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Abstract

CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over
more than 10 time decades (from 1 ps to ,100 ms) by combining femtosecond transient absorption, nanosecond laser
flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time
constant of ,2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination
was identified at,100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species
in the second order rebinding phase, with time constants ranging from ,3 to ,100 ms. The available experimental
evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within
the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a
branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of
describing the complete time course of the CO rebinding kinetics to Tf-trHb.
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Introduction

The dynamics of ligand binding after photolysis in heme

proteins is a complex phenomenon that entails a sequence of

distinct events covering more than 10 time decades. Such a time

frame spans from the early quantum events (electron promotion

and decay) occurring in the subpicoseconds time scale to ligand

motion within the distal heme pocket, falling in the tens of

nanoseconds, from protein relaxation typically observed in the

microsecond time regime, to ligand rebinding from the solvent,

reaching the milliseconds range [1–5]. Merging data obtained

from such a broad time frame is essential to unravel the

elementary dynamical processes underlining the ligand binding

process in order to provide a descriptive analysis of the

physicochemical properties at the basis of protein functioning.

CO is by far the preferred probe ligand for these studies in that the

protein-CO adduct is readily accessible to spectroscopic observa-

tion [6], its photodissociation quantum yield approaches unity [7]

and the starting heme-CO complex is fairly stable and readily

prepared.

The overall dynamics of the photodissociated CO ligand has

been previously investigated in vertebrate globins: in the case of

myoglobin, this has allowed to draw a detailed picture of the

dynamics following photoexcitation of the protein [8–10]. The

sequence of events following CO photo-detachment starts with the

electronic and vibrational relaxation of the heme macrocycle to

the pentacoordinate (5c) structural frame. While the heme moiety

further relaxes towards the resting 5c-state, the ligand experiences

interactions with the amino acid residues of the distal pocket [11].

As a consequence of distal interactions, the ligand molecule may

be confined in proximity of the metal and quickly undergoes a

recombination process or, alternatively, it may diffuse further

away through migration pathways that involve intermediate

docking sites composed of cavities, or packing defects, or even

tunnels that eventually lead to the solvent phase. A part of this

process, rebinding of ligands from within the protein matrix, is

normally termed geminate recombination. The possible scenarios

of ligand rebinding or escape are believed to be key descriptors of

the reversible ligand recognition and binding at the microscopic
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level and account for the observed thermodynamic and kinetic

behavior at the basis of hemoglobin reactivity. In this framework,

laser photolysis techniques as applied in solution [12], in glasses

[13] or on protein crystals [10] have contributed to the elucidation

of the molecular machinery that governs ligand recognition and

binding in vertebrate globins.

Biological diversity, however, proposes novel challenges in the

study of hemoglobin dynamics by offering an amazingly vast array

of ‘‘variations on the globin theme’’ in terms of a wide collection of

proteins whose biochemical functions are still far from being

understood, though most likely unrelated to simple reversible

oxygen transport [14]. Among these novel heme proteins,

truncated hemoglobins (trHbs) are certainly the most intriguing

globin subfamily. They are characterized by a typical structural

fold with a two-over-two helical structure, and by a remarkable

variability in the nature of the amino acid residues within the

heme active site. On the basis of the amino-acid sequence, trHbs

have been classified into three groups, namely I (HbN), II (HbO)

and III (HbP), group II being the most populated of the three [15].

In spite of many biochemical and physiological observations,

pointing to possible NO [16], sulfide [17] or oxygen reactive

species [18,19] scavenging activities, the functional role of these

proteins remains unclear. The truncated hemoglobin from

Thermobifida fusca (Tf-trHb), the first identified thermostable

truncated Hb [20], exemplifies the structural properties typical

of group II trHbs. Its crystal structure revealed that the active site

is characterized by the invariant Fe-histidine covalent link on the

proximal side, and by a highly polar distal environment in which

TrpG8(119), TyrCD1(67), and TyrB10(54) provide three potential

H-bond donors in the distal cavity to stabilize the incoming

ligands. No obvious connection between the distal pocket and the

solvent, or internal cavities, are evident in the three dimensional

structure of the protein. Recent works clearly indicated that in Tf-

trHb TrpG8 and TyrCD1 are mainly involved in the stabilization

of exogenous ligands, namely sulfide [17] or fluoride [21] in the

ferric state, and CO in the ferrous state [22]. A similar network of

interaction has also been described in Mycobacterium tuberculosis [23–

25] and Bacillus subtilis trHbOs [26,27]. However, information on

the dynamic behavior of group II truncated hemoglobins upon

CO photolysis is limited to partial observation demonstrating the

presence of an efficient and fast geminate recombination process

in the picosecond-nanosecond time scale [24–26,28].

In the present study, a complete characterization of the

dynamics of an acidic surface variant of Tf-trHb has been

undertaken by combining femtosecond transient absorption (TA),

nanosecond laser flash photolysis (LFP), laser-induced optoacoustic

spectroscopy (LIOAS) and molecular dynamics (MD) simulations.

Results

Identification of Subnanosecond Events
The transient absorption spectra of the CO adduct of Tf-trHb

at different delay times after laser photolysis are presented in Fig. 1.

Four spectral features are evident: two negative contributions

corresponding to the Soret and Q bands bleaching (B) and two

positive bands due to excited state absorption (ESA). On the

shortest timescale, the ESA band extending beyond 440 nm to

longer wavelengths undergoes spectral narrowing and blue

shifting. The transient spectra evolve until the signal is dominated

by spectral features well reproduced by the difference between the

ground state spectra of the 5c-Tf-trHb and of the protein-CO

complex. Thus, for delay times $40 ps the transient signal is

simply composed of an amplitude decay with a fixed cross-zero

point, matching the isosbestic point of the two species (see the inset

of Fig. 1). As a result of the photodissociation, the transient signal

peaked at ,435 nm, commonly referred to as the antibleaching

signal [7], is originated from the ground state of the photoproduct.

Multiexponential decay fitting of the kinetic traces at a single

wavelength (see Fig. 2) yielded different time constants: ,300 fs,

2–4 ps and a several nanoseconds component, though this latter

with a large degree of uncertainty (see Table 1). This uncertainty is

largely reduced once the weight of the long living component is

estimated from flash photolysis experiments with nanoseconds

laser pulses (see next subsection). In order to unravel the observed

complex photodynamics, single value decomposition (SVD)

analysis was applied and spectra associated with each exponential

time (DAS) were extracted as reported in the Supporting

Information. Three DAS have been obtained with the time

constants of 300 fs, 6 ps and 2.8 ns, comparable to the results of

the previous multiexponential fit. The similarity between the first

two components with those associated to the transient spectra

observed in the 5c-Tf-trHb allows to distinguish between the

photodynamics of the excited heme and the CO geminate

recombination (Figure S1 e S2). Importantly, it emerges that after

some tens of picoseconds the heme is completely relaxed. If c0 is

the initial Tf-trHb-CO concentration and ac0 the concentration of

generated 5c-Tf-trHb, the steady-state difference absorbance is

given by DA~(e5c{Tf{trHb{eTf {trHb{CO
)c0al, where e5c-Tf-trHb

and eTf-trHb-CO are the molar extinction coefficients of the two

species, respectively. Fitting the observed transient spectrum at

40 ps to the above equation affords the fraction of generated 5c-

Tf-trHb species which, under our experimental conditions, is

Figure 1. Transient absorption spectra. Top: Steady-state absorp-
tion spectra of the CO complex of the Tf-trHb (red line) and the ferrous
5c-protein (black line). The protein concentration is 36 mM (2 mm path
length cell). Bottom: Transient absorption spectra of the CO complex of
the Tf-trHb excited at 400 nm with femtosecond pulses (ener-
gy = 0.5 mJ): at 200 fs (green line), at 1 ps (blue line) and at 40 ps (cyan
line) delay times. The latter is perfectly overlapped with the scaled
steady-state difference spectrum between the CO and the ferrous 5-c
spectra (magenta line). B: Bleaching; ESA: excited state absorption. Inset:
transient absorption spectra from 40 ps until 1.5 ns. The time evolution
of the signal is shown by the arrows.
doi:10.1371/journal.pone.0039884.g001

Ligand Migration Pathways in Truncated Hemoglobin
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found to be , 0.1. At longer times the absorbance difference

decreases due to the geminate recombination of 5c-Tf-trHb with

CO. At the end of the time window probed with our TA set-up (,

2 ns), the transient signal does not vanish and the remaining 5c-Tf-

trHb concentration (nearly 60%) gives rise to the absorbance

changes observed in LFP.

Nanosecond Flash Photolysis
CO rebinding kinetics following LFP of Tf-trHb were recorded

as a function of CO concentration (to distinguish between first-

and second-order processes) and temperature (Figure S3). The

rebinding kinetics shown in Fig. 3 is characterized by the presence

of two distinct processes: a fast phase in the ns domain and a slow

phase in the ms-ms time scale. The former is independent on ligand

concentration and can be reasonably ascribed to a geminate

phase, whereas the latter is dependent on CO concentration,

indicating a bimolecular process due to CO molecules rebound

from the solvent.

The analysis of the rebinding kinetics using MEMExp [29,30]

affords lifetime distributions with peaks (at 20uC) at 10 ns (at the

edge of the experimental resolution), 125 ns, and 35 ms that are

unchanged when lowering the CO concentration. When changing

the CO pressure from 1 to 0.1 CO atm, peaks at 2.9 ms and 13 ms

move to 16 ms and 99 ms, respectively.

The second order rebinding is thus clearly biphasic. The relative

weights of these two components can be evaluated from the

amplitudes of the two transients retrieved from the analysis with a

sum of two exponential decay functions. Alternatively, the

amplitudes of the two kinetic phases can be estimated from the

areas of the peaks in the lifetime distributions. Both methodologies

afford an estimate of 12% and 88% for the populations of the

faster and slower species, respectively. The weights of these

populations remain unmodified when changing the CO concen-

tration. This suggests that two different species exist at equilibri-

um, and their distribution is not affected by photodissociation, at

least in the investigated time range. The presence of two non-

interconverting conformations is not a new finding in bacterial

hemoglobins. The most intriguing case pertains to the truncated

hemoglobin from Geobacillus stearothermophilus whose the 3D crystal

structure was solved at 1.5 Å resolution and it is very similar to that

of Tf-trHb [31]. In the crystal cell, the iron-bound ligand was not

homogeneously distributed within each distal site such that oxygen

and an acetate anion can be resolved with relative occupancies of

50% each. In spite of the high resolution of the structure and of the

observed alternate ligand occupancy, the structures of the protein

substates harbouring oxygen or acetate were virtually identical and

hence it was inferred that there must be a sizeable enthalpic

Figure 2. Kinetic profiles at single wavelength. Transient
absorbance of the CO complex of the Tf-trHb as a function of the
delay time after excitation at 400 nm with femtosecond pulses. Solid
lines are the results of the fitting to a multiexponential decay, as
reported in Table 1.
doi:10.1371/journal.pone.0039884.g002

Table 1. Multiexponential fit of the observed kinetic profiles
shown in Fig. 2 recorded in the Tf-trHb-CO complex.

lprobe (nm) A1 t1(ps) A2 t2(ps) A3 t3(ps)

420 20.07 0.2460.05 20.025 3.660.5 20.06 (3200)

435 20.04 0.2760.05 0.01 2.460.5 0.04 (3900)

500 0.01 0.260.1 - - ,0.001 (4000)

600 0.015 0.360.1 0.008 261 0.006 (3200)

First line indicates: probe wavelength (lprobe), time constant (t) and amplitude
(A). The analysis of the time dependent signals has been done by fitting the
convolution of the instrumental function (FWHM=160 fs) with:
P

i

Ai exp {t=ti

� �

. Decay processes correspond to positive amplitude while rise

processes are associated with negative amplitudes. The opposite is true for the
bleaching signal at 420 nm. The value of t3 is reported in brackets to indicate
that this parameter has a large degree of uncertainty.
doi:10.1371/journal.pone.0039884.t001

Figure 3. Laser flash photolysis data. Top: CO rebinding kinetics to
Tf-trHb in solution equilibrated with 1 (black line) and 0.1 (red line) atm
CO. T = 20uC; l= 435 nm. Bottom: Lifetime distributions associated with
the rebinding kinetics in the top panel. Protein concentration is 38 mM
(2 mm path-length).
doi:10.1371/journal.pone.0039884.g003

Ligand Migration Pathways in Truncated Hemoglobin
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barrier that may results from the sum of several small conforma-

tional effects that contributes to the generation of two separate

substates.

Time-resolved absorbance spectra measured after nanosecond

laser photolysis add strong support to the absence of a

conformational relaxation upon CO photodissociation (see Figure

S4). The SVD analysis yields only one significant spectral

component that is superimposable to the spectral difference

between Tf-trHb-CO and 5c-Tf-trHb, and hence tracks the ligand

rebinding kinetics. Thus, the concentration of the 5c-species at all

times after photodissociation can be estimated from the observed

DA(435 nm).

Merging TA with LFP Kinetics
One of the major goals of the present work is the full

characterization of the protein dynamics over 10 and more

temporal decades and to reproduce a single rebinding curve. The

problem of merging two sets of data obtained by TAS, from few

picoseconds to 2 nanoseconds, and by LFP, from 20 ns to

milliseconds, is to define a proper data treatment without

introducing artefacts. The ‘‘blind’’ interval between 2 and 20 ns

does not allow a direct junction of the two sets of data.

Although the time-dependent a fraction varies with the

experimental excitation conditions, the fraction of photoproduct

with respect to that initially generated at time t0, i.e., N(t) =a(t)/

a(t0), (with t . t0 ), is independent on the excitation and decreases

with time from unity. It is also easily seen that N(t) =DA(t)/DA(t0).

On these basis, it is possible to merge the rebinding kinetics

measured within different time domains, with the additional

assumption that the the primary quantum yield for the Fe-CO

photodissociation is W=1 [7,32]. The first portion of the full

diagram (see Fig. 4), up to 2 ns, is rapidly built from picosecond

data starting from t0=40 ps, when all the electronical and

vibrational relaxations are completed (N(t) =DA(t)/DA(40 ps)).

In nanosecond LFP experiments, data are collected with laser

pulse energies in a range where multiple photon absorption is

negligible. In the present case, the observed absorbance change

saturates at about 50% of the expected maximum absorbance

change, as calculated from the steady state difference of the

absorbance at 435 nm between the 5c-form and the corresponding

ligated species at the concentration c0. This 50% fraction agrees

well with the estimate of surviving 5c-Tf-trHb unligated molecules

at the end of the observation time window in the femtosecond

photolysis experiment, a fact which confirms that multiple

photolysis (i.e. photolysis of those molecules which have bound

CO in the geminate phase) is a minor effect. In these conditions

a<1 (within 10%), and the fraction of the 5c-form N(t) can be

calculated by considering DA(t0) as the steady state difference of

the absorbance at 435 nm between the 5c-form and the

corresponding ligated species at the concentration c0. With the

caution to discard the transient data for t ,20 ns as they are

strongly influenced by the instrumental pulse width, we have

combined the picoseconds TA results with the LFP results. The

two branches of the diagram, N(t) vs time, are reported in Fig. 4.

The diagram - except for the small time window , 2–20 ns -

describes the CO rebinding kinetics to Tf-trHb along ten temporal

decades. The convolution of this diagram with a Gaussian shaped

function (FWHM=12 ns) centered at t = 0 gives as a result a

calculated profile which completely overlaps the experimental LFP

profile (see the inset of Fig. 4). This is a further demonstration that

the merging procedure is reliable. The N(t) diagram was subjected

to the maximum entropy analysis. The lifetime distribution for the

overall kinetic process is shown in Fig. 4 (bottom) and displays

significant peaks at around 2 ns and 114 ns and two bimolecular

phases at 3 and 13 ms.

Laser-induced Optoacoustic Spectroscopy
The acoustic waves detected upon photoexcitation of aqueous

solutions of Tf-trHb-CO and of a calorimetric reference solution

(ferric myoglobin) are reported in Fig. 5 (left). The first striking

feature is that the amplitude of the wave detected for Tf-trHb-CO

is larger than that observed for the reference compound. This is

consistent with an exothermic reaction and/or with the presence

of a concomitant structural volume change [33,34]. Moreover, the

waveform of Tf-trHb-CO is delayed in comparison with that of the

calorimetric reference, the delay becoming especially appreciable

at low temperatures. This indicates that the observed volume

changes have characteristic lifetimes that must be determined

according to the deconvolution analysis described in Materials and

Methods. This occurs because only the amplitude of the thermal

part of the signal changes according to the variation in the solution

thermoelastic parameter ratio (Cpr/b) - Cp is the heat capacity at

constant pressure, r the mass density, and b the cubic expansion

coefficient - whereas the amplitude arising from structural volume

changes DVi will stay unaltered [33].

Best fit of the signal amplitude was obtained with a sum of two

exponential decay functions, with lifetimes falling in the tens and

the hundreds of nanoseconds, respectively. Both lifetimes are

temperature dependent in the investigated range. A clear linear

trend is observed (Fig. 5) when the decay amplitudes wi -multiplied

by the laser energy El - are plotted vs (Cpr/b). This allows for the
simultaneous determination of DVi and of the heat release Qi

associated to the prompt and to the slow components of the decay

(Table 2), as reported in the Materials and Methods section. Both

Figure 4. Complete rebinding kinetics. Top: Merging rebinding
curves measured in TA and LFP experiments: fraction of the 5c-protein -
N(t) =DA(t)/DA(t0) - as a function of the delay time after excitation. In
the inset the experimental profile recorded at early delay times after
photolysis with ns laser pulses (open circles) is reported in comparison
with the convolution result (red solid line). The kinetic trace in the first
20 ns is affected by the instrumental function. Bottom: Lifetime
distributions associated with the rebinding kinetics in the top panel.
doi:10.1371/journal.pone.0039884.g004

Ligand Migration Pathways in Truncated Hemoglobin
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transients are accompanied by expansions of the solution. The

heat released in the fast process is close to the molar energy

content of the laser pulses (El is 53.8 kcal/mol at 532 nm). On the

other hand, a negative enthalpic contribution is estimated for the

slow reaction. Activation parameters are obtained from the Eyring

plots in the lower part of Fig. 5 (right).

Discussion

Excited State Dynamics (fs-ps)
Sub-nanosecond processes are known to include the formation

of transient excited states with the subsequent structural response

of the porphyrin macrocycle to the new electronic configuration,

followed by the non-radiative relaxation to the ground state [9,35–

44]. As shown in Fig. 2 and Table 1, the absorbance changes

following excitation of the CO complex of Tf-trHb with

femtosecond laser pulses show three spectral components with

time constants of ,300 fs, 3–4 ps and several nanoseconds. The

similarity between the spectral shape and lifetimes of the two faster

components with those observed after photoexcitation of Mb [37]

and 5c-Tf-trHb, suggests that the two kinetic phases are entirely

accounted for by electronic and vibrational relaxation processes.

On the basis of its spectral shape, the slowest phase should be

attributed to the geminate recombination of CO. Recently, the

initial steps of photodissociation process of CO ligated heme have

been investigated by time-dependent density function theory

(TDDFT) [6]. Two low-lying excited states, which appear

repulsive along the Fe-CO coordinate and cross the initially

excited state, have been singled out as a result of calculations with

a charge-transfer character. This assignment was in agreement

with the discussion of the experimental results reported by Franzen

et al. [9]. They have suggested that the metal-to-ring (dpRa1u,a2u)

charge transfer is the key event in the mechanism of photolysis

(,50 fs) of diatomic ligands following a porphyrin ring pRp*

transition, then the complex can decay via spin-conversion into the

high-spin ground state of the unligated system, i.e. the 5c- form.

Although the interpretation of the electronic and vibrational

relaxation after photoexcitation of heme proteins has not yet

converged to a single model [45], it seems that a sequential decay

from the initially excited iron-porphyrin state to the 5c- ground-

state could explain the ultrafast dynamics observed in the CO

complex of Tf-trHb. Thus, we can assume that complete

relaxation of the excited state takes place within a few tens of

picoseconds.

CO Rebinding from within the Protein Matrix
After excited state dynamics is complete, the onset of geminate

recombination from the distal pocket is observed on the hundreds

of picoseconds time scale (Fig. 4). The , 2 ns time constant and

the large amplitude (57% of the total absorbance change) of this

Figure 5. Laser-induced optoacoustic spectroscopy data. Left: LIOAS signals of a 1025 M Tf-trHb solution in phosphate buffer at 0.1 M ionic
strength (continuous line) and of a calorimetric reference solution at 20uC (upper panel) and at 10uC (lower panel). A vertical line marks the first
maximum of the reference signal at 10uC to highlight the time shift of the sample signal. Right: (upper panel) Plot of the decay amplitudes wi -
multiplied by the laser energy El - for the prompt (full circles) and the slow (hollow circles) components of the LIOAS signals vs the thermoelastic
parameter ratio Cpr/b. Linear least-square fittings are superimposed on the data. (lower panel) Eyring plots for the prompt (full circles) and the slow
(hollow circles) components. Activation enthalpies DH{ and entropies DS{ are estimated for each rate constant ki in the investigated temperature
range, according to the equation: ln(hki/kBT) ) = DS{/R – DH{/RT, where R is the gas constant, h is the Planck constant, and kB is the Boltzmann
constant.
doi:10.1371/journal.pone.0039884.g005

Table 2. Estimated released heat Qi, structural volume
change DVi, and activation parameters, obtained from the
plots in Fig. 5 (right).

process 1 process 2

Qi (kcal mol21) 5061 21161

DVi (ml mol21) 1.860.2 3.060.1

ti (ns) @ 20uC 18 350

DH{ (kcal mol21) 2161 1061

DS{ (cal mol21 K21) 4765 464

DG{ @ 20uC (kcal mol21) 7.260.7 964

doi:10.1371/journal.pone.0039884.t002

Ligand Migration Pathways in Truncated Hemoglobin
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kinetic phase suggest that the barrier for recombination is low

and/or the barrier for escape is high. The geminate recombination

in Tf-trHb is similar to that reported for the CO complexes of

Bacillus subtilis Bs-trHb [26] and Micobacterium tubercolosis Mt-trHbO

[24,28]. Accordingly, the three proteins (Tf-trHb, Bs-trHb and Mt-

trHbO) exhibit very similar distal heme pocket architecture with

highly conserved polar residues. These residues are in contact with

the iron-bound CO coordination shell in a common pattern

defined ‘‘ligand inclusive hydrogen bond network’’, representing a

considerable barrier to ligand escape as demonstrated by the

efficient geminate rebinding process [23,26].

Although a sub-nanosecond geminate heme-CO rebinding is

not routinely considered, experimental evidence is being accumu-

lated that this kinetic phase should not be overlooked. Picosecond

geminate processes were reported for the CO complex of several

non-globin heme proteins, including microperoxidase [46],

carboxymethyl cytochrome c [47], nitrophorins [48] and tran-

scriptional activator CooA from Rhodospirillum rubrum [49]. In

microperoxidase, a rebinding time constant of 110 ps has been

estimated, which was rationalized in terms of solvent cage effect

[46]. Geminate rebinding to carboxymethyl cytochrome c is best

described by a multiphasic recombination with time constants of

16 ps, 120 ps and 1 ns. The authors have attributed the three

phases to CO rebinding from different locations within the distal

pocket. The high efficiency of the ligand rebinding was seen as a

consequence of a sterically hindered ‘‘caged’’ nature of the distal

heme pocket, from which it is difficult for the ligand to escape.

Similarly, CO geminate rebinding to nitrophorin 4 was shown to

occur with a prominent subnanosecond, nonexponential phase,

accounting for nearly 70% of the rebinding.

In the case of Tf-trHb-CO, nanosecond photolysis experiments

show that first order processes are observed also on longer time

scale, as demonstrated by the presence of CO concentration

independent bands in the MEM lifetime distribution in Fig. 3.

Thus, the observed geminate rebinding in Tf-trHb shows kinetic

features which extend well beyond the picoseconds time scale and

suggest that photodissociated ligands may access transient docking

sites located farther from the distal pocket.

Microscopic Kinetic Model of Ligand Binding
ILS (Implicit Ligand Sampling) [50] free energy calculations of

ligand migration in Tf-trHb suggest that there is just one short

tunnel associated with a cavity system through which small ligands

can enter and bind to the iron heme group (Fig. 6). This short

tunnel is similar to that found in other truncated hemoglobins

[25,27].

One tunnel and three associated cavities were found analyzing

extensively both MD simulations and ILS results. The presence of

two on-pathway docking sites in the protein, located close to the

iron atom (trHb : CO)1, and further away (trHb : CO)2 were

unambiguously singled out. A further small cavity, (trHb : CO)3,

was also observed. However, this cavity is disconnected from the

distal site, since TyrCD1is blocking the passage between (trHb :

CO)1 and (trHb : CO)3 (Fig. 6A).

By monitoring time evolution of TyrCD1 side chain torsion, a

different conformation in which the tunnel that connects (trHb :

CO)1 and (trHb : CO)3 opens up is observed (Fig. 6B) and

attributed to the displacement of TyrCD1 away from TrpG8.

Both conformations of TyrCD1 are significantly sampled during

the time scale of the simulation (Fig. 7), indicating that the third

docking site could be accessible from the distal site.

ILS thus identified an egression pathway for ligands, which has

its origin in the distal pocket and reaches the solvent through an

opening between helices E and F (see Fig. 8). This tunnel is

characterized by a well defined, on-pathway energy minimum and

an additional off-pathway docking site, transiently connected to

the main tunnel. Unlike other globins, no direct connection of the

distal pocket to the solvent is present.

The model we have chosen to account for the observed kinetics

is shown in Scheme 1. In addition to an exit/entry through an on-

pathway docking site, the model introduces migration to a

secondary, off- pathway, docking site, which is accessible from

the primary site in the distal pocket.

trHb : COð Þ3

kd:;k{d

trHb{CO /

hu

k
{1

trHb : COð Þ1 /

kc

k{c

trHb : COð Þ2 /

kc,o2

kc,o
{2

trHbzCO

Scheme 1. Extended minimal reaction scheme for the

observed CO rebinding kinetics to Tf-trHb. (trHb : CO)1 and

(trHb : CO)2 indicate respectively the primary and secondary

docking site for the photodissociated CO inside the distal pocket

along the exit (entry) pathway to (from) the solvent, while (trHb :

CO)3 represents a reaction intermediate with CO in a temporary

docking site accessible from the distal site. Two static conforma-

tions are differing in the rate constants kc,o2 and kc,o22. and their

relative weights are held identical to those retrieved by the

amplitudes of the two exponential decays in the bimolecular

rebinding phase.

The differential equations associated with Scheme 1 were solved

numerically, and the microscopic rate constants were obtained by

a simultaneous fit to the recombination kinetics at the same

temperature, and different ligand concentration.

The model assumes for each of the two conformations distinct

values for some of the microscopic rates (namely those for the exit

to and return from the solvent, kc,o2 and kc,o22), while the

remaining rate constants are held as shared parameters. It can

describe accurately the rebinding kinetics under all tested

experimental conditions, as shown in Fig. 9 for representative

rebinding curves at 1 and 0.1 atm of CO at 20uC. The resulting

microscopic rates and the corresponding free activation energies,

estimated from linear Eyring plots in the range 10uC –30uC, are

summarized in Table 3.

The geminate phase is dominated by the fast direct recombi-

nation of the photodissociated CO from the primary docking site,

whose apparent rate constant is approximately temperature

independent within the range we investigated, as deduced

indirectly from the nanosecond experiments (the absorbance

change observed at 20 ns is independent on temperature).

Similarly, the geminate phase in the nanosecond experiments is

essentially unaffected by temperature. This unambiguously implies

that neither the rate k21 nor the rates kc and k2c show an

appreciable activation enthalpy, thus yielding a nearly constant

subnanosecond kinetics.

The rebinding reaction from the primary site occurs with a rate

k21=3?108 s21, higher than those typically observed for other

heme proteins, including human neuroglobin (Ngb) (k21=1.5?107

s21) [51], non-symbiotic Hb from Arabidopsis thaliana (type 1,

k21=0.51?107 s21; type 2, k21=2.2?107 s21) [52] and Mb

(k21=0.13?107 s21) [53]. A direct comparison between rates in the

tens of nanoseconds regime is possible only with those globins for

which geminate rebinding has not a substantial fraction occurring

on the sub-nanosecond time scale. For these cases, a correct
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evaluation of the rebinding rate would require to collect a

complete time course of the rebinding kinetics [28].

Unlike the case of innermost steps, the exit rate increases with

temperature. This finding indicates that ligand exit from the

protein matrix is assisted by structural dynamics, which thus

appears to tune the exchange of the ligands between the solvent

and the reaction site. The exit/entry to/from the solvent are then

thermally activated processes and the ligand binding from solution

(rate kc,o22) has similar activation enthalpies and entropies for both

open and closed forms, suggesting that the viscosity of the solution

determines the barrier [54]. On the other hand, the barriers for

the exit to the solvent (rate k2) do not share the same similarity,

being higher in the case of the open conformation.

The presence of the on- and off-pathway kinetic traps modulates

ligand exit to the solvent. The time course of ligand escape to the

solvent is monitored by rising portion of the curve describing

concentration of the species trHb+CO in Scheme 1 (see also

Figure S5). The signal is well described by a double exponential

rise, with lifetimes 20 ns (96%) and 200 ns (4%) at 20uC. The

biphasic nature reflects the slow equilibrium between (trHb : CO)1
and (trHb : CO)3, responsible for a delayed CO exit to the solvent.

Figure 6. Distal site cavities. Representations of the heme distal pocket, the tunnel and cavity system. Two spatial conformations (A and B) of
TyrCD1 (in red) are depicted, the second one (B) making accessible the (trHb:CO)3 cavity.
doi:10.1371/journal.pone.0039884.g006

Figure 7. Molecular dynamics simulations. Time evolution of distance between TyrCD1 and TrpG8 side chains along 50 ns MD simulation.
Frequency information and swapping configurations of TyrCD1 related with the presence of (trHb:CO)3 can be appreciated (labeled A and B). ‘‘A’’ (,
4 Å) corresponds to the conformation depicted in Fig. 6A while ‘‘B’’ (, 5.75 Å) corresponds to the conformation showed in Fig. 6B.
doi:10.1371/journal.pone.0039884.g007
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It is useful to estimate the bimolecular binding rate constant,

usually termed kON, which is 8.76104 M21s21 and 9.36105

M21s21 for the slow (,80%) and fast (,20%) rebinding

conformation, respectively, at 20uC. These figures increase to

1.636105 M21s21 and 2.756106 M21s21 at 25uC. These values

can be compared with the previous determination of kON for the

reaction of oxygen binding to Tf-trHb, estimated equal to 96105

M21s21 at 25uC [20]. This value corresponds to the oxygen

binding rate constant to the more populated, i.e. the slower,

conformation and indicates that the kON for oxygen is one order of

magnitude larger than that for CO. Previous investigations also

indicated that ligand release constants of Tf-trHb were exponen-

tially dependent upon temperature and signal recovery was

identical from 20 to 70uC, demonstrating that the protein is

capable of exchanging oxygen reversibly at high temperatures and

did not denature even at the highest temperature. Moreover,

previous results also highlighted that the activation enthalpy for

the oxygen-dissociation reaction was identical (<19 kcal?mol21) to

that measured for vertebrate Hbs and Mbs, thus indicating that

the bond dissociation energy of the iron-oxygen adduct was the

same in all these hemoglobins. On this basis, it is expected that

Figure 8. Schematic representation of the Tf-trHb structure.
doi:10.1371/journal.pone.0039884.g008

Figure 9. Fitting results. Results of global analysis of the complete
course of CO binding kinetics to Tf-trHb merging ultrafast transient
absorption and nanosecond laser flash photolysis data at T= 20uC and 1
(black) and 0.1 atm (red). The fits (green lines) are superimposed to the
experimental data (circles).
doi:10.1371/journal.pone.0039884.g009

Table 3. Microscopic rate constants, activation enthalpies
(kcal mol-1) and entropies (cal mol-1 K-1) determined from
the global fit of the ps-ms entire time course (at 1 and 0.1 atm
CO) of CO rebinding kinetics to Tf-trHb at 20uC.

k DS{ (cal/mol K) DH{ (kcal/mol)DG{ (kcal/mol)

k 21 (s
21) (3.060.1)6108 219.760.1 – 5.860.1

kc (s
21) (1.960.1)6108 220.660.1 – 6.060.1

k-c (s
21) (2.060.2)6106 229.660.1 – 8.760.1

kd (s21) (361)6107 224.360.1 – 7.160.1

k2d (s21) (661)6106 226.760.4 0.160.1 7.960.4

kc2 (s
21) (3.960.2)6107 21163 461 763

kc22

(M21s21)
(3.060.3)6106 3363 1861 863

ko2 (s
21) (964)6107 665 861 664

ko22

(M21s21)
(763)6107 47613 2063 6610

Activation enthalpies DH{ and entropies DS{ were estimated from the linear
Eyring plots for each rate constant ki in the temperature range 10–30uC,
according to the equation: ln(hki/kBT) ) = DS{/R – DH{/RT, where R is the gas
constant, h is Planck’s constant, and kB is Boltzmann constant.
doi:10.1371/journal.pone.0039884.t003
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ligand binding behavior at 25uC can be easily extrapolated to

55uC by taking into account linear activation enthalpy and

entropy parameters with no need of additional thermal dependent

contributions.

Structural Volume Changes
The LIOAS data show that photodissociation leads to a prompt

(i.e. occurring at the edge or below the 20 ns resolution of the

experiment) expansion of the solution. The events integrated on

this time scale comprise photodissociation of the Fe-CO bond, non

radiative relaxation of the heme excited state, and geminate

rebinding. Photodissociation and geminate rebinding are charac-

terized by volume (and enthalpy) changes of opposite sign, and are

thus expected to cancel. The observed fast expansion thus arises

from that fraction of photodissociated CO molecules which survive

geminate rebinding and escape to the solvent. Such fraction –

which represents an effective quantum yield on the LIOAS time

scale - is estimated to be nearly 0.4 (Fig. 4 and 9). This value is

slightly over-estimated, since a fraction of the photodissociated CO

molecules are trapped in the off-pathway kinetic trap (trHb : CO)3,

and are only partly released at later times. Thus, a lower limit for

the prompt reaction volume DVR,1, which is related to the

measured structural volume change DV1 through the quantum

yield: DVR,1= DV1/W1, is , 4.5 ml mol21.

The delayed CO emission may be held, at least partly,

responsible for the transient with lifetime in the 100 ns range

detected in the photoacoustic experiments (process 2 in Table 2).

Interestingly, the activation energies are not dissimilar from those

determined for the escape processes from nanosecond photolysis

data. A further hint to the correlation between the two processes

detected in photoacoustics and the CO release events comes from

the analysis of the time course of the change in CO concentration

in solution estimated from the microscopic analysis (Fig. 9) and

reported as Figure S5. As already seen, the rise in CO

concentration occurs with a biphasic kinetics at 20uC with

lifetimes of 20 ns (96%) and 200 ns (4%), values which are very

similar to those retrieved from the deconvolution analysis at the

same temperature (18 ns and 350 ns, respectively, see Table 2).

Moreover, the expansion accompanying process 2 is similar to

DVR,1, suggesting that the latter, like process 1, ends in the

displacement of CO to the solvent. The observed expansions are

comparable to the reaction volumes determined by photoacoustic

spectroscopy for the complete dissociation of CO from myoglobin,

leading to the formation of 5c-myoglobin and CO solvation [55–

59]. Flash photolysis measurements under pressure yielded

+6.2 ml mol21 for the CO complex of sperm whale myoglobin

[60]. Photothermal beam deflection detected an expansion of

+9.3 ml mol21 following photoexcitation of the CO complex of

horse myoglobin [61]. While the positive sign is expected for

solvation of CO, the absolute value is difficult to estimate, given

the inherent complexity of the process, which may include, e.g.,

water entry into the distal pocket [62], Fe low-spin to high-spin

transition upon photolysis, and electrostriction due to solvent

rearrangement around the protein [63,64].

Final Remarks
CO rebinding to type II truncated Hb from Thermobifida fusca

occurs through a time-extended reaction profile, with kinetic

features extending from the picoseconds to the milliseconds. The

complete time course of the reaction can be reconstructed by

merging femtosecond with nanosecond transient absorption data.

Thermodynamical parameters can be retrieved from photo-

acoustics in a 20 ns – 4 ms time range. The resulting kinetics

displays complex features, including unimolecular reaction steps

and heterogeneous second order rebinding. Taking advantage of

molecular dynamics, we show that the egression pathway for

photodissociated ligands comprises an on-pathway temporary

docking site. An off-pathway docking site is accessible from the

distal cavity, which is responsible for delayed ligand exit. These

features are absent in the static crystal structure and become

evident only when protein dynamics is taken into account.

Materials and Methods

The acidic surface variant of Tf-trHb was expressed and

purified as described previously [17,20]. This engineered protein

has shown a high recombinant expression level in soluble form and

was obtained by mutating the surface-exposed residues Phe107

and Arg91 to Glu which remain exposed to the solvent, thus

leaving the overall protein structure unchanged.

The CO-adduct of the protein was prepared by adding a small

amount (,10 mM) of sodium dithionite in the ferric protein

solution at pH 7.2 under CO atmosphere.

Femtosecond Transient Absorption
A full description of the TA apparatus is described elsewhere

[65,66]. The output of an amplified Ti:sapphire laser system

delivering ,100 fs pulses produced both pump (second harmonic

at 400 nm, energy = 0.5 mJ/pulse) and probe (white continuum)

pulses. The repetition rate of the laser system was set at 100 Hz.

The relative pump-probe polarization angle between pump and

probe beams was arranged at 54.7u with the purpose of

excluding rotational contributions to the transient signal. The

home-made detection system consisting of two linear CCD arrays

(Hamamatsu S8377-256Q), coupled to a spectrograph (Jobin

Yvon CP 140-1824) and controlled by a home-made front-end

circuit. The signals were fed into a simultaneous analog-to-digital

conversion board (Adlink DAQ2010) and data were acquired by

means of a LabVIEW written computer program. The sample

was contained in a 2 mm thick quartz cell and was kept under

continuous stirring by means of a small magnet. The concen-

tration (30–40 mM) was adjusted as to yield an optical density

OD,1.2 at the Soret maximum, corresponding to a good signal

to noise ratio in the whole probed spectral region. The sample

was excited in resonance with the blue side of the Soret band

(lpump=400 nm) and the induced absorbance changes were

monitored in the 410–650 nm region. Experiments exciting into

the Q bands at 560 nm (output of the optical parameter

generator and amplifier; E= 0.2–0.3 mJ/pulse) were also per-

formed (data shown in Figure S6); although the spectral quality

was lower, no evident changes in the photodynamics of the

protein were detected between the two different excitation

wavelengths. All the measurements were carried out at room

temperature (20uC).

The time evolution of the excited protein was monitored by

measuring the change in the sample absorbance at a given delay

time. By repeating this sequence as a function of the pump-probe

delay, it was possible to obtain the dynamical evolution of the

transient signal. Transient absorption data were examined by

different methods: kinetics were plotted at different wavelengths to

obtain the time course of the spectral features of interest. The

kinetic traces were fitted by a multiexponential decay function

convoluted with a Gaussian-shaped instrument function

(FWHM=160 fs). In addition, single value decomposition (SVD)

was applied to extract the spectra associated (DAS) to the kinetic

components [46,67].
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Nanosecond Flash Photolysis
The laser setup was described previously [68,69]. Photolysis was

achieved by a frequency doubled (532 nm) nanosecond Nd:YAG

laser (Spectron Laser) and absorbance changes were monitored at

435 nm. Typically 100 traces at 0.5 Hz repetition rate were

averaged to yield a single transient trace. Time resolved spectra

were acquired as described [68]. The sample holder is accurately

temperature controlled with a Peltier element (Flash100, Quan-

tum Northwest, Inc), allowing a temperature stability of better

than 0.1uC in the investigated range (10uC –30uC). The

concentration of the protein was ,40 mM.

The lifetime distributions associated with the observed kinetics

were evaluated using the program MemExp (ver. 2.0) [29,30]. The

program MemExp makes use of the Maximum Entropy Method

(MEM) and either nonlinear least squares (NLS) or maximum

likelihood (ML) fitting to analyze a general time–dependent signal

in terms of distributed and discrete lifetimes. MemExp was used to

retrieve model –independent lifetime distributions, as described

previously [68,70]. The minimal model sketched in Scheme 1 was

used to describe the rebinding kinetics. Numerical solutions to the

set of coupled differential equations corresponding to Scheme 1

were determined by using the function ODE15s within Matlab 7.0

(The MathWorks, Inc.). Fitting of the numerical solution to

experimental data (and optimization of microscopic rate constants)

was obtained with a Matlab version of the optimization package

Minuit (CERN).

Laser-Induced Optoacoustic Spectroscopy
The LIOAS measurements were performed with a previously

described setup using as excitation source the II harmonic

(532 nm) of a Q-switched Nd:YAG laser (pulse width ,10 ns)

[55]. The sample waveform is assumed to be the convolution of a

reference waveform (determined with a compound releasing all of

the absorbed energy as heat within a few nanoseconds) and a sum

of exponential decay functions:

H(t)~
X

i

wi
ti
e
{

t
ti

where wi is the pre-exponential factor of the transient with lifetime

ti. The values of wi and ti are found from the deconvolution

analysis [71–73]. Deconvolution of the signals was performed with

the program Sound Analysis (Quantum Northwest, Inc.).

Experiments conducted at multiple temperatures (10–25uC)

were used to determine the heat release and the structural volume

change for each transient [33,74,75]. The pre-exponential factors

wi – multiplied by the photon energy El - were then plotted versus

the thermoelastic parameter ratio of the solution. From the linear

relation:

wiEl~QizDVi

Cpr

b

� �

it is possible to determine the heat released Qi (from the intercept)

and the structural volume change DVi, expressed as milliliters per

mole of absorbed photons. Separation of the volume change (DVi)

from the thermal contribution (Qi) can be obtained most easily in

aqueous solutions, since the Cpr/b ratio is strongly temperature

dependent for water in the ordinary temperature range. The

measurements were performed in a phosphate buffer solution with

0.1 M ionic strength, for which the Cpr/b ratio has been

previously determined [76].

Computational Modeling
Set up of the system and simulation parameters. The

starting structure corresponds to Tf-trHb crystal structure (Protein

Data Bank entry 2BMM) as determined by Bonamore et al. [20].
To perform classical molecular dynamics, the amino acids

protonation states were assumed to correspond to physiological

pH, all solvent exposed His were protonated at the N-d delta

atom, as well as HisF8, which is coordinated to the iron heme. The

system was immersed in a pre-equilibrated octahedral box of 10 Å

of radius with 4912 TIP3P water molecules using the tLEaP

module of the AMBER package [77]. All used residue parameters

correspond to parm99 Amber force field [78] except for the heme.

Heme group parameters correspond to those developed and

thoroughly tested by Marti et al. [79] for heme proteins [80,81]. All

simulations were performed using periodic boundary conditions

with an 9 Å cutoff and particle mesh Ewald (PME) summation

method for treating the electrostatic interactions. The hydrogen

bond lengths were kept at their equilibrium distance by using the

SHAKE algorithm, while temperature and pressure where kept

constant with Berendsen thermostat and barostat, respectively, as

implemented in the AMBER program [77]. Equilibration protocol

consisted of (i) slowly heating the whole system from 0 to 300K for

20 ps at constant volume, with harmonic restraints of 80 Kcal per

mol A2 for all Ca atoms (ii) pressure equilibration of the entire

system simulated for 1 ns at 300K with the same restrained atoms.

After these two steps an unconstrained 50 ns MD long simulation

at constant temperature (300K) was performed. As shown

previously, this simulation strategy is adequate for the study of

the free energy of ligand migration along the protein tunnel cavity

system using the Implicit Ligand Sampling (ILS) method as shown

by Forti et al. [82].

Analysis of the ligand migration free energy in Tf-

trHb. The free energy for the CO migration process inside

the protein tunnel/cavity system was computed by ILS approach

that use computed MD simulation in the absence of the ligand and

incorporate it afterwards. This method was thoroughly tested for

heme proteins. [82]. ILS calculations were performed in a

rectangular grid (0.5 Å resolution) that includes the whole

simulation box (i.e. protein and the solvent), the probe used was

a CO molecule. Calculations were performed on 5000 frames

taken from the last 40 ns of simulation time. The values for grid

size, resolution and frame numbers where thoroughly tested in our

previous work. Analysis of the ILS data was performed using a

home made fortran-90 program available under request [82].

Supporting Information

Figure S1 Transient absorption spectra of the 5c-Tf-

trHb excited at 400 nm with femtosecond pulses. The

absorbance of the sample was 0.8 at the pump wavelength. The

delay times between pump and probe pulses were reported in the

legend, the value were expressed in picoseconds. B: Bleaching;

ESA: excited state absorption.

(TIF)

Figure S2 Results of the SVD analysis of transient

absorption spectra in the first ,2 ns after photoexcita-

tion of the CO complex of the Tf-trHb (upper panel) and

of the ferrous 5c-protein (lower panel). The transient

absorption spectra have been examined by fitting the kinetic

profiles at any given wavelength and by SVD analysis. The latter

has allowed to extract the spectra associated with each exponential

time (DAS) and the comparison between the behavior observed in

the 5c-Tf-trHb and in the CO complex has been useful to

disentangle the geminate recombination process. In the CO
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complex, three DAS have been extracted with the following time

constants: 300 fs (red line), 6 ps (blue line) and 2.8 ns (black line).

Only two DAS have been observed in the 5c-Tf-trHb with equal

time constant and similar spectral shape in comparison with the

CO complex. The similarity between the first two components

suggests that they are due to the photodynamics of the excited

heme. The fastest one shows a broad absorption that can be

attributed to the metal-to-ring charge transfer transition, in

agreement with the model proposed by Franzen et al. [9]. The

intermediate component (6 ps) should be attributed to the re-

equilibration of non-thermalized 5-coordinated form, i.e. the

photoproduct. Due to the fact that the antibleaching/bleaching

intensity ratio and spectral shape does not match the steady-state

difference spectrum, it can be inferred that this component is

related to photophysical processes of the excited heme and not to

the ligand release/rebinding.

(TIF)

Figure S3 CO rebinding kinetics to Tf-trHb, at 1 atm

CO and 106C (black), 156C (red), 206C (green), 256C

(blue) and 306C (cyan). Protein concentration was 38 mM.

(TIF)

Figure S4 Spectral component (top, singular value 9.3)

and amplitude (bottom, black open circles) retrieved

from the SVD analysis of time resolved spectra collected

between 10 ns and 100 ms. The red solid line shows the

absorbance change measured at 435 nm. SVD analysis of time

resolved difference absorbance spectra collected after nanosecond

laser excitation afforded only one statistically meaningful spectral

component. The time course of its amplitude closely matches that

of the absorbance change at 435 nm showing that this component

is monitoring the binding process. The absence of additional

spectral components suggest that no significant structural relaxa-

tion is occurring at the heme.

(TIF)

Figure S5 Change in CO concentration in solution as

estimated from the analysis of the rebinding kinetics

reported in Figure 9 of the article. Green, simulation of CO

concentration, red, fitting with a double exponential rise.

(TIF)

Figure S6 CO rebinding kinetics at lPROBE=435 nm

after photolysis with femtosecond pulses;

lPUMP=400 nm (thick black line) and lPUMP =560 nm

(thin red line). The signals are normalized to 1 to the maximum

of the intensity. Although the different quality of the results, we

can assert that the kinetic profiles are not affected by the excitation

wavelength. The behavior observed in the horse heart myoglobin

has been also shown in the figure in order to highlight the presence

of the ultrafast rebinding component in Tf-trHb. The curve taken

in Tf-trHb after excitation at 400 nm has been fitted with a mono-

exponential decay function: the time constant results equal to

3.9 ns. It decreases to 2 ns if we include a nonzero asymptotic

contribution, kept fixed to 0.38 corresponding to the bimolecular

dissociation yield (LFP experiments).

(TIF)
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