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Abstract  

Understanding the demographic history and genetic make-up of colonizing species is critical 

for inferring population sources and colonization routes. This is of main interest for designing 

accurate control measures in areas newly colonized by vector species of economically 
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important pathogens. The biting midge Culicoides imicola is a major vector of Orbiviruses to 

livestock. Historically, the distribution of this species was limited to the Afrotropical region. 

Entomological surveys first revealed the presence of C. imicola in the south of the 

Mediterranean basin by the 1970’s. Following recurrent reports of massive bluetongue 

outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In 

this study, we addressed the chronology and processes of C. imicola colonization in the 

Mediterranean basin. We characterized the genetic structure of its populations across 

Mediterranean and African regions using both mitochondrial and nuclear markers, and 

combined phylogeographical analyses with population genetics and approximate Bayesian 

computation. We found a west/east genetic differentiation between populations, occurring 

both within Africa and within the Mediterranean basin. We demonstrated that three of these 

groups had experienced demographic expansions in the Pleistocene, probably because of 

climate changes during this period. Finally, we showed that C. imicola could have colonized 

the Mediterranean basin in the late Pleistocene or early Holocene through a single event of 

introduction; however we cannot exclude the hypothesis involving two routes of colonization. 

Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but 

rather to biological changes in the vector or the virus.  

 

Introduction 

Understanding the history of colonization processes and identifying population sources and 

geographical pathways are critical. This knowledge would help for the construction of 

predictive models of future colonization and the implementation of effective biological 

management measures (Simberloff et al. 2013). Historical and observational data for 

colonizing species are often sparse, incomplete and misleading, so acquiring knowledge on 

the colonization processes using exclusively direct observations is hazardous. The indirect 
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approaches of population genetics and phylogeography can nevertheless overcome these 

limitations. The genetic variability of invading populations depends on the history of their 

source populations as well as on the historical and demographical features of introduction 

into new areas (Estoup & Guillemaud 2010). Indeed, during the colonization process, 

colonizing populations will encounter various and complex demographic events such as 

population size changes, vicariance events and admixture of differentiated populations that 

will leave a signature on their genetic composition. The study of genetic variation among and 

within populations can thus help unravel the evolutionary and demographic history of the 

studied species (Avise 2000).  

An illustrative example in this context is the northward expansion of the African biting midge 

Culicoides imicola Kieffer (Diptera: Ceratopogonidae) into the Mediterranean basin. 

Historically, C. imicola is an Afrotropical species, widespread in sub-Saharan Africa and the 

Middle East, and occasionally recorded in the Far East (i.e. India (Dyce & Wirth 1983); with 

putative records in Southern China (Yü 2005). Throughout its distribution, C. imicola is a 

well-known vector of economically important livestock viruses such as bluetongue virus and 

epizootic hemorrhagic disease virus affecting domestic and wild ruminants as well as 

transmitting African horse sickness virus to equids (Mellor et al. 2000). Recurrent reports of 

such viruses in Mediterranean areas in the 20th century resulted in the suspicion of C. 

imicola’s presence in the area (Mellor et al. 2009; Mellor et al. 2008; Purse et al. 2005). 

There, the bluetongue virus was first reported in 1924 from Cyprus island which was until 

1998 the only European country where it was endemic (Gambles 1949), while it was 

periodically observed in the southern part of the Iberian Peninsula (Mellor et al. 1983; Mellor 

et al. 1985) and several Greek islands (Boorman 1986; Boorman & Wilkinson 1983). 

Entomological surveys lately confirmed the presence of C. imicola in Mediterranean areas. 

The presence of C. imicola in Morocco and Algeria was admitted by the 1970’s (Bailly-
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Choumara & Kremer 1970). At that time, entomological surveys identified the northern 

distribution edge of C. imicola at the latitude 40°N (Mellor et al. 2000; Mellor et al. 1983; 

Mellor et al. 1985; Rawlings et al. 1998). Meanwhile, C. imicola populations were reported 

in Israel, western Turkey (Anatolia) and on several Greek islands (Lesbos, Rhodes and 

Chios) (Boorman 1986; Boorman & Wilkinson 1983; Braverman & Galun 1973). By 

contrast, entomological surveys suggested that C. imicola remained absent from mainland 

Greece until 1999 (at least) (Mellor & Wittmann 2002).  

The epidemiology of bluetongue disease dramatically changed between 1998 and 2005 with 

records of massive outbreaks throughout the Mediterranean basin (Mellor et al. 2009; Mellor 

& Wittmann 2002). This reinforced the entomological surveillance, which in turn confirmed 

the presence of C. imicola in Tunisia (Chaker et al. 2005) and virtually all Mediterranean 

islands along the northern Mediterranean seashore: Portugal (Capela et al. 2003), Spain 

(Catalonia) (Monteys & Saiz-Ardanaz 2003; Monteys et al. 2005), the Balearic Islands 

(Miranda et al. 2003), France (Corsica, Var department) (Delecolle & De La Rocque 2002; 

Venail et al. 2012), Italy (Sardinia, Sicily, mainland Italy) (Goffredo et al. 2003; Goffredo et 

al. 2004) and mainland Greece (Patakakis 2004). As a result, the consensual hypothesis was a 

northward expansion of C. imicola in late 20th century. Modeling analyses confirmed that the 

global increase in temperature could have opened new suitable habitats to C. imicola in the 

Mediterranean basin in the 20th century, allowing thus the settlement of new and abundant 

populations (Purse et al. 2005) followed by a subsequent increase of bluetongue transmission 

(Guis et al. 2012).  

Three phylogeographical studies analyzed the sequence polymorphism of the mitochondrial 

gene cytochrome oxidase I (COI) of C. imicola (Calvo et al. 2009; Dallas et al. 2003; Nolan 

et al. 2008). They all concluded that a matrilineal differentiation between western (Portugal, 
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Spain, Corsica, Italy, Morocco, Algeria) and eastern (Greece, Turkey, Israel) Mediterranean 

populations exists (Calvo et al. 2009; Dallas et al. 2003; Nolan et al. 2008). The authors 

concluded (i) a northward range expansion of C. imicola from two or three genetically 

distinct sources, with North African populations representing the most likely source of the 

western Mediterranean populations, (ii) the occurrence of two independent routes of 

colonization under the assumption of a joined colonization of both the bluetongue virus and 

its vector (Dallas et al. 2003; Nolan et al. 2008), and (iii) a recent and rapid colonization 

process in Spain (Calvo et al. 2009). The two described routes of colonization were as 

follows: the first started in North Africa to reach Italy, via Sicily and Corsica; the second 

connected Israel and Turkey to Greece and Bulgaria. However, these three studies were based 

on the use of a single genetic marker, which limits the understanding of the evolutionary and 

demographic history. This was recently complemented by a genetic study that used ten 

microsatellite markers to characterize the genetic structure of nuclear polymorphism of C. 

imicola in the western Mediterranean basin (North Africa, Italy and France). This study 

revealed low levels of genetic variation among these populations, indicating that they either 

share a recent common origin or recurrently exchange genes (Mardulyn et al. 2013). Unlike 

previous studies, the authors indicated an ancient presence of C. imicola in Italy submitted to 

recurrent immigration from North Africa.  

Interestingly, none of these studies addressed the issue of the history, population sources and 

routes of the colonization of the Mediterranean basin in relation to the native area of C. 

imicola. Moreover, they did not fully characterize the timeline of C. imicola expansion; a 

point remaining intensively debated in the literature. We designed the present study to 

precisely address these points. We thus included populations from both the native range and 

the Mediterranean basin in a multi-locus study including maternally and bi-parentally 

inherited markers (i.e., two mitochondrial genes and nine microsatellite markers). More 
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specifically, we depicted the geographical pattern of genetic variation of C. imicola in the 

Afrotropical region and in the Mediterranean basin by a phylogeographical approach. We 

then characterized the genetic structure using Bayesian clustering and traditional population 

genetics tools. We finally performed approximate Bayesian computation analyses (ABC) 

(Beaumont et al. 2002; Bertorelle et al. 2010) in order to retrace and date the colonization 

events.  

 

Materials and Methods 

Sampling and PCR amplification 

Insects were sampled at 27 sites throughout southern Europe and Africa (Table 1, Fig. 1 

circle symbol), including 13 sites from the native range of this species (i.e. sub-Saharan 

Africa and Indian Ocean). In addition, previously published COI sequences from Turkey and 

the United Arab Emirates (Nolan et al. 2008) were added to the dataset (Table 1, Fig. 1 

triangular symbol). Adult midges were collected using black light suction traps placed near 

livestock or horses. Specimens were preserved in 70% ethanol and C. imicola individuals 

identified and sexed under a binocular microscope using the description references (Delecolle 

& De La Rocque 2002). Both male and female were used for genotyping and sequencing. 

Genomic DNA was extracted from single midges using the NucleoSpin96 Tissue Kit 

(Macherey-Nagel, Duren, Germany) according to the manufacturer’s instructions, starting 

with an additional step where each individual midge was ground in 200 µL of 1X PBS buffer. 

Each collected individual (11 to 34 individuals per site) was genotyped at nine microsatellites 

markers previously developed for C. imicola (Mardulyn et al. 2013) (Table S1). Seven 

microsatellite loci (68, 12b, 31, 41b, 88b, 16, 88) were amplified by multiplex PCR with the 

Type-it-Microsatellites kit (Qiagen, Valencia, CA, USA) according to the protocol described 
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in the manufacturer’s manual and the annealing temperature given in Table S1. Simplex PCR 

reactions were carried out for two microsatellites markers (3b, 35t), in 20 µl of 1X Qiagen® 

reaction buffer (Qiagen, Valencia, CA, USA), 0.1 mM each dNTP, 0.2 µM of each primer 

and 0.6 U of Qiagen Polymerase Taq® and 5 ng/µl of genomic DNA. Standard conditions for 

PCR amplification included an initial denaturation step of 95°C for 5 min, 35 cycles of 

denaturation for 30 s at 95°C, annealing for 1 min at variable temperature (Table S1), and 

elongation for 1 min at 72°C, followed by a final elongation of 5 min at 72°C. Fragments 

were separated on an Applied Biosystems 3500xL Genetic Analyzer. Among the samples that 

were successfully genotyped, 201 randomly selected insects (four to nine insects per locality) 

were sequenced for a portion of the mitochondrial genes cytochrome oxidase subunit I (COI, 

~ 474 bp) and cytochrome b (CytB, ~ 633 bp) and the nuclear gene Elongation factor alpha 

(Efα, ~ 555 bp). PCR fragments and sequences were obtained using, respectively, the primers 

C1J1718 (CCGGTAAAATTAAAATATAAACTTC) and 

C1N2191 (GGAGGATTTGGAAATTGATTAGTTCC) (Simon et al. 1994), 

CytB_12329F (GCACCTTCTAATATTTCAATTTGGT) and 

CytB_13038R (CTGGAATAAAATTATCTGGGTCTCC) and 

EFα_F1 (CGCCAAGTACTACGTCACCA) and Efα_R3 (GGAGCGAAGACAACAACC-

AT) designed in this study. PCR amplification reactions for both mitochondrial genes were 

performed in a 20 µl total reaction volume containing 1X of Qiagen buffer (Qiagen, 

Valencia, CA, USA), 2.5 mM each dNTP, 0.2 µM of each primer, 0.6 U of Qiagen 

Polymerase Taq® and 5 ng/µl of genomic DNA. A single denaturing step at 95°C for 5 min 

was followed by 5 cycles (denaturation at 95°C for 30 s, annealing at 45°C (COI) or 60°C 

(CytB) for 40 s and elongation at 72°C for 1 min), then 30 cycles (denaturation at 95°C for 30 

s, annealing at 51°C for 40 s and elongation at 72°C for 1 min) and final extension at 72°C 

for 8 min. For EFα gene, PCR amplification reactions were conducted in a 20 µl total 
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reaction volume containing 1X of Qiagen buffer (Qiagen, Valencia, CA, USA), 2 mM of 

MgCl2, 2.5 mM each dNTP, 0.2 µM of each primer, 0.8 U of Qiagen Polymerase Taq® and 5 

ng/µl of genomic DNA. A single denaturing step at 95°C for 5 min was followed by 5 cycles 

(denaturation at 95°C for 30 s, annealing at 52°C for 1 min and elongation at 72°C for 1 min), 

then 35 cycles (denaturation at 95°C for 30 s, annealing at 45°C for 30 s and elongation at 

72°C for 1min) and final extension at 72°C for 8 min. 

 

Sequence analyses 

Sequences were aligned with the Clustal W algorithm (Thompson et al. 1994) available in the 

software GENEIOUS v.6.0.5 (Biomatters, http://www.geneious.com). 

The nuclear sequences of EFα gene obtained from 204 C. imicola individuals were not used 

for extensive analyses owing to a lack of polymorphism. The haplotype network and results 

of mismatch distributions and Bayesian clustering analyses are presented as supplementary 

data (Fig. S1).  

Twelve CytB sequences from eight sub-Saharan (Benin, Burkina Faso, Cameroon, Ethiopia, 

Mali, Mauritius, Mozambique, and Reunion Island) and Israeli populations contained 

nucleotide uncertainties. We performed all analyses on both markers. For population 

structure inference (genetic differentiation and Bayesian clustering analyses) the results of 

CytB are not presented as they were less informative. 

Population structure 

Population structure was assessed with the Bayesian clustering of genotypes implemented in 

BAPS v.6.0 (Cheng et al. 2013). The analysis was conducted with a series of 50 replicates 

runs and a maximum number of populations (K) set to 13 (i.e., the number of presently 
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sampled native sites). Given the limited number of samples in the eastern Mediterranean 

group and taking geographic locations into account, we grouped the Israeli population with 

those of the eastern Mediterranean basin cluster (see results) for further analyses. Genetic 

differentiation between the clusters of sequences inferred by BAPS was tested with 

ARLEQUIN v.3.5.2 (Excoffier et al. 2005). 

 

Genetic diversity and genealogical relationships 

Genetic diversity within populations and clusters was evaluated by the haplotype number (H), 

haplotype diversity (Hd) and nucleotide diversity (π) per site using DNASP v.5.10 (Librado 

& Rozas 2009). To infer genealogical relationships among populations, we constructed a 

median-joining network (Bandelt et al. 1999) for each gene with NETWORK v.4.6.1.2 

(www.fluxus-engineering.com).  

 

Demographic history 

The genetic signature of past demographic changes within the inferred clusters was 

investigated from the COI and CytB concatenated dataset. We performed neutrality tests 

based on Tajima’s D and Fu’s Fs statistics with DNASP v.5.10. Significant negative values 

(i.e., significant rejection of the null hypothesis) are expected in populations that had 

experienced an increase in effective population size (Fu 1997; Ramos-Onsins & Rozas 2002; 

Tajima 1989). We also computed a mismatch distribution test with ARLEQUIN v.3.5.2 

(Excoffier et al. 2005). In populations that have undergone a rapid demographic expansion, 

the mismatch distribution is expected to have a smooth unimodal curve (Rogers & 

Harpending 1992). The time of expansion (t) was then estimated using the equation t= τ /2u, 

where tau (τ) is estimated through the mismatch test and u = 2 µk, with k describing the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

sequence length and μ the mutation rate ranging from 0.0075 to 0.0211 

substitutions/site/lineage/Myr (Papadopoulou et al. 2010). We further performed a Bayesian 

skyline analysis implemented in BEAST v.1.8 (Drummond et al. 2012) in order to quantify 

and date the changes in effective population size. The analysis was conducted under a 

random local molecular clock, the HKY+I substitution model and a mutation rate ranging 

uniformly from 0.0075 to 0.0211 substitutions/site/lineage/My. We ran 100 million 

generations sampled every 10,000 steps and used a burn-in of 10%. We used TRACER v.1.6 

software to analyze the posterior distributions and plot the graph.  

 

Detection of adaptive selection 

Sites under positive or negative selection in COI and Cytb genes were inferred using the 

single-likelihood ancestor counting (SLAC), fixed-effects likelihood (FEL), and random-

effects likelihood (REL) methods as implemented in DataMonkey server 

(http://www.datamonkey.org) (Murrell et al. 2012; Pond & Frost 2005a, b). Positive selection 

for a site was considered to be statistically significant if the P value was < 0.1 for the SLAC 

and FEL methods or the posterior probability was at the ≥ 90% level for the REL method. A 

mixed-effects model of evolution (MEME) was further used to identify selected sites under 

conditions of episodic diversifying selection. Selected sites with a P value < 0.05 were 

reported. 

Microsatellite analyses 

Population structure and genetic diversity 

Linkage disequilibrium between locus pairs was tested using FSTAT v2.9.3.2 (Goudet 1995). 

The same software was also used for performing the following standard genetic analyses. 

Genetic differentiation among samples and within-samples departures from Hardy-Weinberg 
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proportions were assessed through the Weir and Cockerham (1984)’s unbiased estimates FST 

and FIS. A significant deviation of FST from zero was tested using the exact G test over 

10,000 permutations of genotypes among samples. Significant deviations of FIS from zero 

were tested through 10,000 allelic permutations among the genotypes belonging to the same 

samples. The presence of null alleles was tested with the software MICRO-CHECKER v2.2.3 

(Van Oosterhout et al. 2004). Within-samples estimates in genetic diversity were assessed by 

computing the allelic richness (Ar) and the mean genetic diversity (He, Nei & Chesser 1983) 

with FSTAT v2.9.3.2. Observed and expected heterozygosity were computed for each 

population using the software ARLEQUIN v.3.5.2. 

 

Population genetic structure was inferred using the Bayesian approach implemented in 

STRUCTURE v.2.3.3 (Pritchard et al. 2000) which assigns individuals to a defined number 

of genetic clusters according to their genotypes. We performed 10 independent runs for each 

value of K varying from 1 to 13 (i.e., the number of presently sampled native sites) under the 

admixture model and correlated alleles frequencies (Falush et al. 2003). We used the 

sampling locations as priors’ information (Locprior model) in order to assist the clustering 

process. Each run consisted of a burn-in of 10,000 steps followed by a Monte Carlo Markov 

Chain (MCMC) of 10 million iterations. The accurate number of clusters was inferred with 

the ∆K method (Evanno et al. 2005). The same analysis was performed again within the 

inferred clusters to assess potential genetic sub-structure. In addition, because the model used 

by STRUCTURE assumes Hardy-Weinberg equilibrium for all loci, we performed the 

analyses for the complete data set, but also for the dataset without the three loci for which 

Hardy-Weinberg equilibrium was significantly rejected across samples (35t, 16, 88). The 

figures were edited with DISTRUCT v.1.1 

(https://web.stanford.edu/group/rosenberglab/distruct.html).  
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To visualize the genetic structure and relationships between sampled sites, we constructed a 

neighbor-joining (NJ) tree (Takezaki & Nei 1996) based on the pairwise genetic distances of 

Cavalli-Sforza and Edwards (1967) using the software POPULATIONS v.1.2.30 

(http://bioinformatics.org/~tryphon/populations/). The robustness of nodes was evaluated by 

performing 1,000 bootstrap replicates.  

 

Colonization scenarios inference  

Approximate Bayesian computation (ABC) methods are model-based approaches allowing 

the inference of complex evolutionary scenarios using summary statistics to compare 

simulated and real datasets (Beaumont et al. 2002). We used DIYABC software v.2.0.4 

(Cornuet et al. 2014; Cornuet et al. 2010) for inferring the possible routes of C. imicola 

colonization. We focused on the questions dealing with the origin and colonization routes 

toward the western and eastern Mediterranean basin. Table 2 presents the different tested 

scenarios. The possibilities of incomplete sampling and of genetic sub-structuring within 

African clusters were taken into account by modeling unsampled populations as described by 

Lombaert et al. (2011). This implies that the colonized population originated from an 

unsampled population belonging to one African cluster. 

 

The analyses were conducted on microsatellite data by choosing one representative sample 

displaying the lowest mean FST per cluster. We also tested the scenarios using the sequence 

data as well as the combined microsatellite and sequence datasets. However, these 

simulations never reached convergence for an accurate model comparison even when we 

fairly increased the number of iterations. We therefore used the microsatellite data only. Prior 

distributions of demographic, historical and mutational parameters are given in Table S2. For 

scaling historical parameters, we assumed 10 generations per year (Braverman & Linley 
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1988) and a divergence time within the last 30,000 generations and starting 330 and 430 

generations ago for the western and eastern cluster, respectively (first record of C. imicola in 

the Mediterranean basin (first record of C. imicola in the Mediterranean basin; Bailly-

Choumara & Kremer 1970; Szadziewski 1984). The average microsatellite mutation rate 

prior was set to range from 6.10-6 to 10-4 substitution per generation on a loguniform 

distribution. 

 

All observed and simulated data sets were summarized with a set of statistics implemented in 

DIYABC including the mean number of alleles, the mean expected heterozygosity (Nei 

1987), the mean allelic size variance, the Garza-Williamson’s M (mean ratio of the number of 

alleles over the range of allele sizes) (Garza & Williamson 2001), pairwise FST values (Weir 

& Cockerham 1984) and the classification index (mean individual assignment likelihood) 

(Pascual et al. 2007). We generated 1 million simulated data sets per tested scenario. The 

posterior probabilities associated with each scenario were calculated by a polychotomous 

logistic regression (Cornuet et al. 2008) performed on the 1% of the simulated data sets 

closest to the observed data set. The most probable scenario (with the highest probability) 

was selected.  

 

As a first quality control of the analysis, we performed three replications of our ABC analysis 

by using site samples belonging to the same genetic unit as replicates of the same 

evolutionary history (Table S8). Secondly, we tested the robustness of the model divergence 

time by re-running the model with different starting generation values (100 and 1000 

generations). 
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Confidence in the selected scenario was evaluated by simulating 100 pseudo-observed data 

sets (pods) of each scenario using parameter values drawn from prior distributions (Table 

S2). LDA-transformed summary statistics were used to compute posterior probabilities used 

to calculate type I and II errors. The latter refer respectively to the probability of excluding 

the selected scenario when it is true and the probability of selecting the scenario when it is 

false. Mean type II error was calculated over all scenarios. 

 

Finally, we assessed the goodness of fit of the selected scenario by using the model checking 

option of DIYABC software (Cornuet et al. 2010). This allows evaluation of whether the 

selected scenario matches well with the observed genetic dataset. If the selected scenario fits 

the observed data correctly, we expect data simulated under this model with parameters 

drawn from their posterior distribution to be close to the observed data. Our set of statistics 

included the summary statistics used for the model selection as well as the statistics that were 

not used for previous ABC treatment. 

Results 

Population structure and genetic diversity (microsatellite and mtDNA) 

All pairs of loci were in linkage equilibrium among the 701 midges collected across the 25 

sites (Tunisia and Burkina-Faso were not included due to their low sample sizes) and 

successfully genotyped at nine microsatellite loci. Significant departures from Hardy-

Weinberg equilibrium were noticed in sub-Saharan populations, with FIS ranging from 0.081 

to 0.254 (p-value ≤ 0.0002) (Table S4). These high FIS values are due to the presence of null 

alleles observed for three markers (35t, 16, 88) as revealed by the MICROCHECKER 

analysis; this is not surprising since the primers were designed from European populations 

(Mardulyn et al. 2013). The expected and observed heterozygosity for each population are 

given in Table S4. 
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We assessed the genetic structure of C. imicola both within its native range and within the 

presumably colonized area. The clustering analysis reveals a strong geographical structure. 

The mitochondrial data from a 474-bp-length fragment of the COI mitochondrial gene 

obtained for 225 individuals showed four major clusters with BAPS v.6.0 (Cheng et al. 2013) 

clustering analysis. Two of these clusters discriminated the western from the eastern 

Mediterranean populations (Greece and Turkey), defining thus the WMB and EMB clusters, 

respectively. The third cluster grouped the western African (WA) populations; the fourth and 

last southeastern African (SEA) cluster merged the samples from central, eastern and 

southern Africa, Indian Ocean and Middle East (Israel and U.A.E) (Table 1, Fig. 1). The 

Bayesian clustering performed with STRUCTURE on microsatellite data was slightly 

different (Fig. 2). At a global scale, ∆K was clearly maximum for K = 2, confirming the 

occurrence of genetic differentiation between the Mediterranean area and the native area of 

C. imicola (Fig. 2b). Within the Mediterranean group, the clustering analysis supports the 

occurrence of a genetic differentiation between western and eastern Mediterranean 

populations with K = 2 (i.e. the EMB and WMB clusters previously defined; Table 1; Fig. 

2b). As previously observed with mitochondrial data, the microsatellite polymorphism failed 

to detect genetic differentiation between North African and other western Mediterranean 

populations (Fig. 1 and 2). The slight differences in the results obtained from nuclear and 

mitochondrial data concerned the native area of C. imicola. If microsatellite polymorphisms 

grouped the western African samples together, they were merged with central and eastern 

African ones within a central African (CA) cluster. This CA cluster was opposed to a 

southern African (SA) one grouping southern African and Indian Ocean samples. 

Interestingly, STRUCTURE analysis revealed admixture events or intermediate frequencies 

between these CA and SA clusters (Fig. 2b). Three of these four clusters (WMB, EMB, and 

SA) are consistently retrieved in the STRUCTURE analysis at the global scale (for K = 4; 
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Fig. S2) and the neighbor-joining tree based on microsatellite markers (Fig. 3). Such support 

is not clearly shown for the CA cluster given the position of the Ethiopian and Kenyan 

samples in the neighbor-joining tree (Fig. 3). However, the microsatellite polymorphisms 

tended to group together the western African samples in the Bayesian clustering (for K = 4; 

Fig. S2) and the neighbor-joining tree (Fig. 3). The defined genetic groups were also obtained 

with the data set analyzed without the three markers exhibiting the presence of null alleles. 

Despite the high geographical distances involved, pairwise FST estimates based on 

microsatellite data (Table 3, Table S5) remained relatively low within the WMB cluster (FST 

≤ 0.06) as well as within and between CA and SA clusters (FST ≤ 0.07). By contrast, higher 

FST estimates (0.10 ≤ FST ≤ 0.24) were recorded within the EMB cluster as well as when 

comparing any EMB sample with any WMB sample (FST = 0.12). Such WMB-EMB genetic 

differentiation was significantly non-null (P < 0.05). This differentiation pattern was also 

supported by COI sequences (details not shown).  

We investigated the genetic diversity within populations. A higher genetic diversity of C. 

imicola was found in the native distribution area than in the Mediterranean basin. Indeed, 

using microsatellite polymorphism, we obtained an allelic richness ranging from 5.76 to 7.11 

alleles per locus in the native area (i.e. CA and SA clusters), 3.43 to 4.43 in western 

Mediterranean basin and 3.80 to 3.93 in eastern Mediterranean basin (Table S4). The same 

signal was noticed for the genetic diversity that ranged from 0.67 to 0.77 in the native area 

(CA and SA), from 0.57 to 0.64 in WMB and was estimated to 0.49 in EMB (Table S4). 

Mitochondrial data displayed the same picture: 39 COI and 22 CytB haplotypes were 

discriminated among sub-Saharan African samples but only 13 COI and 20 CytB haplotypes 

among Mediterranean samples. Moreover, at both mitochondrial genes, the haplotype 

diversity and nucleotide diversity were higher in sub-Saharan Africa than in the 

Mediterranean basin (Table S3). 
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Genealogical relationships  

A median-joining network based on COI sequences (Fig. 4) suggested strong relationships 

between EMB (Greece and Israel) and SEA (southeastern Africa). It also individualized 

WMB as a genetically distinct cluster sharing no COI haplotype with any of the three other 

clusters. The pattern of genetic variation within the western Mediterranean basin is 

characterized by the presence of two widespread dominant COI haplotypes (H39, H40) and 

few rare haplotypes. This gives thus a star-like shape to the network; i.e. a signature 

characteristic of populations that have undergone a demographic expansion. In contrast, the 

genetic variation in eastern Mediterranean basin is not consistent with recent expansion. The 

same pattern was observed with CytB sequences (Fig. S3).  

 

Demographic history and detection of sites under selction 

We explored demographic history across the genetic groups inferred by the clustering 

analysis. The neutrality and expansion tests based on mitochondrial genes (Table S6) suggest 

demographic expansion within the WMB and WA clusters, as indicated by the significantly 

negatives values obtained for Fu’s estimates. However, Tajima’s D significantly rejected 

neutrality in the WMB cluster only (D = -1.972, p-value < 0.05), indicating thus either the 

effect of natural selection or past demographic expansion in the WMB ancestors. The Ramos-

Onsins & Rozas R2 and the raggedness r value were significant in WMB and WA, 

strengthening the hypothesis of past demographic expansions experienced by the western 

Mediterranean and western African populations. These results are also congruent with the 

mismatch distributions which are unimodal for WMB and WA clusters (Fig. 5). In contrast, 

the mismatch distributions in the SEA cluster is not clearly unimodal which can be due to a 

spatial heterogeneous grouping of multiple different haplotypes (given the large area included 

in the SEA cluster). However, the global shape of the mismatch distributions in the SEA 
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cluster does not reject the hypothesis of past demographic expansion. Likewise, the Bayesian 

skyline plot (BSP) analysis indicated demographic expansion with an increase of the effective 

population size in the western Mediterranean basin and sub-Saharan Africa during the last 

17,000 years and 80,000 years respectively (Fig. 5). These dates are generally consistent with 

the time of demographic expansion driven from the value of tau (τ). Indeed, such values are 

estimated at 27,300 – 76,700 years ago for the western Mediterranean basin and at 61,100 - 

190,000 years for sub-Saharan/Indian Ocean populations. By contrast, populations from the 

EMB cluster display a multimodal distribution. This indicates a demographic equilibrium 

along the last 90,000 years in the EMB cluster with nevertheless a slight signature of 

expansion ca 20,000 years ago.  

None of the sites were detected as being under positive selection, and few sites (13 of 474 

sites and 8 of 633 sites of COI and CytB genes, respectively) were under negative selection. 

Inference of historical colonization pathways 

We tested the colonization pathways of C. imicola out from sub-Saharan Africa into the 

Mediterranean basin. We used four analytic runs differing from one another by the samples 

chosen as representative of each cluster. All runs provided the same results (Table S8). The 

posterior probabilities calculated for each scenario provided higher statistical support to the 

scenarios #5 and 7 without being able to discriminate among these two. These scenarios 

assumed that the colonization of the Mediterranean basin by C. imicola had resulted from 

emigrants originating from the CA cluster. They differ from one another by the assumed 

order of colonization between the western and eastern Mediterranean basin (Table 2). The 

scenario #5 assumed that the western Mediterranean basin was the first colonized area before 

acting as a population source for creating the EMB populations. The scenario #7 assumed the 

east-Mediterranean basin to have been the first colonized area and EMB emigrants to have 

lately founded WMB. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Running the ABC analysis with earlier and later values of starting generation for divergence 

time did not impact the results: scenarios #5 and #7 were also selected as best-fitting models 

(p = 0.32 and 0.29, for scenarios #5 and #7 respectively, using earlier values and p = 0.29 and 

0.32 for later values) which testify the robustness of the model. 

 

We calculated type I and II errors in order to evaluate to what extent these scenarios could be 

trusted. We obtained type I error rate with a mean value of 0.64 for scenario #5 and 0.51 for 

scenario #7 (Table 2). These high values of type I error were mostly associated to scenario #7 

when simulating scenario #5 and reciprocally. This may reflect that our data are not enough 

informative to discriminate between both scenarios using our ABC approach. Type II errors 

are relatively low with a mean value of 0.07 for both scenarios. Model checking was carried 

out for these two selected scenarios. None of the summary statistics (used and unused for 

ABC inferences) display low probability (i.e. P < 0.05), indicating thus that both scenarios fit 

well the real dataset (Table S8). This was also confirmed by a Principal Component analysis 

(PCA): the PCA points simulated from the posterior distribution nicely grouped together and 

are relatively well centered on the target corresponding to the real dataset (Fig. S4). 

Altogether, these results indicate that both scenarios # 5 and 7 provide a satisfying 

description of our real dataset. 

 

Discussion 

ABC methods have been successfully used to infer colonization pathways of several invasive 

species (e.g. Brouat et al. 2014; Lombaert et al. 2011; Miller et al. 2005; Pascual et al. 2007). 

However, most of the studies focused on well-documented colonization for which the 

introduction dates and/or the colonists origin were already known (e.g. Guillemaud et al. 

2010; Konecny et al. 2013; Lombaert et al. 2010; Lombaert et al. 2014; Lombaert et al. 
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2011; Miller et al. 2005). In our study case, the colonization process of the Mediterranean 

basin by C. imicola was unclear. The records of bluetongue outbreaks during the 1990s 

suggested the presence of C. imicola in the northern Mediterranean regions, which was 

subsequently confirmed by entomological surveys. However, neither these direct 

observations nor the genetic studies initially carried out (Dallas et al. 2003; Mardulyn et al. 

2013; Nolan et al. 2008) provided information on the timing or routes of colonization. In this 

current study, we addressed these issues over a large geographic area including the native and 

colonized range of C. imicola. Combining standard population genetics with ABC and 

phylogeographical analyses using both mitochondrial and nuclear markers, allowed us to 

demonstrate (1) a major genetic structuring of C. imicola between its native area and 

Mediterranean populations, (2) a genetic structuring within the native range and (3) the 

previously reported west/east genetic subdivision among Mediterranean populations (Nolan 

et al. 2008). Altogether, these results shed a new light on the timing and routes of 

colonization of the Mediterranean basin by the bluetongue vector. 

 

Genetic structure of C. imicola within its native range  

Our study investigated the genetic structure of C. imicola within its native area. Maternally 

(mitochondrial) and bi-parentally (microsatellites) inherited markers congruently discovered 

a genetic sub-structure of C. imicola in sub-Saharan Africa. Mitochondrial polymorphism 

clearly discriminated western African populations from all the others. Bayesian clustering 

analysis of nuclear polymorphism grouped the populations from southern Africa and the 

Indian Ocean together within the SA cluster. Such a cluster was differentiated from the 

central African cluster (CA) which groups all populations located at low latitudes in a west-

to-east strip. The Bayesian analysis revealed the signature of admixture events that could 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

have blurred an ancestral west/east differentiation. This west/east pattern of genetic 

differentiation could result from isolated populations deriving from the refuges opened in the 

glaciations of the Pleistocene. Climatic variations during this period have already been 

suggested to be a factor driving such pattern of differentiation in other African taxa including 

mammals (e.g. Barlow et al. 2013; Barnett et al. 2014; Lorenzen et al. 2012) and insects (e.g. 

Sezonlin et al. 2006). This hypothesis would also explain the observed signature of past 

demographic expansion of African populations that we have dated between 60,000 and 

200,000 years ago.  

 

Alternatively, the observed genetic substructure could reflect a genetic differentiation of C. 

imicola populations derived from a widely distributed ancestral population, owing to limited 

gene flow due to geographical barriers such as desert, forest or water bodies. Thus, this would 

explain the highest genetic differentiation observed between the geographically most distant 

populations (West Africa and Indian Ocean). The apparent signature of admixture at the 

intermediate longitudes would be an artefact due to the inability of the STRUCTURE 

program to assign the individuals to one of the two clusters, and thus only reflects 

intermediate allele frequencies between central and southern Africa. This is in accordance 

with the obtained significant pattern of isolation by distance within sub-Saharan populations 

(data not shown), suggesting a stepping-stone model of migrations compatible with the high 

passive dispersal capacity through wind of C. imicola.  

Colonization history of the Mediterranean basin  

During the colonization process, complex demographic events may lead to complex genetic 

patterns in the colonized area (Estoup & Guillemaud 2010). Thus, inferring the history and 

routes of colonization of species may constitute a major challenge. In our case, the ABC 
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analyses unambiguously identified the central Africa cluster as the source of the 

Mediterranean populations of C. imicola. More specifically, confidence analyses showed that 

the most probable scenarios involved a single introduction event of insects of central African 

origin into the Mediterranean basin and then a secondary colonization event of Mediterranean 

insects into new Mediterranean habitats. However, the ABC failed to discriminate the best 

scenario of this secondary event within the Mediterranean basin. The hypothesis of a unique 

event of colonization out from the native area is consistent with the microsatellite clustering 

analysis at the global scale suggesting two main clusters: one genetic cluster within the 

Mediterranean basin and one in sub-Saharan Africa. Within the Mediterranean basin, our 

results are congruent with those of previous studies through the support given to west/east 

genetic differentiation of C. imicola (Calvo et al. 2009; Dallas et al. 2003; Nolan et al. 2008). 

This subdivision is sharp in both microsatellite and mitochondrial data suggesting, under the 

hypothesis of equilibrium, a long term isolation of these two genetic groups. Two hypothetic 

scenarios could explain such results: (1) a northward spread of C. imicola from sub-Saharan 

Africa to North African coast via the Sahara followed by an allopatric divergence within 

Mediterranean basin or (2) a colonization of eastern Mediterranean basin from colonists of 

sub-Saharan African origin which passed by the Arabian Peninsula followed by subsequent 

spill-over toward the western Mediterranean basin. 

 

Based on mitochondrial data, the historical demographic analyses suggest the occurrence of 

demographic expansion in western Mediterranean populations between 27,000 and 77,000 

years ago. By contrast, the eastern Mediterranean populations of C. imicola seemed to have 

remained demographically stable over the last 90,000 years, with a slight demographic 

expansion 20,000 years ago. Interestingly, these estimates overlap the wet phases of the 

Sahara desert during which it was vegetated, included permanent lakes and was probably 
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occupied by humans and wild animals (Castaneda et al. 2009). These phases are considered 

as key periods for the migration of fauna, flora and human populations out of sub-Saharan 

Africa (Castaneda et al. 2009; Hooghiemstra et al. 1992; Osborne et al. 2008). Despite the 

fact that demographic analyses may be affected by the complex demographic events 

occurring during the colonization process, our results are consistent with an expansion of C. 

imicola distribution taking place during humidification of the Sahara in the Late Pleistocene 

and Holocene. These climate changes could have opened new suitable habitats to this species 

allowing its expansion toward the North African coast.  

The clear west/east genetic structure observed in the Mediterranean basin has also been 

reported in many taxa (e.g. Arnaud-Haond et al. 2007; Horn et al. 2006; Kousteni et al. 

2014). Hewitt et al. (2000) suggested that during periods of glaciations, many animals and 

plants species have evolved into different genetic groups in the Mediterranean basin. Three 

main Mediterranean refuges have been described including the Iberian Peninsula, Italian 

Peninsula and the eastern Mediterranean basin (Balkan Peninsula, Middle East). Subsequent 

to the range expansion of C. imicola in the North African coast, a geographical isolation in 

western and eastern refuges during glacial Pleistocene periods could have created the current 

west/east differentiation pattern. This process is often associated with population 

contraction/expansion or range reduction (Hewitt 2001). Thus, the discrimination of a WMB 

cluster with low genetic diversity could result from a population contraction followed by an 

allopatric differentiation associated to a distinct glacial refuge. By contrast, the higher genetic 

diversity in eastern Mediterranean basin (EMB cluster) could either reflect a larger effective 

population size in this second Mediterranean refuge, or the recurrence of gene flows between 

native and the eastern Mediterranean populations. Alternatively, the presence of deserts in 

Egypt and Libya could have acted as a barrier to gene flows for C. imicola, thus maintaining 

this west/east differentiation among C. imicola Mediterranean populations. 
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An alternative hypothesis would assume past C. imicola spread from sub-Saharan Africa to 

eastern Mediterranean basin via the Arabian Peninsula. This is supported by the close 

genealogical relationships observed from the mitochondrial haplotype network between the 

native populations and the eastern Mediterranean populations. The strong affinity with 

southeastern African populations likely reflects the involvement of a large founding effective 

population size consisting of widespread sub-Saharan haplotypes and/or a genetic 

connectivity with recurrent gene flow between these two areas. The latter hypothesis is 

consistent with observations of Persian air streams responsible of midges transport from the 

Arabian Peninsula to Israel (Braverman & Chechik 1996). Under that hypothesis, the western 

Mediterranean populations could have been colonized by migrants of east-Mediterranean 

origin via a contact zone located in Egypt and/or Libya. If so, one would expect a gradient in 

genetic diversity along the Mediterranean coast (i.e. Middle East > northeastern Africa 

(Egypt/Libya) > northwestern Africa (Morocco/Algeria/Tunisia)) as well as shared 

haplotypes and/or admixture within the contact zone. Unfortunately, our sampling design is 

not accurate for testing such a hypothesis because of the paucity of samples collected in the 

Middle East and in northeastern Africa.  

 

Discrepancies were observed between mitochondrial and microsatellite polymorphisms. The 

COI haplotype network indicated strong genealogical relationships between south-eastern 

African and eastern Mediterranean populations as well as between West African and western 

Mediterranean populations suggesting two routes of introduction, while the microsatellites 

support a unique introduction event. Although we cannot exclude the hypothesis of two 

separate introductions into the Mediterranean basin, our results globally favored a unique 

introduction event. Indeed, the Bayesian clustering results for both microsatellites and 

nuclear gene EFα support two major groups at the global scale, one in sub-Saharan Africa 
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and one in the Mediterranean basin (Supplementary data), consistent with a single 

introduction event from sub-Saharan Africa into the Mediterranean basin. According to the 

haplotype network, eastern Mediterranean populations are genetically connected to one of the 

widespread haplotypes distributed throughout sub-Saharan Africa which includes samples 

that originated from West Africa. This pattern could result from an ongoing gene flow 

between Middle-East and sub-Saharan Africa following the introduction, while western 

Mediterranean populations could have been more isolated and experienced a stronger genetic 

drift. It is worth noting that there is a relative imbalance in the sampling effort between 

western and eastern Mediterranean regions owing to field accessibility issues. Incomplete 

sampling can induce genetic bias and lead to incorrect interpretations and conclusions 

(Muirhead et al. 2008). Therefore, a more extensive sampling within eastern Mediterranean 

and Middle-East is needed to further uncover of the pattern of variation within and among 

populations as well as the connectivity between populations.  

 

Discrepancies between mitochondrial and nuclear markers are likely to reflect their different 

sensitivities to demographic changes. Due to their maternal inheritance, the effective 

population size of mitochondrial genes is fourfold lower than that of nuclear autosomal genes 

(Birky et al. 1983). As a first consequence, mitochondrial markers are much more susceptible 

to stochastic processes such as genetic drift. In other words, they will tend to exhibit stronger 

differentiation patterns than nuclear genes over comparable evolutionary time scales (Hare 

2001). As a second consequence, a longer coalescence time is observed for autosomal than 

for mitochondrial markers (Hare 2001).  
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It would also be interesting in a future study to include C. imicola samples from the Far East 

in order to investigate the genetic relationships between oriental, African and eastern 

Mediterranean populations. A recent study of the COI sequence variation included specimens 

from India and China. It showed that far-east populations shared COI haplotypes with South 

African and Israeli populations (Harrup, personal communication), supporting hence the 

hypothesis of a genetic connectivity among these areas. Interestingly, such connectivity was 

also supported by examining the variation in BTV serotypes (Maan et al. 2004; Nomikou et 

al. 2009).  

Colonization of C.imicola in southern Europe 

As in previous studies (Mardulyn et al. 2013; Nolan et al. 2008), our genetic dataset indicated 

the North African populations of C. imicola as the most likely source of colonists for Europe. 

Moreover, our mitochondrial dataset allowed dating of a demographic expansion in western 

Mediterranean basin during the last 17,000 years. Although we could not estimate the period 

of colonization of southwestern Europe, this present study suggests that C. imicola might 

have been present in some Mediterranean territories for a long time. Unlike the western 

group, the eastern Mediterranean basin displays a strong population genetic structure. These 

regions are highly mountainous so we could hypothesize geographical barriers to limit C. 

imicola long dispersal there.  

The observed geographic subdivision of C. imicola populations within the Mediterranean 

basin matches well the genetic clusters previously described clusters for bluetongue virus 

(BTV) serotypes. Indeed, phylogenetic studies have identified BTV lineages belonging to 

either an “eastern” source (BTV1, 9, 16) or to a “western” source (BTV 2) (Nomikou et al. 

2009; Purse et al. 2005). Moreover, two different strains of BTV serotype 4 have been shown 

to occur from north-west and east Africa (Nomikou et al. 2009). The genetic consistency 

regarding the genetic structure of C. imicola and BTV in the Mediterranean basin is likely to 
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result from a similar demographic history involving similar environmental and/or 

geographical constraints. However, given the inferred timing of divergence between western 

Mediterranean and the native populations, C. imicola seems to have been established there 

long before the first report of BTV outbreaks (i.e. 1924 in Cyprus). In other words, other 

factors than the presence/absence of the vector have driven the spread of BTV in the 

Mediterranean basin (e.g. increases in vector abundance and/or vector competence, a reduced 

extrinsic incubation period, etc). Further studies should address these points. 

 

Conclusion 

The current study illustrates how molecular data can provide insight into the evolutionary and 

historical processes underlying colonization. The use of genetic data indicated that C. imicola 

have expanded its distribution range out from the northern part of sub-Saharan Africa to the 

Mediterranean basin. Discrepancies between nuclear and mitochondrial markers suggest that 

the species populations could have colonized the Mediterranean basin through a single or two 

events of introduction. However, our results globally support a unique introduction. The 

estimated timescales of demographic expansion in Mediterranean populations highlight the 

potential role of Pleistocene and/or early Holocene climate change in shaping the 

geographical distribution of this species and do not support the recent colonization of C. 

imicola of the Mediterranean basin. However, a precise divergence time between the sub-

Saharan and Mediterranean populations would help to better understand the factors 

underlying the range expansion of C. imicola in the Mediterranean basin. 
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Tables  

Table 1 Geographical location of sampled sites of C. imicola, number of individuals typed for microsatellite 
analyses (Nmic), number mitochondrial sequences obtained (Nmit) data and sample grouping based on 
clustering analysis based on microsatellite (Mic) and mitochondrial (mtDNA) data.  

        Cluster 
Sampling 
location 

Sampling 
Year 

Latitude Longitude Nmic Nmit Sample 
Code 

Cluster 
Code (Mic) 

Code 
(mtDNA) 

Algeria 2003 36.8 8.5 32 9 DZ WMB WMB 

France-Corsica 2008 42.8 9.4 30 8 CO WMB WMB 
France-Pyrénées-
Orientales 

2012 42.4 2.8 11 8 PO WMB WMB 

France-Var 2008 43.2 6.4 27 8 FR WMB WMB 

Italy-Calabria  2012 39.1 16.9 32 8 IT WMB WMB 

Italy-Sardinia 2012 39.1 8.5 32 8 SD WMB WMB 

Italy-Sicily 2012 38.0 12.6 31 8 SI WMB WMB 

Morocco 2004 34.4 -6.4 32 8 MA WMB WMB 

Portugal 2010 39.9 -7.4 31 8 PT WMB WMB 

Spain-Andalusia 2012 37.3 -6.9 30 8 ES WMB WMB 
Spain-Balearic 
Islands 

2012 39.5 3.1 28 8 BA WMB WMB 

Tunisia 2013 36.0 10.0 0 5 TN WMB WMB 

Greece 2013 41.0 24.7 31 8 GR EMB EMB 
Turkey (Nolan et 
al. 2008) 

2001 38.5 27.7 0 21 TR EMB EMB 

Israel 2010 29.9 35.1 31 8 IL EMB SEA* 

Benin 2009 11.9 3.4 29 8 BJ CA WA 

Burkina Faso 2004 11.2 -4.3 0 7 BF CA WA 

Cameroon 2009 9.3 13.5 29 7 CM CA SEA 

Mali 2010 11.0 -6.6 23 7 ML CA WA 

Senegal 2012 12.6 -12.2 32 8 SN CA WA 

Ethiopia 2004 8.8 40.7 32 6 ET CA SEA 

Kenya 2013 0.1 37.1 19 7 KE CA SEA 

Mozambique 2013 -25.9 32.5 20 8 MZ SA SEA 

South Africa 2013 -33.9 25.5 20 8 ZA SA SEA 

Zimbabwe 2013 -21.9 31.6 30 8 ZW SA SEA 

Madagascar 2012 -18.5 47.4 23 7 MG SA SEA 

Mauritius 2007 -20.2 57.5 34 4 MU SA SEA 
France-Réunion 
Island 

2005 -21.3 55.4 32 6 RE SA SEA 

U.A.E. (Nolan et 
al. 2008) 

2005 25.2 55.3 0 3 AE SA SEA 

Clusters, obtained with STRUCTURE for microsatellite and BAPS for mitochondrial data, are coded as: WMB, 
western Mediterranean Basin, EMB, eastern Mediterranean Basin, CA, central Africa, WA, western Africa, SA, 
southern Africa, SEA, southeastern Africa. 
(* ) The Israeli population was grouped with the EMB cluster for all analyses 
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Table 2 Description of the scenarios tested by approximate Bayesian computation analyses (ABC) on 
microsatellite data attempting to retrace the routes of colonization of C. imicola and confidence in scenario 
selection based on posterior probabilities, 95% confidence intervals and type I and II errors. Type I error is the 
probability of selecting another scenario when the chosen scenario is true. Type II error is the mean probability 
of selecting the chosen scenario when it is false. The selected (most probable) scenario is highlighted in bold. 

  
Posteri
or 

95% 
Credibilit
y  

Typ
e  I  

Typ
e II 

Scena
rios 

Description of tested scenarios Probab
ility 

interval Erro
r 

erro
r 

1 
Introduction out from CA independently to WMB 
and EMB 

0.0494 
[0.0136, 
0.0852]   

2 
Introduction out from SA independently to WMB 
and EMB 

0.0026 
[0.0000, 
0.0409]   

3 
Introduction out from CA to WMB and from SA to 
EMB 

0.0096 
[0.0000, 
0.0474]   

4 
Introduction out from CA to EMB and from SA to 
WMB  

0.0039 
[0.0000, 
0.0422]   

5 
Introduction out from CA to WMB then 
introduction from WMB to EMB 

0.4269 
[0.3768, 
0.4770] 

0.64 0.07 

6 
Introduction out from SA to WMB then 
introduction from WMB to EMB 

0.0591 
[0.0242, 
0.0941]   

7 
Introduction out from CA to EMB then 
introduction from EMB to WMB 

0.4103 
[0.3645, 
0.4562] 

0.51 0.07 
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8 
Introduction out from SA to EMB then 
introduction from EMB to WMB 

0.0381 
[0.0023, 
0.0740]   

  

ABC analyses were performed using one representative population from each cluster: Ethiopia, Zimbabwe, 
Morocco and Greece. Clusters are coded as: WMB, western Mediterranean Basin, EMB, eastern Mediterranean 
Basin, CA, central Africa, WA, western Africa, SA, southern Africa, SEA, southeastern Africa. 

 

 

Table 3 Pairwise FST values across loci between the genetic clusters inferred by STRUCTURE v.2.3.3 of C. 
imicola. Population differentiation was assessed with the exact G test implemented in FSTAT v2.9.3.2. 
Significant values, at the adjusted nominal level (5%) for multiple comparison of 0.0083, are highlighted in 
bold. 

  southern Africa western Mediterranean Basin eastern Mediterranean Basin 

central Africa  0.0240 0.0746 0.1223 

southern Africa - 0.0891 0.1593 

western Mediterranean Basin - - 0.1247 
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Figures 

 

Fig. 1 Sampling locations for C. imicola specimens (see sample codes in Table 1) and genetic clustering of C. 
imicola sampled populations based on COI sequences. Genetic groups were assessed by the spatial group 
clustering method of Corander et al. (2004) implemented in BAPS v.6.0. Sample sites with the same color 
belong to the same cluster.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 

Fig. 2 Genetic clustering of C. imicola sampled populations. (a) Spatial Bayesian clustering based on 
microsatellite data. (b) Ancestry estimation assuming two population clusters at the global scale (upper part) and 
four population clusters at the genetic groups scale (K=2 within sub-Saharan Africa and Indian Ocean area 
(center part) and K=2 within the Mediterranean basin (lower part) based on the Bayesian clustering method 
implemented in STRUCTURE v.2.3.3. Each vertical line represents an individual, and each color represents a 
cluster. Individuals are grouped by sample site. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Fig. 3 Neighbor-joining tree of C. imicola population samples based on the chord distance of Cavalli-Sforza & 
Edwards (1967) computed on microsatellite polymorphism. Central African populations are shown in red, 
southern African populations in yellow, eastern Mediterranean populations in green and western Mediterranean 
populations in blue. Bootstraps values were calculated over 1000 replicates and are represented as percentage. 
Only values > 60% are reported.  
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Fig. 4 Median-joining haplotype network of COI mitochondrial sequences of C. imicola. The size of the circles 
is proportional to the number of individuals with that haplotype. The length of the branches separating 
haplotypes is proportional to the number of mutational steps between them. Haplotype networks were 
constructed using NETWORK v.4.6.1.2 Colours represent the geographical region of sampled specimens. North 
Africa: Algeria, Morocco, Tunisia; Southwestern Europe: France-Corsica, France-Pyrénées Orientales, France-
Var, Italy-Sardinia, Italy-Sicily, Italy-Calabria, Portugal,Spain-Andalusia, Spain-Balearic Islands, Southeastern 
Europe: Greece, Turkey; Middle East: Israel, Uniated Arab Emirates; West Africa: Senegal, Benin, Mali, Burkin 
Faso; Central Africa: Cameroon, East Africa: Kenya, Ethiopia; Southern Africa: Mozambique, Zimbabwe, 
South Africa; Indian Ocean: Mauritius, Madagascar, France-Réunion Island. 
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Fig. 5 (a) Mismatch distribution among pairwise differences among haplotypes and (b) Bayesian skyline plot 
based on COI and Cytb combined dataset in C. imicola different geographical groups. Mismatch analyses were 
conducted according to a growth-decline model. Observed data and theoretical expected distributions are 
represented by discontinuous and solid line, respectively. Bayesian Skyline plot were performed with a mutation 
rate of 0.0075 - 0.0115 substitutions/site/Myr and a random local molecular clock. The x-axis indicates times in 
years before present and the y-axis shows the effective population size. The black line represents the median 
population size and the grey outline indicated 95% posterior intervals for the population size change. 

 

 


