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Abstract

The genome of Shigella, a gram negative bacterium which is the causative agent of bacillary dysentery, shares strong
homologies with that of its commensal ancestor, Escherichia coli. The acquisition, by lateral gene transfer, of a large plasmid
carrying virulence determinants has been a crucial event in the evolution towards the pathogenic lifestyle and has been
paralleled by the occurrence of mutations affecting genes, which negatively interfere with the expression of virulence
factors. In this context, we have analysed to what extent the presence of the plasmid-encoded virF gene, the major activator
of the Shigella regulon for invasive phenotype, has modified the transcriptional profile of E. coli. Combining results from
transcriptome assays and comparative genome analyses we show that in E. coli VirF, besides being able to up-regulate
several chromosomal genes, which potentially influence bacterial fitness within the host, also activates genes which have
been lost by Shigella. We have focused our attention on the speG gene, which encodes spermidine acetyltransferase, an
enzyme catalysing the conversion of spermidine into the physiologically inert acetylspermidine, since recent evidence
stresses the involvement of polyamines in microbial pathogenesis. Through identification of diverse mutations, which
prevent expression of a functional SpeG protein, we show that the speG gene has been silenced by convergent evolution
and that its inactivation causes the marked increase of intracellular spermidine in all Shigella spp. This enhances the survival
of Shigella under oxidative stress and allows it to better face the adverse conditions it encounters inside macrophage. This is
supported by the outcome of infection assays performed in mouse peritoneal macrophages and of a competitive-infection
assay on J774 macrophage cell culture. Our observations fully support the pathoadaptive nature of speG inactivation in
Shigella and reveal that the accumulation of spermidine is a key determinant in the pathogenicity strategy adopted by this
microrganism.
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Introduction

Polyamines are ubiquitous, small polycationic compounds

associated with a variety of biological processes: protein transla-

tion, gene regulation, stress resistance and differentiation [1,2].

Major representatives of this class of molecule are putrescine,

cadaverine, spermidine and spermine.

In bacteria, the global level of polyamines is regulated on the

one hand by collective effects of catabolism and efflux mechanisms

and, on the other, by biosynthetic pathways and uptake

mechanisms [2,3]. Figure 1 reports the superpathway of

polyamine biosynthesis I in Escherichia coli (from http:\\ecocyc.

org database), which is able, like most c-proteobacteria, to

synthesize cadaverine, putrescine and spermidine, but not

spermine [2,4]. Cadaverine is produced through the combined

action of an inducible and a constitutive lysine decarboxylase,

encoded respectively by the cadA and ldc genes [5,6]. It is then

converted to aminopropylcadaverine by the SpeE protein.

Putrescine results from direct ornithine decarboxylation, mediated

by the SpeC decarboxylase, and from arginine decarboxylation

followed by agmatine ureohydrolization determined by the SpeA

and SpeB proteins, respectively. Spermidine originates from the

condensation of putrescine with decarboxylated S-adenosylmethi-

onine, performed by the SpeE [2,7]. High levels of spermidine are

toxic for E. coli cells, but spermidine acetylation, catalysed by

SpeG, inactivates the polyamine. Acetylspermidine is thought to

be either stored by the cells or secreted [8].

During recent years, strong evidence has accumulated on the

role of polyamines in microbial pathogenesis. In Pseudomonas

aeruginosa, the deletion of genes involved in spermidine uptake

significantly decreases the expression of Type III Secretion

Systems (TTSS) [9]. In Streptococcus pneumoniae, polyamine biosyn-

thesis and transport mechanisms are intricately linked to the

fitness, survival and pathogenesis of this pathogen in host

microenvironments [10]. In Yersinia pestis and in Vibrio cholerae,

polyamines have been implicated in the control of biofilm

formation [11,12]. In Proteus mirabilis, the inactivation of the speAB

genes, involved in putrescine biosynthesis, leads to the loss of the
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swarming phenotype [13] linked to the expression of some

virulence genes [14]. The fungal pathogen Pneumocystis jirovecii

produces high levels of spermidine, N1-acetylspermine and N1-

acetylspermidine, thus inducing apoptosis of alveolar macrophages

[15].

We have focused our analysis on spermidine metabolism in

Shigella, a facultative intracellular pathogen causing a severe enteric

syndrome in humans, mainly in the developing world. Shigellosis

is extremely contagious and, although usually self-limiting, may be

fatal in children [16]. The highly sophisticated infectious strategy

of Shigella banks on the capacity of this pathogen to invade, disrupt,

and cause inflammatory destruction of the intestinal epithelial

barrier. Once ingested, Shigella moves directly down to the colon

where it gains access to the intestinal mucosa by invading

specialized epithelial cells, the M cells in Peyer’s patches, and

subsequently infecting adjacent cells in intestinal crypts. Once the

bacteria reach the lymphoid follicles, they encounter resident

macrophages, where they multiply, induce apoptosis and give rise

to an inflammatory response, the hallmark of this enteric disease.

This, in turn, induces transmigration of polymorphonucleated

leukocytes (PMN) through the tight junctions between epithelial

cells. As PMNs begin to migrate, bacteria released from killed

macrophages can invade the epithelial monolayer, accessing the

basolateral surfaces of the colonic epithelium. Bacterial entry into

the host cells is induced by the TTSS-secreted Ipa proteins, which

activate host signaling pathways and induce a focused reorgani-

zation of the cytoskeletal actin around the bacterial cell. Inside the

host cell, Shigella disrupts the vacuole membrane and escapes into

the cytoplasm, where it multiplies, and moves by inducing local

actin polymerization at one pole of the bacterium. The actin-based

motility propels Shigella through the cytoplasm and facilitates

intercellular dissemination towards the neighboring cells [17,18].

The cellular pathogenesis and clinical presentation of shigellosis

are the sum of the complex action of a large number of bacterial

virulence factors mainly located on a large virulence plasmid

(pINV) [19]. The availability of complete sequenced genomes of

several Shigella strains has given new insight about the molecular

evolution of this bacterial pathogen from its ancestor, the

commensal E. coli [20]. While the acquisition of pINV is regarded

as one of the most critical events in the evolution of Shigella towards

a pathogenic lifestyle, a significant complementary step has been

the emergence of so-called pathoadaptive mutations [21]. This has

led to the inactivation of several chromosomal genes, which

negatively interfere with the expression of virulence factors

required for the survival within the host [22,23]. In particular,

the silencing of the cad genes, involved in the synthesis of a specific

polyamine, cadaverine, appears crucial for the optimization of the

pathogenicity process in Shigella [22,23]. Cadaverine negatively

interferes with Shigella-induced pro-inflammatory events by

inhibiting PMN migration to the infection loci [24] and may

stabilize the endosomal membrane, hindering the release of Shigella

cells into the cytoplasm of infected cells [25].

In this study, we show, by convergent evolution, that Shigella has

lost another crucial gene involved in polyamine metabolism, speG.

The loss of this gene, which encodes spermidine acetyltransferase,

allows for higher concentrations of endogenous spermidine. We

also show that restoring SpeG activity confers upon Shigella a

higher sensitivity to oxidative stress and reduces bacterial survival

inside macrophages. This strongly supports the hypothesis that

speG inactivation constitutes a previously unrecognized patho-

adaptative mutation common to all member of Shigella genus.

Results

speG expression depends on the VirF regulatory protein
The Shigella pINV plasmid contains, besides genes involved in

the invasive process, positive activators necessary for the induction

of host cell colonization. Among them, a critical role is played by

the transcriptional regulator VirF. It is encoded by a gene

Figure 1. Superpathway of polyamine biosynthesis I in E. coli and Shigella spp. Schematic diagram depicting the pathway of polyamine
biosynthesis I in E. coli. Steps bounded by the dashed lines are conserved in Shigella spp. The step enclosed by dotted lines is absent in S. boydii. Data
were drawn according to http://ecocyc.org.
doi:10.1371/journal.pone.0027226.g001
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activated in response to host temperature [26] and is located

outside the large pathogenicity island carrying most virulence

determinants [19]. VirF triggers a cascade of events: it activates

the transcription of the gene coding for the secondary regulator,

VirB, which activates several operons coding for the invasion

genes [27].

To understand whether the arrival of VirF by acquisition of

pINV might have altered the transcriptional program of the

ancestor E. coli and promoted the inactivation of genes potentially

detrimental to the full expression of the invasive phenotype, we

performed a global transcriptional analysis of E. coli cells

expressing or lacking the virF gene. To this end we set up a

microarray experiment using the E. coli K12 MG1655 strain [28],

carrying the virF-encoding plasmid pMYSH6504 [29] or its virF-

depleted derivative pMY6504R (Table S1). This analysis was

performed on an E. coli K12-V2 array (MWG) containing 4288

gene-specific oligonucleotide probes representing the complete E.

coli (K12) genome. This experiment revealed the presence of

several E. coli genes activated at least two fold by VirF, either

directly or indirectly (Table S2). Comparative genome analysis

with Shigella reveals that these genes can be subdivided into two

groups: genes which are common to Shigella and E. coli, and genes

that are deleted or inactivated in Shigella. Interestingly in the first

group we have identified several, highly induced, genes coding

heat shock proteins including ibpA, htpG, GroL/GroS, dnaK and lon

(Table S2).

The existence of the second group suggests that some VirF-

activated genes might have exerted a perturbing effect on the

Shigella invasive process, thus becoming silenced during evolution

optimizing bacterial survival in the host. Most of the VirF-

activated genes silenced in Shigella are poorly characterized. An

exception is represented by speG, which encodes spermidine

acetyltransferase (SAT) (Table S2). The speG gene belongs to the

ynfB-speG operon. While no function has been yet attributed to the

ynfB gene in E. coli, SAT prevents spermidine accumulation, and

the consequent toxic effects, by modifying spermidine to an inert

form [8].

To confirm speG activation by VirF, we analysed the activity of

the ynfB-speG operon by constructing a translational PynfB speG- lacZ

fusion reporter plasmid (pULS7). The b-galactosidase assay

(Fig. 2A) performed on strain ULS153 pULS7, in the presence

or in the absence of a virF-containing plasmid (pMYSH6520 or

pMY6520R), confirms that the expression of speG is induced by

VirF. The induction is observed only at 37uC, as expected

considering the thermodependency of virF expression [26]. A

further confirmation of the role played by VirF on speG induction

has been obtained in a Shigella background by monitoring speG

transcription in a real-time PCR assay. This was performed using

S. flexneri strain 2457T (which harbours a frameshift mutation in

the speG gene inducing the synthesis of a truncated SAT protein

without altering the transcriptional activity of the ynfB-speG

operon) and its virF-deleted derivative 2457TFd. As reported in

Fig. 2B, the lack of a functional virF gene in strain 2457Fd is

paralleled by a two-fold reduction of speG expression, thus

confirming the results obtained in the E. coli background.

These results indicate that VirF is able to interfere with the

regulation of several genes present on the E. coli chromosome and

that this may, in turn, promote the inactivation of genes potentially

detrimental to the full expression of the invasive phenotype.

Molecular characterization of the speG locus in Shigella
An in silico analysis, performed on genome sequences currently

available on public databases (http://www.mgc.ac.cn/ShiBASE/

and http://www.ncbi.nlm.nih.gov/), highlights that speG is always

defective in Shigella and that its inactivation has been obtained by

diverse strategies. To verify the widespread nature of speG

inactivation in Shigella and analyse the molecular rearrangements

that might have led to speG silencing, we sequenced the speG locus

of a large collection of Shigella strains (S. flexneri, S. boydii, S.

dysenteriae and S. sonnei) isolated over several years in different

geographic areas (Table S1). The results are reported in Fig. 3.

The in silico approach indicates that, in S. flexneri strains

2002017, 8401, 2457T and 301, speG inactivation is due to a

dinucleotide deletion, which produces a TAA stop codon in the

initial part of the coding sequence (see Fig. 3). The presence of the

same mutation was confirmed in all S. flexneri strains but two:

namely SfZM49 and SfZM43 [30]. Southern analysis revealed

that remnants of the speG locus are actually present in SfZM49,

while in SfZM43 the speG-containing region is completely lost

(data not shown). Interestingly, SfZM43 belongs to serotype 6,

previously considered phylogenetically distant from all other S.

flexneri serotypes [20]. Moreover, in all Shigella strains analysed we

found a non-synonymous mutation in the ynfB gene, responsible

for an I14P amino acid substitution (JF737027, JF737028,

JF737029, JF737030).

In S. dysenteriae, loss of speG functionality has been attained

through two diverse strategies. Two strains, SdZM603 and

Sd96.29 (both of serotype 1A), harbour an IS1N insertion (www-

is.biotoul.fr and JF742750, JF742751) within the speG gene, as

previously observed for sequenced strain Sd197. The overall

genetic organization of strains Sd12, Sd16.81 and Sd4105.65 (all

of serotype 2A) is identical to that of E. coli K12, but sequence

analysis reveals that these S. dysenteriae strains share several point

mutations, out of which only one gives rise to a non-synonymous

mutation determining a S56R substitution in the SpeG protein

sequence (JF737021, JF737025, JF737026). All S. dysenteriae strains

analysed share the same non-synonymous mutation found in the

ynfB gene of S. flexneri strains. Finally, we observe that no relevant

mutations are located in the ynfB-speG promoter nor in the

intergenic region. To check whether the S56R non-synonymous

mutation could account for the synthesis of a defective protein, we

cloned a fragment containing the entire ynfB-speG operon of S.

dysenteriae Sd12 and E. coli MG1655 into the pGEM-T easy vector,

thus obtaining plasmids pULS12 and, respectively, pULS11. We

then compared the polyamine patterns of an E. coli speG defective

strain (ULS117) complemented with pULS12 or with pULS11. As

opposed to pULS11, the introduction of pULS12 does not restore

production of acetylspermidine (Table 1), confirming that the ynfB-

speG operon of S. dysenteriae Sd12 encodes an inactive SpeG

protein.

The analysis of the S. boydii Sb227 and CDC 3083-94 sequenced

genomes reveals that speG has been inactivated by the insertion of

an IS911 element, which carries, within its sequence, another IS

element (IS600). A short deletion is present at the IS600-IS911

junction. Among the S. boydii strains analysed only two, Sb481 and

Sb483, carry a speG locus with the same genetic organization as

strains Sb227 and CDC 3083-94 (JF737022, JF737024). In

particular, with the exception of strains Sb51 and Sb485, which

harbour a complete deletion of speG locus, in the remaining strains

we observe a progressive reduction of the Sb227 speG-IS

arrangement: strain Sb411 shows a 365 bp deletion starting from

within the hipA sequence and ending within the IS600 sequence

(JF737020), while strain Sb484 (JF737023) carries a 1446 bp

deletion extending from within the hipA sequence to a position

beyond the speG orf terminus (Fig. 3).

As for S. sonnei, the in silico analysis of strain Ss046 indicates that

the speG locus has been completely lost. The absence of speG

sequences in all strains from our collection (SsIP1-6, SsZM279 and

Spermidine Metabolism in Shigella Pathogenicity
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Figure 2. VirF positively controls the ynfB-speG operon. A. b-galactosidase activity of the SpeG-LacZ fusion carried by plasmid pULS7 was
determined in E. coli ULS153 in the presence of pMYSH6504, a plasmid containing a functional S. flexneri virF gene, or of its virF-depleted variant
pMY6504R. Cells were grown at 30uC or 37uC in LB medium and assayed for b-galactosidase at OD600 0.5–0.6. The values reported are expressed in
Miller Units and represent the average 6 standard deviation of at least 3 independent experiments. B. The in vivo ynfB-speG transcription was
monitored by real-time PCR in S. flexneri 2457T and its virF defective derivative 2457TFd. Strains were grown at 37uC in LB medium. At least three
wells were run for each sample and the error bars display the calculated maximum (RQMax) and minimum (RQMin) expression levels that represent
standard error of the mean expression level (RQ value).
doi:10.1371/journal.pone.0027226.g002

Figure 3. Inactivation of the ynfB-speG locus in Shigella spp. has been attained by convergent evolution. The operon on the top is based
on the E. coli K12 MG1655 sequenced (http://www.ncbi.nlm.nih.gov/genome). Arrows indicate the orientation of ynfB and speG genes. Point
mutation, leading to the Il4P substitution, within the ynfB gene found in most S. flexneri and S. dysenteriae strains analysed is indicated by a white
cross. Point mutation, leading to the S56R substitution, detected in some S. dysenteriae strains is indicated by a black cross. All the S. flexneri strains
show the interruption of SpeG coding sequence due to a stop codon (7th) resulting from a dinucleotide (GT) deletion indicated by two full stops. The
comparative analysis of speG sequences from S. boydii strains shows three different structures that may result from at least two deletion steps, which
are schematized by dashed lines. Finally, the ynfB-speG locus of S. sonnei is not reported since it has been completely lost.
doi:10.1371/journal.pone.0027226.g003
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SsZM328) has been confirmed by Southern blot assays (data not

shown). These results are consistent with the well-known clonal

nature of S. sonnei strains [20].

All together, the observations on the molecular arrangement of

the speG gene in Shigella clearly indicate that speG silencing in this

microorganism has been attained by convergent evolution.

Moreover, our results suggest that this process might have

facilitated the adaptation of Shigella to the host environment.

Polyamine pattern in Shigella strains
To ascertain whether in Shigella spp the loss of a functional speG

may have altered the polyamine pattern, we analysed the

intracellular polyamine level of eight Shigella strains by means of

HPLC. To this end, S. flexneri M90T [31] and SfZM49, S. sonnei

SsIP3 and SsIP4, S. dysenteriae Sd96.29 and Sd4105.65, and S.

boydii Sb483 and Sb485 were selected as representatives of the

diverse arrangements of the speG locus (Fig. 3 and Table S1) and

grown in polyamine-free medium. Despite the high homology

between Shigella and E. coli, the analysis reveals several relevant

differences. In all Shigella strains analysed, putrescine and

spermidine predominate, while cadaverine, spermidine and

acetylspermidine are absent (Table 2). The absence of cadaverine

in Shigella is well documented [23,32] and is considered as a major

pathoadaptive mutation. The absence of endogenous spermine is

not surprising since it has been reported also in E. coli [2], which is

considered as the commensal ancestor of Shigella [20]. As far as

spermidine is concerned, interestingly its concentration in Shigella

was found to be approximately 2- to 3-fold higher than in E. coli

MG1655. This is almost certainly due to speG inactivation and,

consequently, to the lack of conversion of spermidine to

acetylspermidine. Finally, the polyamine patterns observed in S.

flexneri SfZM49 and S. boydii Sb485 indicate that, despite the

presence of specific bands in Southern blot assays (data not

shown), speG is inactive in these strains too. Based on these data,

the absence of acetylspermidine in Shigella and the consequent

spermidine accumulation can be regarded as a new biochemical

feature related to the absence of a functional speG gene.

Spermidine accumulation increases resistance to
oxidative stress

It is known that polyamines play a role in response to oxidative

stress [33,34]. In order to investigate on the effect of spermidine

accumulation upon speG inactivation, under oxidative stress in

Shigella, we deleted the speE gene, coding for the SpeE protein

responsible for spermidine synthetase (Fig. 1), constructing

M90TEd, a Shigella M90T derivative unable to synthesize

spermidine. We then compared M90T, M90TEd and M90T

complemented with a plasmid carrying the entire ynfB-speG operon

(pULS37) or the ynfB gene alone (pULS55), for survival on

minimal medium agar plates in the presence of H2O2. Plasmids

used to this end are derivatives of the low copy plasmid

pACYC184 [35], in order to minimize the copy number effects.

Measurement of growth halos after 18 hours at 37uC indicated a

higher sensitivity to H2O2 for M90TEd and M90T pULS37 as

compared to M90T and M90T pULS55 (Fig. 4). In addition, the

oxidative stress resistance was not altered in the M90TEd

background by the introduction of pULS37 and pULS55 plasmids

(data not shown). This suggests that in M90T spermidine

accumulation contributes to increased survival during oxidative

stress.

Next, a deeper analysis of the relative survival of M90T,

M90TEd and M90T pULS37 under oxidative stress was carried

out on strains grown in LB. To confirm that the observed effect

was mediated only by speG inactivation, we cloned the speG coding

sequence of MG1655 downstream of a tac promoter, obtaining

plasmid pULS13, and we also used the M90T pULS13 strain in

this analysis. Setting the survival of M90T as 100%, the relative

survival of M90T complemented with speG (pULS13) or with the

ynfB-speG operon (pULS37) drops to 23% and 31%, respectively

(Fig. 5A top panel). Despite its inability to synthesize spermidine,

strain M90TEd exhibited 54% relative survival. Analysis of the

polyamine content reveals that the reduced survival of the M90T

strains complemented with speG-containing plasmids is paralleled

by a low level of intracellular spermidine (Fig. 5A bottom panel).

The higher level of spermidine in M90TEd is likely to be

dependent on its uptake from the LB medium, which we have

measured as containing 2.4 mM spermidine, and may be mediated

by the conserved spermidine-preferential uptake system consisting

of the PotA-D proteins [36]. Therefore, we repeated the

experiments in M9, which we verify to be a polyamine-free

medium. Under these conditions, we confirmed that the presence

of a functional speG gene reduces survival to oxidative stress and, in

addition, we observed that the strain impaired in spermidine

synthesis (M90TEd) displays the lowest survival (Fig. 5B top

panel). Hence, in S. flexneri a direct correlation exists between

cellular spermidine levels and oxidative stress resistance. No

correlation was observed for the other polyamines involved.

Higher putrescine concentration in M90TEd, both in LB and in

M9 media, is not related to the outcome of relative survival to

oxidative stress (Fig. 5AB). Moreover, the lack of acetylspermidine

in M90T and M90TEd strains does not account for the different

relative survival to oxidative stress (Fig. 5A, 5B).

To further and definitively confirm the relationship between

intracellular spermidine and oxidative stress resistance in Shigella,

we analysed the survival of M90TEd grown under oxidative stress

in polyamine-free medium after addition of exogenous spermidine.

Under this growth condition, the intracellular spermidine level

depends exclusively on spermidine uptake. As reported in Fig. 5C,

survival decreases with decreasing spermidine concentration,

strongly supporting that spermidine and oxidative stress resistance

are strictly connected. In E. coli, the addition of exogenous

spermidine and putrescine (the spermidine precursor) stimulates

the expression of the OxyR and katG protein, both involved in

cellular defence against oxidative stress [37]. OxyR is the global

regulator of oxidative stress and acts as positive transcriptional

activator, among others, of the katG gene encoding hydroperox-

idase I, which catalyses the conversion of H2O2 to water and

oxygen [33]. Starting from this observation, we can hypothesize

that the higher concentration of spermidine in the Shigella wild type

strain, compared to that in the speG-complemented strain, could

increase the expression of the katG gene (through OxyR induction)

Table 1. Comparative polyamine content of E. coli speG
defective strain complemented with speG from S. dysenteriae.

polyamines ULS117
ULS117
pULS12

ULS117
pULS11 MG1655

N-SPD n.d. n.d. 5564.1 48.063.5

PUT 232.069.7 144.5065.6 16067.5 184.967.2

CAD 7.560.5 4.260.5 6.360.9 8.160.9

SPD 37.764.1 21.861.7 1261.5 14.361.2

Values reported are in nmol per mg of total proteins and represent the average
6 standard deviations from of triplicate determinations (n.d. = not detected) N-
SPD: Acetylspermidine; PUT: Putrescine; CAD: Cadaverine; SPD: spermidine.
doi:10.1371/journal.pone.0027226.t001
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and explain the higher oxidative stress resistance exhibited. In

order to verify this hypothesis, we decided to check the katG

transcriptional activity in M90T and in its speG-complemented

derivative (M90T pULS13) by means of a real time PCR assay.

Interestingly, katG mRNA transcription results 8 times higher than

that observed in the speG-complemented strain. This supports the

hypothesis that spermidine accumulation in Shigella strains

promotes higher expression of the katG gene, thereby conferring

this microorganism an evolutionary advantage in the response to

oxidative stress.

The patho-adaptative nature of speG defectiveness in
Shigella

It is widely accepted that the oxidative stress response may

explain the ability of bacterial cells to survive within macrophages

[38,39]. Interestingly, during the first steps of the invasion process

Shigella is able to persist within macrophages [40]. We used a well-

established assay based on infecting BALB/c mice intra-peritone-

ally, recovering infected peritoneal macrophages and monitoring

the survival of intracellular bacteria within in vitro-maintained

macrophages over a 72 h period [39,41]. We compared the

intracellular survival of S. flexneri M90T with that of isogenic

strains containing plasmids carrying the entire ynfB-speG operon

(pULS37) or only ynfB (pULS55). No significant difference was

observed among strains recovered 8 h after infection, suggesting

that all strains are equally able to infect macrophages (Fig. 6). This

reinforces previous experimental observations, obtained by plaque

assays (data not shown), that indicated no difference in infectivity

and spreading among S. flexneri M90T, M90T pULS37 and M90T

pULS55 on HeLa cell monolayers. The ability to survive

intracellularly 24 h, 48 h, and 72 h after infection, of M90T and

M90T pULS55 decreased to a comparable extent, whereas strain

M90T pULS37 is significantly more susceptible to macrophage

killing from the 24 h time point on (Fig. 6). This indicates that in

Shigella restoration of SpeG activity reduces the ability of bacterial

cells to withstand hostile conditions within macrophages.

Further evidence supporting this conclusion was obtained by

means of an in vitro competitive assay analysing the survival within

macrophages of S. flexneri M90T complemented with the entire

ynfB-speG operon (pULS37) or only with the ynfB gene (pULS55).

Strain M90T and its derivatives carrying pULS37 or pULS55

were grown to OD600 0.3–0.4, mixed and used to infect a murine

macrophage cell line (J774). Bacterial survival was monitored two

hours after infection by lysing the macrophages and plating

appropriate dilutions on LB plates. To discriminate M90T from its

pULS-derivatives, 200 colonies were replicated on LB plates

containing tetracycline. As shown in Table 3, when comparing

M90T with M90T pULS55 the competitive index (C.I.)

corresponds to 1.11 and 1.05 at 1 h and 2 h, respectively, while

it drops to 0.74 (1 h) or 0.43 (2 h) when comparing M90T with

M90T pULS37 indicating that the M90T strain, in the absence of

a functional speG gene, is more competitive for survival in

macrophages. All together, these observations indicate that the

evolutionary acquired absence of SpeG activity in Shigella confers

the bacterium with an increased capability to defy antagonistic

host environments. Thus, it can be assumed that the major

functional impact of the lack of speG resides in its pathoadaptive

significance.

Discussion

The evolution of bacterial pathogens from harmless ancestors

mainly depends on the acquisition of virulence gene clusters on

plasmids, phages and pathogenicity islands by lateral gene transfer

[42,43]. Complementary to this process is the progressive

adaptation to a specific niche by pathoadaptive events involving

mutations, rearrangements or deletions of genes unnecessary, or

even deleterious, for optimal fitness to the new environment [23].

Table 2. Analysis of polyamine content in different Shigella strains.

E. coli S. flexneri S. boydii S. sonnei S. dysenteriae

polyamine MG1655 M90T SfZM49 Sb483 Sb485 SsIP3 SsIP4 Sd96.29 Sd4105.65

N-SPD 8.260.9 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

PUT 38.562.5 30.860.8 21.661.2 25.661.3 24.861.5 17.860.9 32.461.3 44.562.1 25.461.0

CAD 7.660.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

SPD 8.661.1 18.760.5 18.660.9 17.460.7 22.460.9 23.160.6 27.560.5 22.260.8 25.360.7

Values reported are in nmol per mg of total proteins and represent the average 6 standard deviations (n.d. = not detected). N-SPD: Acetyl spermidine; PUT: Putrescine;
CAD: Cadaverine; SPD: spermidine.
doi:10.1371/journal.pone.0027226.t002

Figure 4. The absence of a functional speG gene in Shigella
increases survival to the oxidative stress. Effect of hydrogen
peroxide on S. flexneri wild type strain M90T (top left), on its speE-
defective derivative M90TEd (top right) and on M90T complemented
with the entire ynfB-speG operon (plasmid pULS37, bottom right) or
only the speG gene (plasmid pULS55, bottom left). A clear difference
can be appreciated in the halo of inhibition around the paper disk
soaked with 5 ml of H2O2 30 w.t. % sol. in water (Sigma-Aldrich); sectors
of four agar plates are shown at the same enlargement.
doi:10.1371/journal.pone.0027226.g004
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These events usually involve the concomitant arrival or loss of

regulatory factors and this might modify the transcriptional profile

of the host to a significant extent. In this work, we have analysed

the genetic consequences of the uptake of the virF gene by the

harmless ancestor of Shigella, the gut commensal E. coli. A crucial

step in the evolution of Shigella from E. coli is the acquisition of the

large pINV plasmid, which carries the genes required for the

invasion of the colonic epithelium [20]. The primary regulator of

these genes, the virF gene, encodes an AraC-like transcriptional

activator that resides on pINV. The results we report in the

present study provide evidence that the activity of VirF is not

restricted to the regulation of the virulence system: many other

chromosomal E. coli genes are subject to direct or indirect

activation by virF.

Comparative sequence analysis of the genomes of Shigella

strains, available in current databases, reveals that VirF-activated

genes fall into two different groups: one containing genes still

conserved in Shigella and the other containing genes which are

inactivated or deleted in Shigella. In the first group, among the

genes more susceptible to virF induction, we found the genes

encoding the heat shock proteins IbpA, GroESL, HtpG, DnaK

and Lon. Interestingly, HtpG, which belongs to the HSP90 family,

Figure 5. Spermidine involvement in response to oxidative stress in a S. flexneri background. S. flexneri M90T and its derivatives unable to
synthesize spermidine (M90TEd) or carrying either the entire ynfB-speG operon (M90T pULS37) or only the promoter proximal ynfB gene (M90T
pULS13) were grown in LB (panel A) or in M9 minimal medium (panel B) in the presence of H2O2. Survival is expressed as the percentage relative to
the S. flexneri M90T wild type strain. The polyamine content of S. flexneri strains, obtained by HPLC analysis, is reported in the tables below panels A
and B. Values are expressed as nmol/mg of protein. Panel C: S. flexneri M90TEd was grown in polyamine-free medium (M9) supplemented with
increasing amounts of exogenous spermidine. Survival is expressed as the percentage relative to the M90TEd strain grown in spermidine-free
medium (set to 100%). Error bars display the standard deviations relative to at least three independent experiments.
doi:10.1371/journal.pone.0027226.g005
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is implicated in the inflammatory response of Shigella in infected

mice and is considered a potential subunit vaccine candidate

against shigellosis [44]. These observations suggest that VirF,

besides operating as a primary virulence regulator, also activates

genes whose products contribute to better withstanding of adverse

conditions inside the host.

The existence of a group of genes activated by VirF in E. coli,

but no longer present or non-functional in Shigella, is an intriguing

result. We focused our attention on the speG gene, the best

characterized one, whose product is involved in the biosynthesis of

polyamines. Putrescine, cadaverine, spermine and spermidine are

implicated in several aspects of cellular life. They affect membrane

permeability, gene expression, intracellular signalling, oxidative

stress resistance, pH stress resistance and apoptosis through non-

covalent interactions with nucleic acids or specific interplay with

proteins [45]. The SpeG protein is a spermidine-acetyltransferase

(SAT), which transfers an acetyl group to either the N-1 or the N-8

position of spermidine. Acetylation converts polyamines, in

particular spermidine, into a physiologically inert form. Acetylpo-

lyamines cannot substitute for polyamine in RNA binding, in

growth enhancement of E. coli polyamine-deficient mutants nor in

the stimulation of in vitro translation [46]. Acetylation has a major

impact on spermidine catabolism: the lack of SAT activity

produces spermidine accumulation in E. coli [8].

In order to evaluate the extent of speG inactivation in Shigella, we

integrated the genomic observations with a specific comparative

study of the speG locus of several Shigella strains (Table S1). The

speG gene is inactivated in all strains analysed. Inactivating

mutations include point mutations and entire gene deletions,

suggesting the existence of a strong selective pressure towards the

loss of SpeG function in Shigella. The absence of speG hybridization

signals in all S. sonnei strains analysed and in some strains of S.

flexneri (SfZM53) and S. boydii (Sb51 and Sb485) may represent the

final results of several progressive steps. Between the two extremes,

i.e. the presence of a complete ynfB-speG operon with a missense

mutation and the deletion of the entire speG locus, we observe a

series of genetic rearrangements, mainly induced by IS elements.

In particular, the results obtained by the analysis of S. boydii nicely

exemplify how a progressive erosion of the speG locus has occurred

after accumulation of IS sequences next to the speG gene (Fig. 3),

leaving a non-functional truncated 39 sequence. The sequence of

the speG locus in the S. boydii strains analysed in this work reveals at

least three subsequent steps, from an initial IS911 insertion in the

speG sequence, strains Sb481 and Sb483, to the complete deletion

of the speG locus, strains Sb484 and Sb51.

Since the molecular rearrangements we observed clearly hint at

the existence of selective pressure towards the loss of speG

functionality, we looked at the consequences of these mutations

on the intracellular polyamine balance. The results obtained by

considering a pool of eight representative Shigella strains (Table 2)

show that a common feature is the absence of spermine,

cadaverine and acetylated spermidine, coupled to the presence

of putrescine and spermidine. In particular, the endogenous

spermidine concentration is 2- to 3-fold higher in Shigella strains as

compared to E. coli K12. While the lack of spermine in E. coli is

well known [2] and the deficiency of cadaverine in Shigella is

documented [32], the absence of the acetylated form of

spermidine, determined by speG defectiveness, is a novel finding.

The lack of SAT activity, the presence of efficient systems for

spermidine and putrescine uptake [36] and the likely absence of

known efficient spermidine secretion systems cause accumulation

of this polyamine. Moreover, neither a spermidine deacetylating

activity nor a spermidine or polyamine oxidase activity can be

detected in E. coli or in Shigella. As for the presence of putrescine,

spermidine accumulation is known to inhibit ornithine decarbox-

ylase and arginine decarboxylase, both involved in putrescine

biosynthesis, maintaining the endogenous putrescine concentra-

tion at physiological levels [47].

Besides constituting a new physiological trait of Shigella, how

does the abundance of spermidine in this microorganism relate to

its virulence specificity? In this context, it is worth stressing that

other polyamines are involved in Shigella virulence. In particular,

the addition of exogenous putrescine, as well as of methionine and

arginine (both implicated in putrescine/spermidine biosynthesis)

can restore virulence in S. flexneri mutants that are unable to

synthesize modified nucleosides required for tRNA synthesis [48].

More recently, putrescine has been shown to relieve the ornithine

repression exerted on Shigella virulence in minimal medium [49].

Overall, during the last years an increasing number of studies

related to polyamines in bacteria report new insights about the

active role of polyamines during diverse steps of the pathogenic

process of different virulent species [50]. Therefore, we asked

whether spermidine accumulation, due to speG inactivation, is

advantageous for cellular physiology, for the full expression of

virulence determinants and for the correct progress of the

virulence program. First, we tested the oxidative stress resistance

in Shigella since this microrganism experiences a certain degree of

oxidative stress within the macrophage cytosol [51] and the role of

polyamines in this process, although not yet completely charac-

terized, is well documented [34]. Polyamines are involved in katG

expression since they favor the translation of OxyR, a key

Figure 6. Loss of speG confers Shigella an increased fitness
within murine peritoneal macrophages. Time course of intracel-
lular survival within murine peritoneal macrophages of S. flexneri M90T
and its derivatives complemented either with the entire ynfB-speG
operon (plasmid pULS37) or with the ynfB gene (plasmid pULS55). The
data are the average 6 standard deviation of the number of viable
intracellular bacteria per 105 macrophages from three independent
experiments each in triplicate. m, S. flexneri M90T; & M90T pULS37; N
M90T pULS55.
doi:10.1371/journal.pone.0027226.g006

Table 3. Competitive infection assay in macrophages.

Competitive Index (C.I.)

Strain vs M90T(wt) 1 h 2 h

M90T pULS55(ynfB) 1.1160.22 1.0560.30

M90T pULS37(ynfBspeG) 0.7360.18 0.4460.12

doi:10.1371/journal.pone.0027226.t003
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regulator of the stress response [33]. By treating wild type speE-

defective and speG-complemented S. flexneri strains with H2O2, we

observed a direct correlation between intracellular spermidine

concentration and oxidative stress resistance (Fig. 5A, B, C). In this

context, we observed that the absence of a functional SpeG in

Shigella induces an increase of KatG expression. Moreover, it is

worth remembering that cadaverine is reported as the best

polyamine providing bacterial resistance to oxidative stress [34],

that Shigella is typically a cadaverine-defective microorganism

[22,23] and that, while cadaverine is secreted, spermidine is

preferentially retained intracellularly [36]. Based on these

observations and on the possible functional complementarity

among different polyamines in cell [2], the increase of spermidine

in Shigella may compensate for the absence of cadaverine in order

to maintain an effective response to oxidative stress.

As for the impact of spermidine accumulation on the expression

of virulence determinants and on the progress of the virulence

program, our plaque assay experiments on HeLa cells (data not

shown) reveal no difference in infectivity and spreading between S.

flexneri and its speG-complemented derivative. On the other hand,

the outcome of intracellular macrophage survival assays, per-

formed in mouse peritoneal macrophages (Fig. 6), and of a

competitive-infection assay on J774 macrophage cell culture

(Table 3), shows a decrease of survival properties in the speG-

complemented Shigella strains. These data suggest that bacterial

survival inside macrophages may also depend on the ability of

Shigella to exploit the polyamine-mediated neutralization of the

oxidative stress to which these bacteria are exposed into the

macrophage upon infection.

All together our observations reveal the patho-adaptative nature

of speG inactivation in Shigella, suggesting a supportive role of this

adaptation in the pathogenicity of Shigella. It is tempting to

speculate that, during the evolutionary transition from E. coli to

Shigella, the acquisition of virF by means of lateral gene transfer

might have caused an increased expression of speG, thus lowering

the intracellular spermidine content. This new set up could have

hindered the survival strategies of the bacterium within the

infected host cells. Hence, speG inactivation would have been

favoured in order to increase the intracellular levels of spermidine.

This is supported by the presence of an efficient putrescine/

spermidine importer [36] and by the absence of an effective

spermidine secretion system in Shigella. It is worth stressing that the

recently identified MdtIJ protein complex, belonging to the small

multidrug resistance (SMR) family and encoded by the mdtIJ

operon, is able to secrete spermidine effectively only when cloned

on a multicopy plasmid [52].

Shigella is acquired by oral contamination and is able to cross

different parts of the digestive tract. In the intestinal lumen, the

major polyamines (putrescine and cadaverine) are produced

mainly by bacteria and are mostly free. The existence of a

negative putrescine gradient from the jejunum to the ileum has

been surmised due to the rapid absorption of luminal polyamines

by the intestinal mucosa [53]. On account of these observations,

we hypothesize that speG inactivation enables Shigella to compete

with the intestinal mucosa for putrescine uptake so, when Shigella

reaches the polyamine-poor colon and crosses the epithelial

mucosa, it survives inside resident macrophages, even by virtue of

the high level of intracellular spermidine synthesized from by the

absorbed putrescine. This step is then followed by the induction of

macrophage apoptosis and by the invasion of enterocytes, the final

target of this pathogen. Other studies are in progress to investigate

the involvement of cytoplasmatic spermidine accumulation in

different steps of the Shigella’s virulence program, taking account of

the involvement of this polyamine in gene regulation and of its

pro-apoptotic and immuno-modulating properties [54,55].

Materials and Methods

Bacterial Strains, plasmids and general procedures
The bacterial strains used are listed in Table S1. E. coli strains

ULS153 and ULS117 and S. flexneri strains 2457TFd and

M90TEd were obtained using the one-step method of gene

inactivation [56]. Strain ULS153, carrying a deletion of the lacZ

gene, and strain ULS117, carrying a deletion of the entire speG

gene, were constructed by transforming MG1655 pKD46 with

amplicons obtained using plasmid pKD13 as template and the

oligo pairs dlf/dlr or dgf/dgr. The same procedure was used to

construct the speE defective S. flexneri strain M90TEd (oligo pair

def/der) and the virF defective S. flexneri strain 2457Fd (oligo pair

dff/dfr).

Bacteria were grown in Luria broth (LB), Brain Infusion Heart

(BHI) or M9 minimal medium [57]. When required, 0.125 to

1 mM spermidine and 10 mg/ml nicotinic acid were included in

M9 medium. Antibiotics were used at the following concentra-

tions: ampicillin, 100 mg/ml; chloramphenicol, 30 mg/ml; kana-

mycin, 30 mg/ml; tetracycline, 5 mg/ml. Solid media contained

1.6% agar.

b-galactosidase assays were performed as previously described

[57] on sodium dodecyl sulfate-chloroform-permeabilized cells

grown in LB supplemented with ampicillin. Units of b-galactosi-

dase were calculated by the method of Miller [57]. PCR reactions

were routinely performed using Dreamtaq DNA polymerase

(Fermentas). Ex taq DNA polymerase (Takara) was adopted to

obtain longer transcripts and high fidelity. Oligos used are listed in

Table S3. Genomic DNA purifications were performed using the

‘‘mi-Bacterial Genomic DNA isolation kit’’ (MetaBion). DNA

sequencing was performed by Synergene Biotech.

Plasmid construction
Plasmid pULS7 was constructed by cloning a fragment carrying

the ynfB-speG promoter region and the first 35 codons of the

MG1655 speG gene into plasmid pRS414, which is a vector

suitable for generating protein fusions: the first eight codons of the

lacZ gene were removed and a multicloning site has been inserted

upstream the lacZ gene [58]. The amplicon obtained with oligo

pair pgf/pgr, modified to contain a BamHI site, and MG1655 DNA

as template was digested with BamHI and cloned into BamHI

linearized pRS414.

Plasmids pULS11 and pULS12, containing the entire ynfB-speG

operon, were constructed by cloning into pGEM-T easy a DNA

fragment obtained by PCR with the oligo pair pgf/ygt and total

DNA of MG1655 or S. dysenteriae Sd12 as template.

In order to construct plasmid pULS37, we subcloned the EcoRI

fragment containing the ynfB-speG region from pULS11 to the

pACYC184 EcoRI site. pULS55 was obtained by cloning into

pGEM-T easy a functional copy of the ynfB gene with its

regulatory region, obtained by PCR with the oligo pair pgf/pgr and

MG1655 DNA as template. The EcoRI fragment containing the

ynfB gene was then subcloned from pGEM-T easy to the

pACYC184 EcoRI site. Plasmids pMY6520R and pMY6504R

were obtained by re-ligating a HindIII partial digest of

pMYSH6520 and pMYSH6504 plasmids in order to delete the

virF gene. The loss of virF HindIII fragments was verified by

sequencing.

To monitor speG expression independently from ynfB transcrip-

tion, we cloned the speG gene into pGIP7, a pACYC184 vector

carrying a tac promoter and the LacI encoding gene [59]. To this
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end, a PCR fragment obtained using oligo pair gof/gor and

MG1655 DNA as template was digested with BamHI and cloned

into the pGIP7 BamHI site, thus obtaining plasmid pULS13.

Polyamine quantification
Polyamines were extracted from suspensions of bacteria with

0.25 M percloric acid containing 5 mM 1,6-diaminehexane as a

polyamine internal standard. They were then quantified after

derivatization with dansyl cloride and separation by HPLC. The

simultaneous fluorimetric determination of intracellular poly-

amines was performed by reverse-phase high-performance liquid

chromatography [60]. Polyamine concentration in the total

cellular homogenates was normalized with respect to the

corresponding protein content and expressed as nmol/mg of

proteins.

Microarray analysis
Bacterial strains MG1655 pMY6504R and MG1655

pMYSH6504 were grown at 37uC in 10 ml LB to OD600,0.6.

Cells were immediately chilled and total cellular RNA was isolated

by hot phenol extraction [61] and DNase I-treatment for 30 min

at 37uC. RNA pellets were suspended in 30 ml diethylpyrocarbo-

nate (DEPC)-treated water. Cy5-dCTP and Cy3-dCTP (GE

Healthcare) were used to synthetize labelled cDNA using the

direct labelling procedure of the LabelStarTM Array Kit (Qiagen).

The E. coli K12-V2 Array (MWG), hybridized to labelled probe

pools, were scanned and quantified using a ScanArray lite scanner

(Packard Bioscience) and the ScanArray Express software. Two

arrays were used and analysed as replicates. Resulting data were

processed by Global Lowess normalization and averaged using J-

Express software (MolMine AS). We filtered the data to exclude

artefacts and low signal spots. Finally, only genes with an error rate

lower than 30% and with ratio of 2 and above were considered.

Normalized ratio data of microarray experiment is provided in

Table S2. All microarray data reported in the manuscript is

described in accordance with MIAME guidelines and the data

from the experiments are deposited in GEO (accession

no. GSE30207).

Real Time PCR
Total RNA was extracted as previously described and cDNA

synthesis was performed using the High Capacity cDNA Reverse

Transcription Kit from Applied Biosystems in a 20 ml reaction mix

containing 20 mg total RNA. Real time quantitative PCR was

performed with the aid of a 7300 Real-Time PCR System

(Applied Biosystems) in a 30 ml reaction mix containing 2 ml

cDNA and Power SYBRHGreen PCR Master Mix (Applied

Biosystems). At least three wells were run for each sample. The

relative amounts of speG transcript was analysed using the 22DDCt

method [62] and the results were indicated as a n-fold increase

relative to the reference sample. Primers for the mdh transcript,

used as endogenous control, and for speG and katG transcripts were

designed with the aid of the Primer ExpressH software v2.0

(Applied Biosystems) and experimentally validated for suitability to

the 22DDCt method. The following oligos pairs were used: mdf/mdr

for the mdh gene; rgf/rgr for the speG gene and kgf/kgr for katG gene.

Bacterial susceptibility to oxidative stress
Bacterial susceptibility to oxidative stress was tested as follow:

bacterial cultures were grown overnight, diluted in fresh LB or M9

minimal medium and allowed to growth to OD600 0.6–0.8.

15 ml for each culture were centrifuged and pellets suspended

in 1 ml 16 PBS. 1 ml of 16 PBS containing 10 mM H2O2 was

added and left to react for 30 minutes at 37uC. The reaction was

stopped by adding Catalase to 0.1 mg/ml (Sigma-Aldrich). The

number of bacteria surviving the oxidative stress was then

quantified by plating aliquots on LB Agar.

Survival assays in mouse peritoneal macrophages
Survival of S flexneri M90T strain in mouse peritoneal

macrophages was tested using an in vivo–in vitro infection model

as described previously [39]. Briefly, strains M90T and its

derivatives M90T pULS37 or pULS55 (Table S1) were grown

at 37uC in BHI to OD600,0.4. E. coli strain DH5a grown in LB

at 37uC was used as control. The bacteria were harvested by

centrifugation and suspended in PBS at 56107 cells/ml. Male

BALB/c mice (10 weeks old) were infected by intra-peritoneal

injection of each strain. After a 6 h infection period, peritoneal

macrophages were collected by peritoneal lavage, centrifuged and

suspended in Dulbecco’s modified Eagle’s medium (DMEM)

containing 10 mM HEPES, 2 mM glutamine, 10% bovine fetal

serum, 16 non-essential amino acids, and 150 mg/ml gentamicin.

The cell suspension was dispensed into 24-well tissue-culture

plates, incubated at 37uC under 5% CO2 for 2 h, and bacterial

survival was monitored at 24, 48 and 72 h. The animal

experiments were performed under a protocol approved by the

Institutional Animal Use and Care Committee at Università

Cattolica del S. Cuore, Rome, Italy (Permit number: H21, 07/24/

2008) and authorized by the Italian Ministry of Health, according

to Legislative Decree 116/92, which implemented the European

Directive 86/609/EEC on laboratory animal protection in Italy.

Animal welfare was routinely checked by veterinarians of the

Service for Animal Welfare.

Culture of macrophages and bacterial infection
The murine macrophage-like cells J774 (American Type

Culture Collection, Manassas, VA) were grown in RPMI 1640

(Gibco) medium containing 10% heat-inactivated fetal bovine

serum (Euroclone) and 2 mM L-glutamine at 37uC in a humidified

5% CO2 atmosphere. For bacterial infection, the cells were seeded

in 24-well tissue culture plates (Falcon) at a density of 105 cells/

cm2 and grown over night at 37uC in fresh medium without

antibiotics. Bacterial uptake, survival and replication were

measured by a gentamicin protection assay [63]. Before infection,

cell monolayers were washed twice with phosphate-buffered saline

(PBS; pH 7,2), and the medium was replaced by 1 ml of RPMI

1640 supplemented with 10% heat-inactivated foetal bovine

serum. In order to produce a competitive infection, M90T and

M90T pULS37 (or M90T and M90T pULS55) were used to

simultaneously infect J774 monolayers with at a multiplicity of

infection of 100 bacteria per macrophage. After 5 min of

centrifugation at 900 rpm and a 15 min incubation at 37uC with

5% CO2, the infected macrophages were washed twice with PBS.

Fresh cell culture medium containing 25 mg/ml of gentamicin was

added to kill extracellular bacteria and the cells were incubated

further at 37uC for 1 h and 2 h. To determine the number of

intracellular bacteria, the cells were washed once with PBS and

lysed by adding 0.5 ml of 1% Triton X-100 (Sigma) to each well

for 5 min. Samples were mixed, diluted and plated onto LB agar

plates to determine the number of CFU recovered from the lysate.

The number of intracellular bacteria was determined after 1 and

2 h of gentamicin treatment and compared to bacteria plated at

time zero. To calculate the competitive index (C.I.), the ratios of

strains M90T pULS55/M90T and of strains M90T pULS37/

M90T recovered from the infected cultures were determined and

then normalized by dividing by the corresponding ratio in the

initial inoculum.
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Nucleotide sequence accession number
DNA sequence data were compared to known nucleotide and

protein sequences using the BLAST server (National Center of

Biotechnology Information, Bethesda, Md.). All new sequences of

ynfB speG regions of Shigella strains have been deposited at

GeneBank under the following accession number: JF737027,

JF737028, JF737029 and JF737030 referred to S. flexneri strain

M90T, SfZM50, SfZM53 and YSH6000; JF737021, JF737025,

JF737026, JF742750 and JF742751 referred to S. dysenteriae strain

Sd12, Sd16.81, Sd4105.65, SdZM603 and Sd96.29; JF737022,

JF737024, JF737020 and JF737023 referred to S. boydii strain

Sb481, Sb483, Sb411 and Sb484.
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