Y. Abe, S. Umemura, K. Sugimoto, N. Hirawa, Y. Kato et al., Effect of green tea rich in gamma-aminobutyric acid on blood pressure of Dahl salt, ) Structure of Escherichia coli glutamate decarboxylase (GADalpha) in complex with glutarate at 2.05 angstroms resolution, pp.230-235, 1995.

E. Fan, J. Huang, S. Hu, L. Mei, Y. et al., Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306, Annals of Microbiology, vol.70, issue.5, pp.689-698, 2012.
DOI : 10.1007/s13213-011-0307-5

Y. Fang, H. Jayaram, T. Shane, L. Kolmakova-partensky, F. Wu et al., Structure of a prokaryotic virtual proton pump at 3.2????? resolution, Nature, vol.52, pp.1040-1043, 2009.
DOI : 10.1038/nature08201

G. Fenalti, R. H. Law, A. M. Buckle, C. Langendorf, K. Tuck et al., GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop, Nature Structural & Molecular Biology, vol.6, issue.4, pp.280-286, 2007.
DOI : 10.1111/j.1471-4159.1979.tb05274.x

M. Fonda, Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids, Biochemistry, vol.11, issue.7, pp.1304-1309, 1972.
DOI : 10.1021/bi00757a029

J. W. Foster, When protons attack: Microbial strategies of acid adaptation, Current Opinion in Microbiology, vol.2, issue.2, pp.170-174, 1999.
DOI : 10.1016/S1369-5274(99)80030-7

J. W. Foster, Acid stress responses of Salmonella and E. coli: survival mechanisms, regulation, and implications for pathogenesis, J Microbiol, vol.39, pp.89-94, 2001.

J. W. Foster, Escherichia coli acid resistance: tales of an amateur acidophile, Nature Reviews Microbiology, vol.48, issue.11, pp.898-907, 2004.
DOI : 10.1146/annurev.mi.39.100185.001251

E. F. Gale, The production of amines by bacteria, Biochemical Journal, vol.34, issue.3, pp.392-413, 1940.
DOI : 10.1042/bj0340392

E. F. Gale, The Bacterial Amino Acid Decarboxylases, Adv Enzymol, vol.296, pp.1-31, 1946.
DOI : 10.1002/9780470122518.ch1

X. Gao, F. Lu, L. Zhou, S. Dang, L. Sun et al., Structure and Mechanism of an Amino Acid Antiporter, Science, vol.324, issue.5934, pp.1565-1568, 2009.
DOI : 10.1126/science.1173654

X. Gao, L. Zhou, X. Jiao, F. Lu, C. Yan et al., Mechanism of substrate recognition and transport by an amino acid antiporter, Nature, vol.31, issue.7282, pp.828-832, 2010.
DOI : 10.1038/nature08741

R. A. Giannella, S. A. Broitman, and N. Zamcheck, Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro, Gut, vol.13, issue.4, pp.251-256, 1972.
DOI : 10.1136/gut.13.4.251

M. Gobbetti, R. D. Cagno, D. Angelis, and M. , Functional Microorganisms for Functional Food Quality, Critical Reviews in Food Science and Nutrition, vol.42, issue.8, pp.716-727, 2010.
DOI : 10.1016/j.biortech.2005.06.018

J. Gorden and P. L. Small, Acid resistance in enteric bacteria, Infect Immun, vol.61, pp.364-367, 1993.

T. A. Gulder, M. , and B. S. , Salinosporamide Natural Products: Potent 20???S Proteasome Inhibitors as Promising Cancer Chemotherapeutics, Angewandte Chemie International Edition, vol.115, issue.49, pp.9346-9367, 2010.
DOI : 10.1002/anie.201000728

H. Gut, E. Pennacchietti, R. A. John, F. Bossa, G. Capitani et al., Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB, The EMBO Journal, vol.14, issue.11, pp.2643-2651, 2006.
DOI : 10.1038/sj.emboj.7601107

H. Gut, P. Dominici, S. Pilati, A. Astegno, M. V. Petoukhov et al., A Common Structural Basis for pH- and Calmodulin-mediated Regulation in Plant Glutamate Decarboxylase, Journal of Molecular Biology, vol.392, issue.2, pp.334-351, 2009.
DOI : 10.1016/j.jmb.2009.06.080

D. Han, H. Y. Kim, H. J. Lee, I. Shim, and D. H. Hahm, Wound healing activity of gamma-aminobutyric acid (GABA) in rats, J Microbiol Biotechnol, vol.17, pp.1661-1669, 2007.

K. Hayakawa, M. Kimura, K. Kasaha, K. Matsumoto, H. Sansawa et al., Effect of a ??-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar???Kyoto rats, British Journal of Nutrition, vol.27, issue.03, pp.411-417, 2004.
DOI : 10.1016/S1360-1385(99)01486-7

E. T. Hayes, J. C. Wilks, P. Sanfilippo, E. Yohannes, D. P. Tate et al., Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12, BMC Microbiology, vol.6, issue.1, p.89, 2006.
DOI : 10.1186/1471-2180-6-89

B. M. Hersh, F. T. Farooq, D. N. Barstad, D. L. Blankenhorn, and J. L. Slonczewski, A glutamate-dependent acid resistance gene in Escherichia coli., Journal of Bacteriology, vol.178, issue.13, pp.3978-3981, 1996.
DOI : 10.1128/jb.178.13.3978-3981.1996

T. Higuchi, H. Hayashi, A. , and K. , Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain., Journal of Bacteriology, vol.179, issue.10, pp.3362-3364, 1997.
DOI : 10.1128/jb.179.10.3362-3364.1997

K. Hiraga, Y. Ueno, O. , and K. , : Activation by Ammonium Sulfate, Bioscience, Biotechnology, and Biochemistry, vol.266, issue.8, pp.1299-1306, 2008.
DOI : 10.1073/pnas.92.26.12319

F. Hommais, E. Krin, C. Laurent-winter, O. Soutourina, A. Malpertuy et al., Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS, Molecular Microbiology, vol.15, issue.1, pp.20-36, 2001.
DOI : 10.1046/j.1365-2958.2001.02358.x

W. Hong, W. Jiao, J. Hu, J. Zhang, C. Liu et al., Periplasmic Protein HdeA Exhibits Chaperone-like Activity Exclusively within Stomach pH Range by Transforming into Disordered Conformation, Journal of Biological Chemistry, vol.280, issue.29, pp.27029-27034, 2005.
DOI : 10.1074/jbc.M503934200

K. Inoue, T. Shirai, H. Ochiai, M. Kasao, K. Hayakawa et al., Blood-pressurelowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives, 2003.

K. Ito, K. Tanaka, Y. Nishibe, J. Hasegawa, and H. Ueno, GABA-synthesizing enzyme, GAD67, from dermal fibroblasts: Evidence for a new skin function, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1770, issue.2, pp.291-296, 2007.
DOI : 10.1016/j.bbagen.2006.09.017

J. Itou, Y. Eguchi, and R. Utsumi, K-12, Bioscience, Biotechnology, and Biochemistry, vol.150, issue.4, pp.870-878, 2009.
DOI : 10.1038/nrmicro1021

R. Iyer, T. M. Iverson, A. Accardi, and C. Miller, A biological role for prokaryotic ClC chloride channels, Nature, vol.136, issue.6908, pp.715-718, 2002.
DOI : 10.1073/pnas.120163297

M. P. Jimenez-de-bagues, S. Ouahrani-bettache, J. F. Quintana, O. Mitjana, N. Hanna et al., Replicates in Macrophages and Causes Death in Murine Models of Infection, The Journal of Infectious Diseases, vol.202, issue.1, pp.3-10, 2010.
DOI : 10.1086/653084

URL : https://hal.archives-ouvertes.fr/hal-00509064

U. Kanjee, I. Gutsche, E. Alexopoulos, B. Zhao, M. Bakkouri et al., Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase, The EMBO Journal, vol.266, issue.5, pp.931-944, 2011.
DOI : 10.1038/emboj.2011.5

K. A. Karatzas, O. Brennan, S. Heavin, J. Morrissey, O. Byrne et al., Intracellular accumulation of high levels of gamma-aminobutyrate by Listeria monocytogenes 10403S in response to low pH: uncoupling of gamma-aminobutyrate synthesis from efflux in a chemi- Role of gadBC operon in orally acquired bacteria 783, 2010.

K. A. Karatzas, L. Suur, O. Byrne, and C. P. , Characterization of the Intracellular Glutamate Decarboxylase System: Analysis of Its Function, Transcription, and Role in the Acid Resistance of Various Strains of Listeria monocytogenes, Applied and Environmental Microbiology, vol.78, issue.10, pp.3571-3579, 2012.
DOI : 10.1128/AEM.00227-12

R. Kern, A. Malki, J. Abdallah, J. Tagourti, R. et al., Escherichia coli HdeB Is an Acid Stress Chaperone, Journal of Bacteriology, vol.189, issue.2, pp.603-610, 2007.
DOI : 10.1128/JB.01522-06

URL : https://hal.archives-ouvertes.fr/hal-00115135

A. Kobayashi, H. Hirakawa, T. Hirata, K. Nishino, and A. Yamaguchi, Growth Phase-Dependent Expression of Drug Exporters in Escherichia coli and Its Contribution to Drug Tolerance, Journal of Bacteriology, vol.188, issue.16, pp.5693-5703, 2006.
DOI : 10.1128/JB.00217-06

T. F. De-koning-ward and R. M. Robins-browne, A novel mechanism of urease regulation in Yersinia enterocolitica, FEMS Microbiology Letters, vol.147, issue.2, pp.221-226, 1997.
DOI : 10.1016/S0378-1097(96)00528-9

L. Kowalczyk, M. Ratera, A. Paladino, P. Bartoccioni, E. Errasti-murugarren et al., Molecular basis of substrate-induced permeation by an amino acid antiporter, Proceedings of the National Academy of Sciences, vol.108, issue.10, pp.3935-3940, 2011.
DOI : 10.1073/pnas.1018081108

T. M. Lammens, D. De-biase, M. C. Franssen, E. L. Scott, S. et al., The application of glutamic acid ??-decarboxylase for the valorization of glutamic acid, Green Chemistry, vol.40, issue.10, pp.1562-1567, 2009.
DOI : 10.1039/b913741f

T. M. Lammens, J. Potting, J. P. Sanders, D. Boer, and I. J. , Environmental Comparison of Biobased Chemicals from Glutamic Acid with Their Petrochemical Equivalents, Environmental Science & Technology, vol.45, issue.19, pp.8521-8528, 2011.
DOI : 10.1021/es201869e

K. Y. Leung, B. A. Siame, B. J. Tenkink, R. J. Noort, and Y. K. Mok, Edwardsiella tarda ??? Virulence mechanisms of an emerging gastroenteritis pathogen, Microbes and Infection, vol.14, issue.1, pp.26-34, 2012.
DOI : 10.1016/j.micinf.2011.08.005

H. Li, C. , and Y. , Lactic acid bacterial cell factories for gamma-aminobutyric acid, Amino Acids, vol.70, issue.5, pp.1107-1116, 2010.
DOI : 10.1007/s00726-010-0582-7

J. Lin, I. S. Lee, J. Frey, J. L. Slonczewski, and J. W. Foster, Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli., Journal of Bacteriology, vol.177, issue.14, pp.4097-4104, 1995.
DOI : 10.1128/jb.177.14.4097-4104.1995

J. Lin, M. P. Smith, K. C. Chapin, H. S. Baik, G. N. Bennett et al., Mechanisms of acid resistance in enterohemorrhagic Escherichia coli, Appl Environ Microbiol, vol.62, pp.3094-3100, 1996.

Y. L. Lin and J. Gao, Internal Proton Transfer in the External Pyridoxal 5???-Phosphate Schiff Base in Dopa Decarboxylase, Biochemistry, vol.49, issue.1, pp.84-94, 2010.
DOI : 10.1021/bi901790e

D. Ma, P. Lu, C. Yan, C. Fan, P. Yin et al., Structure and mechanism of a glutamate???GABA antiporter, Nature, vol.31, issue.7391, pp.632-636, 2012.
DOI : 10.1074/jbc.274.47.33244

Z. Ma, S. Gong, H. Richard, D. L. Tucker, T. Conway et al., GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12, Molecular Microbiology, vol.218, issue.5, pp.1309-1320, 2003.
DOI : 10.1046/j.1365-2958.2003.03633.x

M. Mantzourani, M. Fenlon, and D. Beighton, and the clinical severity of root caries lesions, Oral Microbiology and Immunology, vol.33, issue.Suppl, pp.32-37, 2009.
DOI : 10.1111/j.1399-302X.2008.00470.x

M. Mantzourani, S. C. Gilbert, H. N. Sulong, E. C. Sheehy, S. Tank et al., The Isolation of Bifidobacteria from Occlusal Carious Lesions in Children and Adults, Caries Research, vol.43, issue.4, pp.308-313, 2009.
DOI : 10.1159/000222659

A. K. Mates, A. K. Sayed, and J. W. Foster, Products of the Escherichia coli Acid Fitness Island Attenuate Metabolite Stress at Extremely Low pH and Mediate a Cell Density-Dependent Acid Resistance, Journal of Bacteriology, vol.189, issue.7, pp.2759-2768, 2007.
DOI : 10.1128/JB.01490-06

D. S. Merrell and A. Camilli, Acid tolerance of gastrointestinal pathogens, Current Opinion in Microbiology, vol.5, issue.1, pp.51-55, 2002.
DOI : 10.1016/S1369-5274(02)00285-0

C. Momany, R. Ghosh, and M. L. Hackert, Structural motifs for pyridoxal-5???-phosphate binding in decarboxylases: An analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase, Protein Science, vol.234, issue.3, pp.849-854, 1995.
DOI : 10.1002/pro.5560040504

C. Momany, S. Ernst, R. Ghosh, N. L. Chang, and M. L. Hackert, Crystallographic Structure of a PLP-Dependent Ornithine Decarboxylase fromLactobacillus30a to 3.0 ?? Resolution, Journal of Molecular Biology, vol.252, issue.5, pp.643-655, 1995.
DOI : 10.1006/jmbi.1995.0526

K. Nakajo, N. Takahashi, and D. Beighton, Resistance to Acidic Environments of Caries-Associated Bacteria: Bifidobacterium dentium and Bifidobacterium longum, Caries Research, vol.44, issue.5, pp.431-437, 2010.
DOI : 10.1159/000318582

T. M. Nguyen and R. L. Sparks-thissen, The inner membrane protein, YhiM, is necessary for Escherichia coli (E. coli) survival in acidic conditions, Archives of Microbiology, vol.17, issue.1???79, pp.637-641, 2012.
DOI : 10.1007/s00203-012-0798-x

K. Nishino, Y. Senda, and A. Yamaguchi, The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes, Journal of Infection and Chemotherapy, vol.14, issue.1, pp.23-29, 2008.
DOI : 10.1007/s10156-007-0575-Y

A. Occhialini, M. P. Jiménez-de-bagüés, B. Saadeh, D. Bastianelli, N. Hanna et al., The glutamic acid decarboxylase system of the new species Brucella microti contributes to its acid resistance and to oral infection of mice Jr (1974) pH jump studies of glutamate decarboxylase. Evidence for a pH-dependent conformation change, J Infect Dis J Biol Chem, vol.249, pp.3737-3745, 2012.

S. H. Oh, J. R. Soh, C. , and Y. S. , Germinated Brown Rice Extract Shows a Nutraceutical Effect in the Recovery of Chronic Alcohol-Related Symptoms, Journal of Medicinal Food, vol.6, issue.2, pp.115-121, 2003.
DOI : 10.1089/109662003322233512

J. A. Opdyke, J. G. Kang, and G. Storz, GadY, a Small-RNA Regulator of Acid Response Genes in Escherichia coli, Journal of Bacteriology, vol.186, issue.20, pp.6698-6705, 2004.
DOI : 10.1128/JB.186.20.6698-6705.2004

T. Oshima, S. Ishikawa, K. Kurokawa, H. Aiba, and N. Ogasawara, Escherichia coli Histone-Like Protein H-NS Preferentially Binds to Horizontally Acquired DNA in Association with RNA Polymerase, DNA Research, vol.13, issue.4, pp.141-153, 2006.
DOI : 10.1093/dnares/dsl009

G. Park and F. Diez-gonzalez, A novel glutamatedependent acid resistance among strains belonging to the Proteeae tribe of Enterobacteriaceae, FEMS Microbiol Lett, vol.237, pp.303-309, 2004.

K. B. Park and S. H. Oh, Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3, Bioresource Technology, vol.98, issue.2, pp.312-319, 2007.
DOI : 10.1016/j.biortech.2006.01.004

K. B. Park and S. H. Oh, Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract, Bioresource Technology, vol.98, issue.8, pp.1675-1679, 2007.
DOI : 10.1016/j.biortech.2006.06.006

E. Pennacchietti, T. M. Lammens, G. Capitani, M. C. Franssen, R. A. John et al., Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH, Journal of Biological Chemistry, vol.284, issue.46, 2009.
DOI : 10.1074/jbc.M109.049577

H. Richard and J. W. Foster, Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential, Journal of Bacteriology, vol.186, issue.18, pp.6032-6041, 2004.
DOI : 10.1128/JB.186.18.6032-6041.2004

J. W. Sanders, K. Leenhouts, J. Burghoorn, J. R. Brands, G. Venema et al., A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation, Molecular Microbiology, vol.27, issue.2, pp.299-310, 1998.
DOI : 10.1007/s004380050315

E. Sandmeier, T. I. Hale, C. , and P. , Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases, European Journal of Biochemistry, vol.13, issue.3, pp.997-1002, 1994.
DOI : 10.1146/annurev.bi.59.070190.000333

C. Schlenker and C. M. Surawicz, Emerging infections of the gastrointestinal tract, Best Practice & Research Clinical Gastroenterology, vol.23, issue.1, pp.89-99, 2009.
DOI : 10.1016/j.bpg.2008.11.014

M. Shepherd, G. Sanguinetti, G. M. Cook, and R. K. Poole, Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism, J Biol Chem, vol.285, pp.18464-18472, 2010.

R. Shukuya and G. W. Schwert, Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme, J Biol Chem, vol.235, pp.1649-1652, 1960.

R. Shukuya and G. W. Schwert, Glutamic acid decarboxylase. III. The inactivation of the enzyme at low temperatures, J Biol Chem, vol.235, pp.1658-1661, 1960.

R. Shukuya and G. W. Schwert, Glutamic acid decarboxylase. II. The spectrum of the enzyme, J Biol Chem, vol.235, pp.1653-1657, 1960.

S. Siragusa, M. De-angelis, D. Cagno, R. Rizzello, C. G. Coda et al., Synthesis of ??-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses, Applied and Environmental Microbiology, vol.73, issue.22, pp.7283-7290, 2007.
DOI : 10.1128/AEM.01064-07

P. L. Small and S. R. Waterman, Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli, Trends in Microbiology, vol.6, issue.6, pp.214-216, 1998.
DOI : 10.1016/S0966-842X(98)01285-2

D. K. Smith, T. Kassam, B. Singh, E. , and J. F. , Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci., Journal of Bacteriology, vol.174, issue.18, pp.5820-5826, 1992.
DOI : 10.1128/jb.174.18.5820-5826.1992

S. Rao, P. S. Lim, T. M. Leung, and K. Y. , Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis, Infect Immun, vol.71, pp.1343-1351, 2003.

M. S. Su, S. Schlicht, and M. G. Ganzle, Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation, Microbial Cell Factories, vol.10, issue.Suppl 1, p.8, 2011.
DOI : 10.1007/s00253-003-1536-8

B. S. Sukhareva, Amino acid decarboxylases In Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects, Part B, pp.325-353, 1986.

D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth et al., The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Research, vol.39, issue.Database, pp.561-568, 2011.
DOI : 10.1093/nar/gkq973

S. M. Tennant, E. L. Hartland, T. Phumoonna, D. Lyras, J. I. Rood et al., Influence of Gastric Acid on Susceptibility to Infection with Ingested Bacterial Pathogens, Infection and Immunity, vol.76, issue.2, pp.639-645, 2008.
DOI : 10.1128/IAI.01138-07

A. Tramonti, D. De-biase, A. Giartosio, F. Bossa, J. et al., The Roles of His-167 and His-275 in the Reaction Catalyzed by Glutamate Decarboxylase from Escherichia coli, Journal of Biological Chemistry, vol.273, issue.4, pp.1939-1945, 1998.
DOI : 10.1074/jbc.273.4.1939

A. Tramonti, P. Visca, M. De-canio, M. Falconi, D. Biase et al., Functional Characterization and Regulation of gadX, a Gene Encoding an AraC/XylS-Like Transcriptional Activator of the Escherichia coli Glutamic Acid Decarboxylase System, Journal of Bacteriology, vol.184, issue.10, pp.2603-2613, 2002.
DOI : 10.1128/JB.184.10.2603-2613.2002

A. Tramonti, R. A. John, F. Bossa, D. Biase, and D. , Contribution of Lys276 to the conformational flexibility of the active site of glutamate decarboxylase from Escherichia coli, European Journal of Biochemistry, vol.18, issue.20, pp.4913-4920, 2002.
DOI : 10.1046/j.1432-1033.2002.03149.x

A. Tramonti, M. De-canio, I. Delany, V. Scarlato, D. Biase et al., Mechanisms of Transcription Activation Exerted by GadX and GadW at the gadA and gadBC Gene Promoters of the Glutamate-Based Acid Resistance System in Escherichia coli, Journal of Bacteriology, vol.188, issue.23, pp.8118-8127, 2006.
DOI : 10.1128/JB.01044-06

A. Tramonti, M. De-canio, D. Biase, and D. , GadX/ GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites, Mol Microbiol, vol.70, pp.965-982, 2008.

D. L. Tucker, N. Tucker, C. , and T. , Gene Expression Profiling of the pH Response in Escherichia coli, Journal of Bacteriology, vol.184, issue.23, pp.6551-6558, 2002.
DOI : 10.1128/JB.184.23.6551-6558.2002

D. L. Tucker, N. Tucker, Z. Ma, J. W. Foster, R. L. Miranda et al., Genes of the GadX-GadW Regulon in Escherichia coli, Journal of Bacteriology, vol.185, issue.10, pp.3190-3201, 2003.
DOI : 10.1128/JB.185.10.3190-3201.2003

M. Ventura, F. Turroni, A. Zomer, E. Foroni, V. Giubellini et al., The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity, PLoS Genetics, vol.103, issue.1, p.1000785, 2009.
DOI : 10.1371/journal.pgen.1000785.s014

S. R. Waterman and P. L. Small, Identification of sigmas-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri, Molecular Microbiology, vol.21, issue.5, pp.925-940, 1996.
DOI : 10.1046/j.1365-2958.1996.00058.x

S. R. Waterman and P. L. Small, -pyrrolidine-2,4-dicarboxylic acid, FEMS Microbiology Letters, vol.224, issue.1, pp.119-125, 2003.
DOI : 10.1016/S0378-1097(03)00427-0

URL : https://hal.archives-ouvertes.fr/hal-00165607

H. Weber, T. Polen, J. Heuveling, V. F. Wendisch, and R. Hengge, Genome-wide analysis of the general Role of gadBC operon in orally acquired bacteria 785, 2005.

C. G. Wong, T. Bottiglieri, and O. C. Snead, GABA, gamma-hydroxybutyric acid, and neurological disease, Ann Neurol, vol.3, issue.54, pp.3-12, 2003.

H. Zhang, H. Y. Yao, C. , and F. , Accumulation of ??-Aminobutyric Acid in Rice Germ Using Protease, Bioscience, Biotechnology, and Biochemistry, vol.14, issue.3, pp.1160-1165, 2006.
DOI : 10.1021/jf00041a015