Analysis Algorithm

Our HCS system (illustrated in Figure 1) consists of the

following five parts: an automated 384-well screening platform to

set up the experimental assay, an OperettaTM harmony 2.0

imaging platform (PerkinElmer) to acquire the images, a central

database server to store the acquired image data and final analysis

results, an image analysis software platform, and finally the

malaria image analysis algorithm designed as plug-in’s to the IM

platform.

The experimental assay was set up using the following

protocol: P. falciparum strain 3D7 (MRA-102) was obtained from

the Biodefense and Emerging Infections (BEI) research resources

(Manassas, VA) and maintained in human RBC (blood type O+,

Gyeonggi Blood Center, Korean Red Cross) at 4% hematocrit

in media consisting of RPMI 1640, 25 mM HEPES buffer

(pH 7.4), 0.1 mM hypoxanthine, 0.016 mM thymidine, 0.5%

Albumax, and 20 mg/ml gentamycin. Cultures were grown at

37uC in 75-cm2 flasks after gassing with a mixture of 5% CO2,

1%O2, and 94% N2. When needed, parasites were double

synchronized (8-hour interval) at the ring stage by sorbitol-

treatment and further cultivated through one complete cycle

prior to each assay. Drug-treated and control cultures were

diluted to 0.01% hematocrits (representing at least 0.03%

parasitaemias) in a staining solution comprising wheat germ

agglutinin-AlexaFluor488 conjugate (RBC stain), DAPI (Invitro-

gen D3571, nuclei stain), and Mitotracker Red CMXRos

(Invitrogen M7510, active mitochondrial stain) each at a

1 nM concentration. The cultures in 384-well glass plates

(Matrical) were then incubated for 20 minutes at 37uC to allow

for complete incorporation of each dye prior to image

acquisition.

Figure 1. Illustration of the HCS system and the malaria image analysis algorithm. (A) 384-well screening platform to set up experimental
assays. (B) Operetta 2.0 imaging system to acquire image data. (C) Central database to store acquired image data. (D) IM platform to load and analyze
image data from central database. (E) The malaria image analysis algorithm diagram from input image data to analysis results. The algorithm is
implemented as a plug-in of IM platform.
doi:10.1371/journal.pone.0061812.g001
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Following the parasite and red blood cell staining as

described in the previously (Figure 1A), five microscopic image

fields (red boxes of the grid in Figure 1B) were acquired from

each well using an automated Operetta 2.0 imaging system

(Figure 1B). The images were taken using 406 lens and the

dimension of each image is 136061024 pixel2 ( = 3406256

mm2). In real-time, the acquired images were transferred to a

central database and stored as TIFF image format with a bit

depth of 16 bits (unsigned integer, values ranging from 0 to

65535) (Figure 1C). We used an in-house developed (proprie-

tary) image analysis software platform called Image Mining (IM)

which is able to access the central database and serve as an

interface between the acquired image data and the dedicated

image analysis algorithm (Figure 1D). The malaria image

analysis algorithm was developed and implemented as a ‘plug-

in’ to the IM platform. Although, the used platform is

proprietary, any other image processing software (MatlabTM,

ImageJ, etc.) is fully capable of analyzing the image data,

following the in-here described algorithm.

Input images are composed of three different channels for

WGA-AlexaFlour488 fluorescence (green), DAPI fluorescence

(blue), and for Mitotracker fluorescence (red). Figure 1E is a

diagram of the malaria image analysis algorithm, from the input

image data to the analysis results. The algorithm is designed to

determine the proportion of infected RBC (parasitaemia), the

proportion of each life cycle stage (early ring, ring, trophozoite, or

schizont), and the proportion of live versus dead parasite

populations at each developmental stage. The algorithm consists

of four major parts: 1) RBC number estimation, 2) parasite signal

detection, 3) infected RBC detection, and finally 4) life cycle stage

classification.

Total Red Blood Cell Number Estimation Process
The total number of RBCs per image field represents the most

important parameter for accurately determining culture parasit-

aemia in malaria. The parasitaemia is defined as the ratio of the

number of infected RBCs to the total number of RBCs. RBCs in

microscopic images often appear as clustered corpuscles and the

most challenging part to count the total number of RBCs is when

RBCs are clustered together. To estimate the total number of

RBCs on Giemsa-stained glass slides, most of the previous research

have used a detailed segmentation approach to separate clustered

RBCs into individual RBCs such as use of region growing [10–12],

morphology [13,14], graph [15], contour tracing [16], distance

transform [10,17], or template matching [18,19]. Although, these

methods result in an estimate of total RBCs, they are extremely

time consuming, and consequently increase the execution time

significantly. In a HCS setup, most of these methods are not

applicable and hence another approach has to be found.

On average, the number of RBCs in each image varies between

450 and 650, and the observed proportions of the number of

RBCs in clusters are 80,90% of the total number of RBCs

(Figure 2A). And the maximum parasitaemia is below 10%. Thus,

as mentioned previously, if we use a ‘the detailed segmentation

approach’, a lot of computation time is required to split clusters,

and .90% of the cost for the segmentation of the clusters will be

spent for no other reason than to measure the number of RBCs. In

order to accurately estimate the total number of RBCs per image

field, and limit the image processing time necessary for HTS

experimentations, we have developed and validated a novel

approach for cell number estimation in various RBC clusters. We

identified the following three characteristics with stained RBCs: 1)

the overlap area between two adjacent RBCs in a cluster (of two) is

in most cases negligible, 2) the area of the single and isolated RBCs

are homogeneous and approximately following a normal distri-

bution with (relatively) low variation, and finally, 3) there are

enough single and isolated RBCs in each image (10,20% of the

total number of RBCs). Based on these observations, we can

compute an average RBC area from the isolated RBCs, and

estimate the number of RBCs in each cluster by dividing RBC

cluster area by the average RBC area. Later we will show statistics

that proves this gives us similar results to manual counting.

Estimating the total number of RBCs is done in five sequential

steps: 1) separating RBCs from the background, 2) classifying the

isolated and clustered RBCs regions, 3) calculating an average

area of the isolated RBCs, 4) estimating the number of RBCs in

clustered RBCs, and 5) computing the total number of RBCs per

image field by summation of the cell count in all clusters to the

number of isolated RBCs. Figure 2 shows the flow diagram of the

process.

The first step is to detect and separate the RBC signals from

background fluorescence (Figure 2B). Average intensities of

backgrounds and RBC regions are around 50610, and 190640

respectively. And RBC regions occupy 20,30% of the total image

area. Since background and RBC regions intensity profiles are

clearly separable and RBCs are well spread over the entire image

domain, simple adaptive threshold methods can be applied to

separate RBC regions from background. We used Otsu’s threshold

method [20] to automatically eliminate detectable background

signals during image processing.

The second step was to classify and split all segmented areas into

isolated and clustered RBCs. We employed the following criteria to

detect clearly isolated RBCs: 1) the object has no concave corner

points, 2) the ratio of the length of major and minor axis of the

object is close to 1 (one requirement of a circle shaped object). For

the first criterion we used an osculating circle estimation method

[21] to detect concave corner points of an object boundary based on

the curvature. Let X~ x1, � � � ,xn xi~(xi,yi)[Z|Zjf g be the chain

code [22] of boundary of an object, that is xi belongs to the

boundary and xi+1 is a neighboring pixel of xi. Then, the osculating

circle

Fxi
(x)~a1(x2zy2)za2xza3yza4~0:

at a boundary point xi with respect to a given window size p§1 is

computed by a least square minimization problem

Minimize

x2
i{pzy2

i{p xi{p yi{p 1

..
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:

Then the center z(xi) and radius r(xi) of the osculating circle at

xi are given by.

z(xi)~(z1,z2)~ {
a2

2a1
,{

a3

2a1

� �
, r(xi)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
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3

4a2
1

{
a4

a1

s
:

and therefore the local curvature of the boundary at xi is
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k(xi)~sign z(xi)ð Þ 1

r(xi)
:

where sign z(xi)ð Þ~1 if z(xi) is inside of the object region,

otherwise sign z(xi)ð Þ~{1.

If a point on the boundary has a negative local minimum

curvature, then the point is a concave corner point (Figure 2C).

Moreover, if all curvature values of an object boundary points are

positive, then the object has no concave (inwards) corner point

which satisfies the first criterion. Thus isolated RBC candidates

satisfying the first criterion can be classified by scanning the

curvatures of the boundary points. The second criterion is made to

identify RBC clusters passing the first criterion i.e. having no

visible corner points. This type of RBC cluster is usually composed

by two RBCs are overlapped over than half and therefore yielding

an elongated (ellipsoidal) shape with no or undetectable concave

corner point. The malaria image analysis algorithm computes the

ratio of the length of major and minor axes which are defined by

the longest line and shortest line from a boundary point to another

boundary point. If the ratio of an object is close to 1, then the

object has circular shape, because there is no object of symmetry

shape having no concave corner point except circular cells in the

images. If an object satisfies these two criteria, then the object is

classified to an isolated RBC (Figure 2D), otherwise the object is

classified to a RBC cluster (Figure 2E).

The third step is calculating the average RBC area. Let

S~fS1, . . . ,SNS
g be a set of isolated RBCs with NS elements

classified from the previous step, and ASi
be the area of Si. Then

an average area of isolated RBCs ARBC is calculated by

ARBC~
1

Ns

XNS

i~1
ASi

� �
:

The fourth step is estimating the number of RBCs in RBC

clusters. This estimation is achieved by dividing RBC clusters area

by ARBC . Let C~fC1, . . . ,CNC
g be a set of RBC clusters with NC

elements and ACi
be the area of Ci. Then the number of RBCs

NCi
in a cluster Ci is estimated by

NCi
~round ACi

�
ARBC

	 

:

Finally the estimated number of total RBCs NT is computed by

NT~NSz
XNC

i~1
NCi

:

A validation of the RBC number estimation process is given in

the results section, by comparing algorithm estimation results to

manual counting.

Parasite Signal Detection Process
The malaria image analysis algorithm extracts information

about the number of parasites, their location and area and finally

their signal strength, by using both the DAPI and Mitotracker

fluorescence signals. Figure 3A show a partial image region of size

90670 pixel2 in the DAPI fluorescence channel (rescaled intensity

of range [0, 50] from [0, 150] for enhanced visibility). The average

Figure 2. Total RBC number estimation process. (A) A partial region of 4006300 pixel2 of WGA-AlexaFlour 488 fluorescence channel image. (B)
Separate RBC regions by Otsu’s threshold method. (C) Classify isolated and clustered RBCs by concave corner point detection method based on
boundary curvature measurement and principal axes ratio. (D) Count number and calculate average area of isolated RBCs. (E) Estimate number of
RBCs in each cluster. (F) Compute number of total RBCs.
doi:10.1371/journal.pone.0061812.g002
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background levels of DAPI fluorescence channels have an intensity

level between 10 and 20 while the intensities of the parasites are

more than 100. Despite the different nature of the DAPI and

Mitotracker (DAPI binds to DNA and Mitotracker binds to

mitochondria of the parasites), the intensity characteristics of the

Mitotracker fluorescence channel images are similar to the ones of

the DAPI channel. Therefore the parasite signals in both DAPI

and Mitotracker channels can be detected by a same signal

detection method.

The parasite signals are detected using a local maxima point

detection method. In this process, noise signals on the background

are also detected by the method. We observed the intensity

distribution of the noise signals from the local maxima points. As

shown in Figure 3C, the distribution is close to Gaussian with the

average m~30 and the standard deviation s~10, and most of the

local maxima points are located within the 5s range of m. Note

that this noise distribution analysis is not influenced from the

parasite signals because the number of parasite signal points is

smaller (hundreds) than the number of the noise signal points

(150,000). Therefore we assume that the parasite signals are

outliers of the distribution with signals larger than 99.99994% of

the other local maxima points. In conclusion, the parasite signals

can be detected by taking signals over than mz5s.

The parasite signal detection process is done in the following

steps: First, the algorithm detects local maxima points of intensity

from input images of window size 363 pixel2 (Figure 3B), and

calculates the average m and the standard deviation s of the

detected local maxima points (Figure 3C). Gaussian filtering with

s~1:0 is then applied to the input image to get clear signal regions

and suppress the influence of noise (Figure 3D). The parasite

signals are then separated from the background by taking pixels

with a threshold value T~a mz5sð Þ (Figure 3E). Here a[(0,1� is a

constant to compensate the intensity loss due to Gaussian filtering

(we fixed the value a~0:93 yielding the optimal separation

between background spots and parasites). Finally, the algorithm

segments each parasite signal by connected component object

labeling [23] to the thresholded image, and collects the

information of location and area (Figure 3F). For each of the

objects, the location of a parasite signal is given by the location of

the corresponding local maximum point and the area is given by

the number of pixels of the object. A validation of the parasite

signal detection process is given in the results section, by

comparing algorithm detection results to manual detection.

Infected Red Blood Cell Segmentation Process
After the parasites have all been identified, the next step is to

segment infected RBCs and link each of the parasites to an

infected RBC. This is necessary to determine the parasitaemia and

parasite viability (dead/alive). Below, we describe the process

needed in order to accurately segment RBC clusters and correctly

assign the detected parasites to individual RBCs. The following

characteristics of human RBCs were exploited to segment the

clustered RBCs via circle fitting: 1) RBCs have (approximately)

circular shapes with uniform areas, 2) the outer boundaries of

RBCs are brighter than its interior regions due to their biconcave

nature. On the basis of this latter difference, a RBC edge structure

map was generated and a gradient vector field was computed.

From here we use a circle fitting model via vector flow tracking to

more precisely find the boundary of the RBC.

The Hessian based edge detection filter [24,25] is used to

extract boundary structure from the input image. The filter is

designed to detect edge structures with directional information so

that it can extract edge structures while suppressing blob objects.

Let f be an input image of RBCs and H be the Hessian matrix of

Figure 3. Parasite signal detection process diagram. (A) DAPI or Mitotracker fluorescence channel image. (B) Detect local maxima points of
intensity. (C) Compute m and s of local maximum point intensities. (D) Smooth signals by Gaussian filtering. (E) Separate signals by threshold value
T~a mz5sð Þ. (F) Compute number, location, area, signal strength information.
doi:10.1371/journal.pone.0061812.g003
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f defined by

H~
fxx fxy

fyx fyy

� �
:

Let l1, l2 be the eigenvalues of H, and v1, v2 be the

corresponding eigenvectors. Without loss of generality, let l1 be

the eigenvalue that has larger absolute value and l2 be the

eigenvalue with smaller absolute value. Then v1 is the direction of

greatest curvature (given by the second-order derivative), v2 is the

direction of least curvature, and the corresponding eigenvalues are

the respective amounts of the greatest and least curvatures

respectively. The eigenvectors of H are called ‘principal directions’

and are directions of pure curvature. The eigenvalues of H are

called principal curvatures and are invariant under rotation.

Moreover, v1 directs from brighter region to darker region if

l1w0 (positive curvature), and directs from darker region to

brighter region if l1v0 (negative curvature). Based on the

properties, a Hessian based edge detection filter r(x) for each pixel

x is defined by

r(x)~
l1=lmin ifl1v0

0 ifl1§0



:

where lmin denotes the smallest eigenvalue over all pixels in the

image, which in practice will always be smaller than zero [25]. Then

r(x) lies in the range of ½0,1�, and r(x)&1 if x is a pixel on the edge

structure, and r(x)&0 when x lies on a flat region. In addition, the

orientation of the edge for each pixel is given by v2. Note that r(x)
indicates bright edge structures that have negative curvature.

From the RBC edge structure map r(white structures in Figure 4B),

the algorithm calculates the gradient vector field Fr of r (red arrows in

Figure 4B). Let C(x,r) be a fitting circle where the center is x, and the

radius r is initiated as the average area of the isolated RBCs calculated

from the total RBC number estimation process (yellow circle in

Figure 4B). Now we define a vector field Fr,C by

Fr,C (x)~

P
y[C(x,r) Fr(y)P

y[C(x,r) Fr(y)
��� ���

2

:

Figure 4. Infected RBC segmentation process diagram. (A) WGA-AlexaFlour488 fluorescence channel image. (B) RBC edge structure map
(white structures), corresponding gradient vector filed (red arrows), and the fitting circle C(x,r) (yellow circle). (C) Normalized vector field of the sum
of the gradient vectors along a fitting circle (yellow arrows). (D)-(F) Infected RBC segmentation process. (D) Infected RBC with detected parasite signal
points (red dots). (E) Two fitting processes started from different signal points. (F) Fitting result. Inner region of fitting circle is segmented as infected
RBC region. Note that two different fitting processes give to same result.
doi:10.1371/journal.pone.0061812.g004
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That is, Fr,C (x) is a normalized vector of the sum of the

gradient vectors of Fr along the direction of C(x,r). Then as

shown in Figure 4C, the vectors in Fr,C (x) (yellow arrows) are

converged toward the RBC centers (red dots). Therefore, the

center xc of a RBC can be found by tracking the vector flow of

Fr,C started from any point x0 inside the RBC boundary, and then

the inner region of C(xc,r) is being the RBC region (red circles in

Figure 4C).

The infected RBC segmentation process is done in accordance

with the following steps: Firstly, to reduce computational cost, the

malaria image analysis algorithm extracts partial image region of

size 2r|2r around a parasite signal detected in the previous

process where r is the average RBC radius calculated from the

average RBC area from the total RBC number estimation process

(Figure 4D). The RBC edge structure map r and the gradient

vector field Fr are then computed from the region, and start the

fitting process. An initial center point x0 of C(x,r) is then set to the

location of the detected parasite signal (a red dot of Figure 4D),

and Fr,C (x) is computed for x0. The next point x0 that the current

point x flows through Fr,C is computed as

x0~xzround
Fr,C (x)

Fr,C (x)
�� ��

 !
:

and the angle between x and x0 is determined as

h~ arccosS Fr,C (x)

Fr,C (x)
�� �� ,

Fr,C (x0)

Fr,C (x0)
�� ��T, 0ƒhvp:

The fitting process is repeated while h is less than 90 degrees. If

h is greater than 90 degrees the fitting process is stopped since a

RBC center xc is reached [26].

When the fitting procedure has ended, then the segmented

region of C(xc,r) indicated the detection of the RBC, and xc its

center. Next, all parasites inside C(xc,r) are linked to the (infected)

RBC (Figure 4F). Note that the fitting process started from

different parasite signals in a same RBC converge to the same

result, as shown in Figure 4E. Therefore we can reduce

computational cost by doing the fitting process for only one

parasite signal among all detected signal points in a same RBC. A

validation of the infected RBC segmentation process is given in the

results section, by comparing algorithm detection results to manual

detection.

Life Cycle Stage Classification Process
To compose information of infected RBCs, parasite signals

detected from DAPI and Mitotracker fluorescence channels are

assigned to the segmented RBC as described above. The malaria

image analysis algorithm identifies the viable status of the parasites

in each infected RBC by the presence of parasite signals detected

from the Mitotracker fluorescence channel (Mitotracker parasite

signals). The parasites are designated as ‘‘alive’’ if the Mitotracker

parasite signals are present in an infected RBC, considered as

‘‘dead’’ if not.

The life cycle stages of the parasites are classified using following

criteria which are based on the information of location and area

collected from the parasite signal detection process. Figure 5 is the

summary of the life cycle stage classification criteria given in the

form of a decision tree. If an infected RBC has parasite signals

detected from the DAPI fluorescence channel (DAPI parasite

signals), then we classify the life cycle stage of the parasites into

Figure 5. Decision tree of the life cycle stage classification criteria. The life cycle stage of parasites in an infected RBC is classified into early
ring, ring, trophozoite and schizont by the presence of the detected parasite signals from the DAPI/Mitotracker fluorescence channels, and the
number, area and distance between the signals. Note that ‘‘DAPI parasite signal’’ and ‘‘Mitotracker parasite signal’’ in the decision tree represent the
parasite signals detected from the DAPI and Mitotracker channels respectively.
doi:10.1371/journal.pone.0061812.g005

Malaria Parasite Stage & Viability Quantification

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e61812



Figure 6. Area distribution and number of isolated RBCs in randomly selected nine images. Each image has enough number of isolated
RBCs to calculate average RBC area with distribution close to a normal distribution.
doi:10.1371/journal.pone.0061812.g006

Table 1. Comparison results of manual and algorithm RBC counting.

Image No. 1 2 3 4 5 6 7 8 9 Total

MC 1* 495 549 594 533 617 494 499 590 612 4983

MC 2 523 541 603 546 622 497 515 581 612 5040

MC 3 504 562 617 572 632 504 519 605 639 5154

MC 4 506 556 624 573 637 501 514 595 626 5132

MC 5 490 535 598 542 618 483 491 580 607 4944

MC 6 498 570 622 575 639 486 493 568 602 5053

MC Ave 503 552 610 557 628 494 505 587 616 5051

Algorithm 489 528 620 552 606 498 495 578 617 4983

Error 2.79% 4.58% 1.67% 0.88% 3.55% 0.77% 2.05% 1.47% 0.11% 1.36%

*MC means manual counting result.
doi:10.1371/journal.pone.0061812.t001
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ring, trophozoite or schizont based on the number, area and

distance between the parasite signals. If number of the signals

equals to one, then the parasite is: ring stage if the area of the

signal is less than or equal to 80 pixels (5 mm2), trophozoite stage if

not. If the number of the signals is equal to two and the area of

each signal is less than or equal to 80 pixels, then the parasites are:

ring stage if the distance between signals is greater than 15 pixels

(3.75 mm), trophozoite stage if not. If the number of the signals is

greater than or equal to three, the area of each signal is less than or

equal to 80 pixels, and the maximum pairwise distance between

signals is less than or equal to 15 pixels, then the parasites are

schizont stage. In this case, living or dead status is decided by

presence of the Mitotracker parasite signals as described above. If

there exist only Mitotracker parasite signals without DAPI parasite

signals (presumably represent parasites at the interphase stage),

then we classify the stage of the parasites into two different stages

based on the number of the Mitotracker parasite signals in an

infected RBC. If number of the signals is equal to one, then the

stage is ring, or trophozoite with invisible xsome/uncoiled DNA if

two or more. In this case, status of the parasites is live. A validation

of the life cycle stage classification process is given in the results

section, by using highly synchronized P. falciparum parasites at

different time-points post infection.

Parasitaemia and Viability Calculation
Parasitaemia is measured by the ratio of the number of infected

RBCs over the total number of RBCs. Here we compute

proportions of early ring, ring, trophozoite and schizont stages

by the ratio of the number of early ring-infected, ring-infected,

trophozoite-infected and schizont-infected RBCs over the total

number of infected RBCs. Viabilities of the stages are also

calculated by the ratio of the number of early ring-infected, ring-

infected, trophozoite-infected and schizont-infected RBCs which

have Mitotracker fluorescence signals over the total number of

early ring-infected, ring-infected, trophozoite-infected and schiz-

ont-infected RBCs. These proportions are important data to find

hit compounds which block schizont development in malaria

parasites.

Results

As described above, the validation of the malaria image analysis

algorithm was achieved by comparing the obtained data from the

RBC number estimation, parasite signal detection, infected RBC

segmentation processes with results from manual counting

involving six different experimenters. For this purpose, nine image

fields from different assay wells were randomly selected and

processed using the algorithm and manual annotation. The life

cycle stage classification process was validated by applying the

algorithm to highly synchronized P. falciparum Dd2 cultures at

various times post-merozoite invasion. Furthermore, we validated

the algorithm for drug EC50 determination by utilizing images

from various dose-response experiments with known antimalarial

compounds.

Red Blood Cell Number Estimation Validation
The RBC number estimation process uses an average area of

isolated RBCs to estimate number of RBCs in the clusters. Thus it

should be validated to have correct results that the stained RBCs

images have following characteristics: 1) the overlap area between

any two adjacent RBCs in a cluster is in most cases negligible, 2)

Table 2. Inspection results of parasite signal detection.

DAPI Mitotracker

Manual Algorithm F.Pos* F.Neg* Manual Algorithm F.Pos F.Neg

Image 1 8 8 0 0 5 5 0 0

Image 2 51 53 2 0 24 24 0 0

Image 3 60 59 0 1 29 28 0 1

Image 4 8 9 1 0 1 1 0 0

Image 5 7 7 0 0 20 20 0 0

Image 6 69 67 1 3 26 27 1 0

Image 7 10 11 1 0 6 6 0 0

Image 8 15 15 0 0 6 6 0 0

Image 9 75 75 1 1 31 31 0 0

Total 303 304 6 5 148 148 1 1

Error - 0.33% 1.98% 1.65% - 0.00% 0.68% 0.68%

*F.Pos and F.Neg mean false positive and false negative respectively.
doi:10.1371/journal.pone.0061812.t002

Table 3. Inspection results of infected RBC segmentation.

Manual Algorithm
False
Positive

False
Negative Misaligned

Image 1 5 5 0 0 0

Image 2 22 22 0 0 1

Image 3 20 20 0 0 0

Image 4 5 5 0 0 0

Image 5 19 19 0 0 0

Image 6 21 21 0 0 0

Image 7 11 11 0 0 0

Image 8 15 15 0 0 1

Image 9 30 30 0 0 1

Total 148 148 0 0 3

Error - 0.00% 0.00% 0.00% 2.03%

doi:10.1371/journal.pone.0061812.t003
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the areas of the RBCs are uniform and the distribution of the areas

approximately follows a normal distribution with low variation,

and finally, 3) there are enough number of isolated RBCs in each

image. The first characteristic was satisfied by controlling the

density of RBCs in experiments. The second and third charac-

teristics were validated by analyzing the area distributions and

counting the numbers of isolated RBCs in the nine images. As

shown in Figure 6, for each image the distribution forms

approximately a normal distribution of 7706140 pixels of RBC

area which implies 15.761.5 pixels of RBC radius, and there are

72,106 isolated RBCs which is enough number to estimate

average RBC area. Table 1 shows comparison results of manual

and algorithm counting of the total number of RBCs in the nine

images. Variability of manual counting is maximum 3%, and the

errors between manual and algorithm counting are less than 5%.

That means manual counting results are reliable and the RBC

number estimation method is also robust and reliable.

Parasite Signal Detection Validation
The parasite signal detection process was validated by manual

inspection of detected signals from the malaria image analysis

algorithm. The algorithm detected parasite signals from DAPI and

Mitotracker fluorescence channels that are located in RBC regions

only. Table 2 shows the validation results for the nine randomly

selected images. As shown in the error row, the average errors of

parasite signal detection results from both DAPI and Mitotracker

fluorescence channels were ,2%, and all the false positive and the

false negative were occurred in regions where several parasites

gathered closely. Additionally, the errors of parasite signal

detection results from the DAPI fluorescence channels were larger

than the Mitotracker fluorescence channels because the noise

signals in DAPI fluorescence channels were stronger than the noise

signals in Mitotracker fluorescence channels. In conclusion, the

parasite signal detection process is robust and reliable.

Infected Red Blood Cell Segmentation Validation
The infected RBC segmentation process was also validated by

manual inspection of the segmented RBC regions from the

malaria image analysis algorithm. Table 3 shows the validation

results for the nine randomly selected images. Note that the

number of infected RBCs in an image may be different from a

number of detected parasite signals in Table 2 because several

parasite signals can be located in an infected RBC. In the columns,

the false positive means that the malaria image analysis algorithm

segmented non-infected RBCs, the false negative means that the

algorithm missed infected RBCs, and the misaligned means that

Figure 7. Life cycle stage classification process validation result. Highly synchronized P. falciparum Dd2 cultures were imaged at 8, 30 and 40
hpi and were analyzed by the malaria image analysis algorithm. The dominant parasite stages at 8, 30, 40 hpi were early rings, trophozoites, schizonts
respectively.
doi:10.1371/journal.pone.0061812.g007

Figure 8. Comparison of EC50 for known antimalarial compounds. EC50 values of the chloroquine, artemisinin, and pyrimethamine against
P. falciparum 3D7 parasites using SYBR I, pLDH, and our assays were determined and compared.
doi:10.1371/journal.pone.0061812.g008
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the algorithm detected infected RBCs with incorrect regions. As

shown in Table 3, the average error of the algorithm was around

2% of misaligned, with no false positive or false negative. Note that

since the infected RBC segmentation process uses the parasite

signal detection results as starting points of the fitting process,

there may be not false positive or false negative of infected RBCs

as long as the parasite signal detection results is robust.

Life Cycle Stage Classification Validation
We used highly synchronized P. falciparum parasites at different

time-points post infection (8, 30 and 40 hours post-infection, hpi)

to validate the life cycle stage classification process. P. falciparum

Dd2 was synchronized repetitively with gelatin and sorbitol

method [27]. Tightly synchronous P. falciparum Dd2 were seeded

at early ring stage (,8 hpi) and imaged immediately or at 30 or 40

hpi as described above. At each time point, 200 images (5 image

fields in 40 wells) were acquired for further processing using the

malaria image analysis algorithm. Figure 7 shows the life cycle

stage classification validation results. Dd2 cultures were accumu-

lated at particular stages depending on the time post-infection,

indicating stage-specific classification capability of the algorithm.

As expected, the dominant parasite stages at 8, 30, 40 hpi were

early rings, trophozoites, schizonts, respectively.

EC50 Determination using the Malaria Image Analysis
Algorithm

We determined the EC50 values for the antimalarial com-

pounds chloroquine, artemisinin, and pyrimethamine against P.

falciparum 3D7 parasites using the SYBR I and pLDH assays in

comparison to our approach. Tightly synchronized cultures at the

early ring stage were incubated for 72 hours with each compound

and assayed by each test method. For all our assays, drug EC50

values were determined on the basis of culture parasitaemia as

determined by the malaria image analysis algorithm. As shown in

Figure 8 and Table 4, obtained EC50 values from each assay were

similar indicating high correlation between the different assays.

On the basis of the parasitaemia from positive growth cultures and

the uninfected RBC wells, we calculated Z’ factor as following

equation:

Z0 factor~1{
3 spzsn

	 

mp{mn

�� �� :
with the means mp, mn and standard deviations sp, sn of the

positive (p) and negative (n) controls respectively. The assay Z’

factors were 0.784 for our assays, 0.724 for SYBR I, and 0.558 for

the pLDH. Together, these results demonstrate high reliability of

the new assay for use in high-content drug susceptibility studies.

Discussion

In this article we have presented a fully automated image

analysis algorithm for HCS based antimalarial drug discovery and

proved its robustness. The aim of the algorithm is to accurately

determine malaria culture parasitaemias and viabilities, and

quantify the proportion of each parasite stage per infected RBC.

This is achieved by unbiased detection and enumeration of total

RBCs, the DAPI-stained parasite nuclei and also Mitotracker-

stained mitochondria in viable parasites.

The algorithm computes the total number of RBC from the

WGA-AlexaFlour488 channel, which forms the base information

to estimate the parasitaemia. Also numerical and geometrical

structures of the RBC in the channel can be estimated by the

algorithm to be used in the infected RBC detection process. From

the DAPI and Mitotracker fluorescence channels, the algorithm

quantitatively detects the fluorescence signal of within each

parasite, extracting information on number, location, area, and

signal strength of fluorescent spots. The algorithm determines

infected RBCs based on the location of the detected parasite

signals from DAPI and Mitotracker fluorescence channels, and the

infected RBC regions are segmented from their numerical and

geometrical structures analyzed from the WGA-AlexaFlour488

fluorescence channel. The parasite classification in early rings,

rings, trophozoites, or schizonts are then determined following

criteria. Finally, the algorithm outputs the results mentioned above

by combining all the collected information as tabular format.

Approaches such as region growing [10–12], morphology

[13,14], graph [15], contour tracing [16], distance transform

[10,17], or template matching [18,19] have been employed to

estimate RBC numbers in malaria glass slides and/or in microtiter

plates. However, such approaches are incapable of precisely

determining the number of cells in RBC clusters that are often

encountered during HTS experimentation. To accurately and

rapidly quantify RBC numbers in the image fields, we employed a

novel approach that is based on the mean area of isolated RBCs

per image field. As demonstrated by the manual counting

validation, our customized image analysis approach is sufficiently

precise in determining the total RBC numbers per image field, and

offers the added advantage of high processing speed when

compared to individual segmentation methods. The parasite

signal detection process provides basic information of the parasites

states which is used in the infected RBC segmentation and parasite

life cycle stage classification processes. The infected RBC

segmentation process is applied only for the infected RBCs in

order to segment RBC regions, and therefore the computational

cost of the algorithm is much less than entire RBC segmentation

methods. The parasite life cycle stage classification process

provides key information of viabilities of different life cycle states.

The parasitaemias are computed by the ratio of number of

infected RBCs and total RBCs. The viabilities of different life cycle

stages are computed by the ratio of the number of infected RBCs

of live parasites and total infected RBCs.

Precise determination of culture parasitaemia and parasite

viability is especially necessary to detect and prioritize highly

effectiveness drug candidates with novel MoA for development.

Additionally, as shown by our time-point stage detection and

quantification data (Figure 7), the developed algorithm accurately

quantifies each parasite stage in cultures. This potential of our

algorithm could be employed to characterize various drugs

cellular mechanisms of actions including the drug effects on

schizont development, egress and host cell invasion. Taken

together, our data demonstrate that the newly developed the

image analysis approach is adequately robust for use in HTS

Table 4. Comparison of EC50 for known antimalarial
compounds.

EC50 against P. falciparum 3D7 (72-h treated)

SYBR I pLDH Our assay

Chloroquine 7.6962.2 nM 9.5563.1 nM 7.0162.6 nM

Artemisinin 7.8861.3 nM 12.4762.3 nM 7.0462.3 nM

Pyrimethamine 13.8961.3 nM 12.2764.2 nM 14.7862.6 nM

doi:10.1371/journal.pone.0061812.t004
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antimalarial assays, or as secondary assays for hit validation and

confirmation studies. To our knowledge, our image analysis

approach represent the first high-content imaging system capable

of quantitatively determining the effects of antimalarial drugs on

parasite viability and life cycle progression. The utility of this

newly developed algorithm in characterizing the antimalarial

activities of various small molecules has recently been demon-

strated in a high content screen of various chemically diverse

compound libraries (manuscript in preparation).
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