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Abstract. In order to study the impact of fishing on a grouper population, we propose in this paper
to model the dynamics of a grouper population in a fishing territory by using structured models.
For that purpose, we have integrated the natural population growth, the fishing, the competition
for shelter and the dispersion. The dispersion was considered as a consequence of the competition.
First we prove, that the grouper stocks may be less sensitive to the removal of large male indi-
viduals if female population are totally protected. Second, we show that fishing does not disturb
the demographic structure of the population. Finally, we prove that female selective fisheries have
the potential of drastically reduce reproductive rates. We also prove that male fishing decreases
competition and then increases the total population number.

Key words: grouper, fishing, competition for shelters, sex-structured population dynamics, density
dependence
AMS subject classification: 39A23, 39A30, 92D40

1. Introduction
The impact of fishing on marine populations dynamic is currently approximated by means of theo-
retical fisheries models. The dynamic of these populations is sustained by the reproduction and is
compromised by the fishing activities and the natural mortality caused by diseases, aging, preda-
tion or changes in the environmental factors. Models based on mono-specific analysis have been
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used to approximate this dynamics. Classical models take into account the fish biology and the
measure of its Catch Per Unit of Effort (CPUE) [17].

The goal of this paper is to qualitatively study the effect of fishing effort on hermaphrodite
fish populations, taking into account shelter limitation and sexual inversion. This model is applied
to the Epinephelinae family of fish like the Grouper; this family is a subfamily of the Serranidae
family in the Perciformes order.

Groupers occupy an important position in fish lineages because of the size of their population,
the large number of different species and their geographical distribution. For instance, the dusky
grouper, Epinephelus marginatus, is found in most seas, except the Black Sea [14, 18]; the high-
est population densities are found along the African coasts from Tunisia to Senegal [11]; in the
Mediterranean Sea, it lives in sympathy with seven other grouper species [6, 13]; and it has been
included in the Red List of The World Conservation Union (IUCN) as one of endangered species
(www.iucn.org).

Groupers are protogynous hermaphrodites and are therefore able to change sex. Sex reversal
seems to occur when individuals are 9-16 years old and about 60-90 cm long (total length) [5, 4, 8].
Large individuals are males and can measure up to 120 cm and can weigh up to 40 kg. The smaller
individual are females and their initial sexual maturity is reached when they are 5 years old and 40
to 50 cm long [8]. The longevity of these species is long (50 years for Miraglia) and their growth
rate is low.

We propose in this paper, a model of the dynamics of this population in a fishing territory, in
order to study the impact of fishing on this population. We integrate natural population growth,
fishing, competition for shelter and dispersion. Dispersion is considered a consequence of compe-
tition. We showed that the grouper population is vulnerable to fishing because the fishing of female
individuals has the potential of drastically reducing reproductive rates and sex ratio.

Currently, both structured and global models are used in fishery models. We propose here to
use structured models. We subdivide the grouper population in four classes (young, immature
adult, female and male) corresponding to four grouper sizes. Age and size are deeply dependent in
a grouper population. The obtained model is a system of four difference equations whose analysis
encounters mathematical difficulties related to the nature of the non linearity. The stability of the
equilibrium and the asymptotic behavior of the solution are discussed in this work.

In the first section, we give the biological precondition necessary to the comprehension of the
grouper population dynamics. In the second section, we transform the preceding biological model
into a mathematical model. For that, we introduce a structured model in discrete time and give
some mathematical elements necessary to its comprehension. In the third section, we study the
model through analysis of the equilibrium point. Numerical analysis will be made in order to
study the robustness of the model and the impact of fishing on the population.
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Figure 1: Length/Age relation of Epinephelus marginatus according to the model of Von Berta-
lanffy: Lt = L∞(1−e−k(t−t0)) where k = 0.093 is the annual growth rate, t0 = −0.75 is the initial
time and L∞ = 114.49 is the maximum observed size equivalent to the maximum lifespan.

2. Biological description of the grouper life cycle:

2.1. Demographic process
The grouper is an individual able to produce successively, throughout its life, first female and then
male gametes. Therefore, it is suitable to subdivide the population into 4 classes according to the
length of the individual. These classes differ by their demographical and ecological parameters.

1. Eggs + Larva: young grouper;

2. Immature adult or juvenile;

3. Female;

4. Male.

Each class has its own duration. Indeed, according to the Length/Age relation for Epinephelus
marginatus [8] (figure 1), the time needed to move from the immature adult class to the female
class is 4 years.

By spawning, each female releases hundred of eggs, most of them are immediately followed
by intense predation by smaller fishes and few of them are fertilized by males. The grouper does
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not make any effort to protect their eggs [20]. After fecundation, the fertilized egg remains in the
plankton until it hatches to let the larva out. Next, each larva goes down to the bottom of the sea
and occupies a small hole, its shelter. In the spring, when the water warms up, the larva can reach
10 cm in length and thus passes from the larva class to the immature adult class [6].

The mechanism of sexual inversion is still not entirely understood. We know that it occurs
between the ages of 9 and 16 [7] and that size at sexual inversion appears to be an evolution
parameter [19]. Some females can reach 26 years old without changing sex [5, 20, 21]. However,
a dependence on the sex ratio of the population and social control of the sexual inversion exists
[16]. In our case, we assume that sexual inversion occurs for all groupers at a fixed length.

The eggs, whether fertilized or not, as well as the larvae, are submitted to a strong predation
pressure, leading to a high death rate [20]. On the other hand, the natural mortality rate is almost
zero for the adults (females and males). Anyway the rate of annual survival for this type of fish is
generally assumed equal to 0.9 [6]. Indeed, because of their size and diet, adult groupers have very
few predators.

2.2. Fishing process
The groupers are subject to two types of fishing depending on the size of the individuals: traditional
fishing and sport-fishing. Traditional fishing uses hand-lines and affects primarily small females.
Sport fishing affects only adult individuals, mainly the large dominant males or the large females.

2.3. Dispersion process
There are two types of dispersion: A dispersion which affects the larvae, due to the physical and
chemical environmental conditions (water currents, wind, nature of water). The dispersion of the
immature adult are due to the competition for shelter. The outcome of the shelter competition
between two groups is always in favor of the older group and leads immature adults to completely
leave the area [6]. Moreover, the mature adults are sedentary individuals that remain attached to
their territory for many years.

3. Mathematical model:

3.1. Parameters definitions
In order to obtain the general mathematical model that takes into account the preceding assump-
tions, we subdivided our model into three sub-models: the demographic model, the fishing model
and the dispersion model.

In addition, two assumptions were considered in our model:

H1 : The three processes taken into account are: demography, fishing and dispersion.

H2 : The only limiting factors are the influence of the number of males on the reproduction and
the number of surviving adults on the competition for shelters.
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As it was discussed in subsection 2.1., it is suitable to subdivide the population into 4 classes
according to body size (young, immature adult, female and male). Let ni(t) be the number of
individuals in class i ∈ {1, 2, 3, 4} at time t (by year) and Nt = (n1(t), n2(t), n3(t), n4(t)) be the
vector which describes the number of individuals in all classes at time t.

We assume that the number of newborn or young depends mostly on the number of females
in the territory and their fertility rate, f . However, when the number of males, n4, is close to 0,
it reduces the fertility rate. Let g be the function which describes the influence of the number
of males on the fertility rate. We define g as a positive and differentiable function with a “not
deleterious’ non linearity (strict depensation or Allee effect) [1, 10]:

g : x ∈ R+ 7−→ Cx

1 + Cx
∈ [0, 1], with C a positive constant.

The natural mortality rate in a class and the transition rate from one class to the following (by
unit of time) depends on the survival and growth conditions. According to assumptions (H2), the
survival and the growth conditions are assumed constant. Let ti,i be the fraction of individuals of
size class i ∈ {1, 2, 3, 4} who survive and remain in class i after one time unit, and ti+1,i be the
fraction of individuals who survive and move to the next larger size category i + 1. Therefore, if
we denote the mortality rate by mi we have, for all i ∈ {1, 2, 3}, mi = 1− ti,i − ti+1,i ∈ [0, 1] and
m4 = 1− t4,4 ∈ [0, 1].

For the fishing process, let (pi)i=1,2,3,4 denote the rate of surviving groupers after fishing for
classes i ∈ {1, 2, 3, 4}, respectively. Therefore, for each i ∈ {1, 2, 3, 4}, 1−pi evaluates the fishing
pressures on population class i, i.e. it is the probability that an individual of class i is fished by a
unit of time, such that for all i ∈ {1, 2, 3, 4}, pi ∈ [0, 1] .

In order to define the dispersion model, we define for all i ∈ {1, 2, 3, 4}, ki as the probability
of individual of class i staying in the region (i.e. to not dispersing) by unit of time. Therefore,
the dispersion rate for each class is equal to 1 − ki. As we note in section 2., the dispersion of
the young groupers depends only on the abiotical environment (wind, water currents, nature of
water). Hence, 1 − k1, will be taken to be a constant in [0, 1]. On the other hand, the dispersion
process for immature adults depends on the competition for shelter (Hypothesis H2). We assume
that this competition is always in favor of the older groupers. According to that we assume that the
number of immature adults remaining in the territory after dispersion is proportional to the number
of free shelters before dispersion. Therefore, due to the competition for shelter, the dispersion rate
is equal to the rate of variation of occupied shelters after natural mortality and fishing. In this case,
we assume that if, at time t, n2(t) + n3(t) + n4(t) < T then k2 satisfies:

k2(n2(t), n3(t), n4(t)) =
T − t3,2p3n2(t)− (t3,3p3 + t4,3p4)n3(t)− t4,4p4n4(t)

T
∈ [0, 1]

with T the number of shelters in the territory. Otherwise, there is no other juvenile that stays
in the site after migration.
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For that, let’s define :

k2 : (x, y, z) ∈ R3
+ 7−→

{
T − t3,2p3x− (t3,3p3 + t4,3p4)y − t4,4p4z

T
if x + y + z ≤ T,

0 otherwise

Anyway, if initial population condition satisfies n1(0), n2(0), n3(0) and n4(0) < T and model
parameters satisfy f < 1

k1p1
and (t3,2 + t3,3)p3 + (t4,3 + t4,4)p4 < 1 then for each t ≥ 0

k2(n2(t), n3(t), n4(t)) is in [0, 1].

3.2. Model equations
Considering all the elements defined so far we get the following non linear equation:

Nt+1 = M(n2(t), n3(t), n4(t))PL(n4(t))Nt, (3.1)

with M(n2, n3, n4): the density dependent matrix associated with the dispersion process, P : the
fishing matrix and L(n4): the density dependent matrix associated with the demographic process.

These matrices are defined as follows:

M(n2, n3, n4) =




k1 0 0 0
0 k2(n2, n3, n4) 0 0
0 0 k3 0
0 0 0 k4


 , P =




p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4




and

L(n4) =




t1,1 0 fg(n4) 0
t2,1 t22 0 0
0 t3,2 t3,3 0
0 0 t4,3 t4,4


 .

Therefore, the final model corresponds to the following non-linear system of difference equa-
tions:





n1(t + 1) = k1p1t1,1n1(t) + k1p1fg(n4(t))n3(t)
n2(t + 1) = k2(n2(t), n3(t), n4(t))p2t2,1n1(t) + k2(n2(t), n3(t), n4(t))p2t2,2n2(t)
n3(t + 1) = k3p3t3,2n2(t) + k3p3t3,3n3(t)
n4(t + 1) = k4p4t4,3n3(t) + k4p4t4,4n4(t)

(3.2)

4. Model Analysis
From the following equilibrium equations,
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Figure 2: Mathematical Model for Grouper Population.





n1 = A1g(n4)n3 + B1n1

n2 = A2(n2, n3, n4)n1 + B2(n2, n3, n4)n2

n3 = A3n2 + B3n3

n4 = A4n3 + B4n4

(4.1)

with A1 = k1p1f , Ai = kipiti,i−1 (i = 2, 3, 4) and Bi = kipiti,i (i = 1, 2, 3, 4).
It is clear that 0 = (0, 0, 0, 0) is a solution of (4.1), which corresponds to the extinction equi-

librium state. Moreover, equations (4.1) is equivalent to:




n1 = α1α3g(α4n2)n2

n2 = α1α3
A2(n2, α3n2, α4n2)

1−B2(n2, α3n2, α4n2)
g(α4n2)n2

n3 = α3n2

n4 = α4n2

(4.2)

where, ∀j ∈ {3, 4}, αj =

j∏

k=3

Ak

1−Bk

and α1 =
A1

1−B1

such that for all i ∈ {1, 2, 3, 4}, (1 −
Bi) 6= 0.

From (4.2) it is obvious that only the trivial equilibrium has n2 = 0 and if n2 > 0 then the non
trivial equilibrium point has to satisfy:

1 = α1α3
A2(n2, α3n2, α4n2)

1−B2(n2, α3n2, α4n2)
g(α4n2) (4.3)
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where at equilibrium, the juvenile migration function satisfies:

k2(n2, n3, n4) = 1− α2n2

with, α2 = 1
T
(t3,2p3 + (t3,3p3 + t4,3p4)α3 + t4,4p4α4) and then,

A2(n2, α3n2, α4n2) = p2t2,1(1− α2n2) and B2(n2, α3n2, α4n2) = p2t2,2(1− α2n2)

Since the equation (4.3) is equivalent to the following second degree equation:

Cα2α4p2(t2,2 + α1α3t2,1)n
2
2 + Cα4(1− p2(t2,2 + α1α3t2,1)) + p2t2,2α2n2+ = 1− p2t2,20

then, let’s a = Cα2α4p2(t2,2 + α1α3t2,1), b = Cα4(1 − p2(t2,2 + α1α3t2,1)) + p2t2,2α2 and
c = 1− p2t2,2.

The next proposition expresses a necessary and sufficient condition for system (3.2) to possess
positive equilibrium points.

Proposition 1. System (3.2) has positive equilibrium points if and only if b ≤ −2
√

ac (see figure
3).

Moreover,

• if b = −2
√

ac then the positive equilibrium point is unique and is given as follows:

N∗ = (n∗1, n
∗
2, n

∗
3, n

∗
4) =

−b

2a
(α1α3g(−α4

b

2a
), 1, α3, α4)

• if b < −2
√

ac then there exist two positive equilibrium points, given by:

1.

N∗
1 = (n∗11

, n∗21
, n∗31

, n∗41
) =

−b−√b2 − 4ac

2a
(α1α3g(−α4

b +
√

b2 − 4ac

2a
), 1, α3, α4)

2.

N∗
2 = (n∗12

, n∗22
, n∗32

, n∗42
) =

−b +
√

b2 − 4ac

2a
(α1α3g(−α4

b−√b2 − 4ac

2a
), 1, α3, α4)

Proof. As equation (4.3) is equivalent to a second degree equation, it is easy to show the existence
of the equilibrium points when b2− 4ac ≥ 0 and by a simple calculation their formulas (see figure
3).

On the other hand, since a and c are positive quantities, positivity of these equilibrium points
needs the condition b < 0.

Indeed, if b < 0 we have:

166



S. Ben Miled et al. Mathematical modeling describing the effect of fishing

Figure 3: Intersection points between the curves of the functions F (x) = 1
1−α2x

and G(x) =

p2(t2,1α1α3
Cα4x

1+Cα4x
+ t2,2) for x ∈]0, 1/α2[ for different values of b in relation to a and c, where

a = Cα2α4p2(t2,2 + α1α3t2,1), b = Cα4(1− p2(t2,2 + α1α3t2,1)) + p2t2,2α2 and c = 1− p2t2,2.

√
b2 − 4ac ≤ −b and 0 <

−b

2a
<

1

2α2

and then,

0 <
−b−√b2 − 4ac

2a
≤ −b

2a
≤ −b +

√
b2 − 4ac

2a
<

1

α2

which proves the result in (1).

A particular case of the model (3.1) is when the number of shelter T tends to infinity i.e. where
there is no refuge limitation and then k2 is equal to 1. In this case, system (3.2) admits a unique
positive equilibrium point if and only if b < 0, where α2 = 0. Moreover, the equilibrium point
reads as follows:
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N∗
3 = (n∗13

, n∗23
, n∗33

, n∗43
) =

−b

c
(α1α3g(−α4

b

c
), 1, α3, α4)

For this particular case with no refuge limitation i.e. T → +∞ we can only assure that the
Jacobian matrix of system (3.2) when k2 = 1 is non-negative, irreducible and primitive. Then by
Perron-Frobenius theorem there is a positive strictly dominant simple eigenvalue r > 0 depending
on model parameter. If r < 1 then the equilibrium N∗

3 is locally asymptotically stable.
Another particular case is when k2(n2(t), n3(t), n4(t)) = 0,∀t ≥ 0, i.e. at each time t ≥ 0 all

juveniles leave the territory and then n2(t) = 0,∀t ≥ 0. Therefore, the system (3.2) does not admit
positive equilibrium points and becomes:





n1(t + 1) = B1n1(t) + A1g(n4(t))n3(t) ≤ B1n1(t) + A1n3(t)
n3(t + 1) = B3n3(t)
n4(t + 1) = A4n3(t) + B4n4(t)

(4.4)

If we consider now the system (4.4), we note that B1, B3 and B4 ∈ (0, 1] implies that the strictly
dominant eigenvalue of the associated matrix is less than 1 and so for any initial condition
(n1(0), n3(0), n4(0)) the corresponding solution verifies lim

t→+∞
(n1(t), n3(t), n4(t)) = (0, 0, 0).

This result induces that if k2(n2(t), n3(t), n4(t)) = 0,∀t ≥ 0, then equilibrium 0 of system (3.2)
is globally asymptotically stable.

Next, we are interested in the asymptotic behavior of system (3.2) out of these particular cases.
The trivial, or extinction, equilibrium 0 = (0, 0, 0, 0) of system (3.2) always exists. The Jaco-

bian of system (3.2) at 0 is:

M(0)PL(0) =




B1 0 0 0
p2t2,1 p2t2,2 0 0

0 A3 B3 0
0 0 A4 B4




and thus the dominant eigenvalue is always less than 1 since we have, for all i ∈ {1, 3, 4},
0 < Bi < 1 and 0 < p2t2,2 < 1, which yields the following result:

Proposition 2. The trivial equilibrium 0 = (0, 0, 0, 0) of system (3.2) is always locally asymptoti-
cally stable.

This result is a common feature of sexually-reproducing populations i.e. an initially low popu-
lation density produces the extinction of the population, displaying the Allee effect [1].

The stability analysis of the positive equilibrium point is difficult to analyze due to the huge
number of parameters. Therefore, in the next section we are presenting a set of simulations which
completes the study of those cases where the performed analysis does not help in characterizing the
asymptotic behavior of solutions. These unknown cases correspond to the situation of existence of
a positive equilibrium point for which it is not known whether it is stable or not.
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5. Numerical Results:
In this section we pursue the analysis of the stability and the asymptotic behavior of solutions of
system (3.2) by means of numerical simulations.

Firstly, we start by fixing the values of the parameters from the literature. For missing param-
eter values, we make a parameter estimation by means of the stable population with an expected
maximal exploitation rate in a territory without fishing. We do that in order to study the fishing
effect on the population on optimal condition environment. Secondly, we make a study of the
model’s robustness for these parameters. Finally, we numerically analyze the effect of the fishing
on a stable grouper population with favorable survival conditions.

5.1. Parameters values:
The mature adults are sedentary thus we assume that k3 = k4 = 1. On the other hand, as noted
in sections (2.) and (3.), the dispersion rate of immature adult, 1 − k2, depends on the number of
shelters in the territory. In this numerical study, we consider an arbitrary number of shelters, T ,
equal to 1000.

Generally for fish, the fertility rate (i.e. potentially fertilized eggs number per matting) is hard
to calculate. Indeed, this rate depends not only on female size, but also on ecological and physic-
chemical parameters that are difficult to be measured. Therefore, the fertility rate, f , is assumed to
be 2, this corresponds to a minimal state of balance in a sexual reproduction.

We assume that the mortality rate of each class is equal to the average natural mortality rate
of the entire grouper population. According to biological data [6], (mi)i≤4 are equal to 0.10.
Therefore, using 3.1., ti,i + ti+1,i = 1−mi = 0.9 and t4,4 = 0.9. Moreover, as the duration of the
young class is equal to 1 year, the time unit of our model, then t1,1 = 0 and t2,1 = 0.9.

Next, let us define τi be the limiting duration per year for each class i ∈ {1, 2, 3, 4}. Indeed,
beside the hypothesis of uniform average mortality rate, we also assume a uniform age distribution
of the population number in each class so the rate of individuals of the class i that can pass to the
class i + 1 is less than 1

τi
, for each i ∈ {2, 3}. According to the Length/Age relation (see figure

1), we have τ1 = 1, τ2 = 4, τ3 = 7 and if the maximum lifespan for grouper is 50 years, we have
τ4 = 38. Consequently, t3,2 ≤ 1

4
and t4,3 ≤ 1

7
.

Moreover, we assume a uniform size distribution of the individuals inside each class. Thus,
if N∗ = (ni

∗)i≤4 is a positive equilibrium point, the size distribution of the population at the
equilibrium point N∗, is

We are now able to fix the remaining parameters, (k1, t3,2, t4,3). For that, we will fix our
parameters such that the expected exploitation rate E is equal to the maximum exploitation rate,
Emax when the population is at a stable equilibrium state without fishing. Let us recall that the
exploitation rate corresponds to the ratio of natural mortality by all causes of disappearance from
the territory [15]. That coincides with an optimal territory in term of fisheries management.

Therefore, we look first for the stable equilibrium states without fishing. In this case, the
complete model is defined as follows,
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Young Ind. Number 1 2 . . . n∗1
Size L(0) L( τ1

n∗1
) . . . L( (n∗1−1)τ1

n∗1
)

Juvenile Ind. Number 1 2 . . . n∗2
Size L(τ1) L(τ1 + τ2

n∗2
) . . . L(τ1 + (n∗2−1)τ2

n∗2
)

Female Ind. Number 1 2 . . . n∗3

Size L(
2∑

i=1

τi) L(
2∑

i=1

τi +
τ3

n∗3
) . . . L(

2∑

i=1

τi +
(n∗3 − 1)τ3

n∗3
)

Male Ind. Number 1 2 . . . n∗4

Size L(
3∑

i=1

τi) L(
3∑

i=1

τi +
τ4

n∗4
) . . . L(

3∑

i=1

τi +
(n∗4 − 1)τ4

n∗4
)

Table 1: Population length distribution of the population at the equilibrium point N∗ =
(n∗1, n

∗
2, n

∗
3, n

∗
4), assuming a uniform age distribution and Von Bertalanffy Length/Age relation (fig-

ure 1).

Nt+1 = DNt with D = ML. (5.1)

First, we seek the parameter sets in which we have at least an acceptable equilibrium point (i.e.
n∗i > 0) of equation (5.1).

By a simple numerical analysis we found that this equation admits two positive equilibrium
points N∗

1 = (n∗i1)i≤4 and N∗
2 = (n∗i2)i≤4, for each (k1, t3,2, t4,3) ∈ [0, 1]× [0, 1

4
]× [0, 1

7
]. Moreover,

for these parameter ranges, the equilibrium solutions satisfy n∗i1(k1, t3,2, t4,3) < 1 and
n∗i2(k1, t3,2, t4,3) > 1. Therefore, for the maximization of the exploitation rate we choose the
second equilibrium point N∗

2 .
Next, let the expected exploitation rate, E, be the ratio of natural mortality, m, compared to Z

the number of exploitable individuals at equilibrium ( i.e. juvenile, female and male) who left the
territory by natural mortality and dispersion i.e.

E =
m

Z

According to the work of Beverton and Holt [3] , we can approach Z by:

Z = k(L∞ − Lm)/(Lm − Lc).

where,

• L∞ is the maximum observed size equivalent to the maximum lifespan and k the mean
annual growth rate of the fish specie (see figure 1).

• Lm the average length of the population at the equilibrium point,

• Lc the median size of the population.
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For the calculation of Lm and Lc, we use the population length distribution of the population
at an equilibrium point, see table (5.1.).

Finally, we build a grid on [0, 1] × [0, 1
4
] × [0, 1

7
] ((k1, t3,2, t4,3) ∈ [0, 1] × [0, 1

4
] × [0, 1

7
]), and

analyze the spectrum of the Jacobian at N∗
2 and seek Emax on each vertex of the grid. We prove

that the maximum expected exploitation rate for a stable non trivial equilibrium point is obtained
for,

(t1,1, t2,2, t3,3, t4,4, t2,1, t3,2, t4,3, k1, k3, k4) = (0, 0.80, 0.81, 0.9, 0.9, 0.10, 0.09, 0.7, 1, 1)

and we have Emax = 0.19 and N∗
2 = (230, 314, 165, 148).

5.2. Sensitivity analysis
A model is known as insensitive to small variations of parameters for which it was optimized, if
this model produces small variations in the result when subject to small modifications of these
parameters.

In our case, we will study the sensitivity of the model with respect to parameters k1, t3,2 and
t4,3 in such a way that the exploitation rate remains maximum.

The technique we used consist in fixing at each time one of the three parameters at its optimal
value, i.e. for which the exploitation rate, E, is maximum and to make the two others vary on a
normalized range of variations, [0, 1], in order to compare the exploitation rate and the maximum
exploitation rate, Emax. For that, first, we fix the transition rate, t4,3, at its optimal value t∗4,3.
Next, we study the variation of (Emax − E) for k1 ∈ [k∗1 − 0.05k∗1, k

∗
1 + 0.05k∗1] and t3,2 ∈

[t∗3,2 − 0.05t∗3,2, t
∗
3,2 + 0.05t∗3,2] where, k∗1 and t∗3,2 correspond respectively to the optimal values of

the young dispersion rate and the transition rate of the female class to the male class. Second,
we fix the young dispersion rate, k1, at k∗1 and move, t3,2 in [t∗3,2 − 0.05t∗3,2, t

∗
3,2 + 0.05t∗3,2] and

t4,3 in [t∗4,3 − 0.05t∗4,3, t
∗
4,3 + 0.05t∗4,3]. Third, we fix t3,2, in its optimal value and move k1 in

[k∗1 − 0.05k∗1, k
∗
1 + 0.05k∗1] and t4,3 in [t∗4,3 − 0.05t∗4,3, t

∗
4,3 + 0.05t∗4,3].

It can be noticed from figures (4(a)) and (4(b)) that for all k1 ∈ [k∗1 − 0.05k∗1, k
∗
1 + 0.05k∗1] the

curve Emax −E behaves in a single manner so that the exploitation rate is insensitive with respect
to parameter k1 in the neighborhood of k∗1 . On the other hand, we remark from figures (4(a)) and
(4(c)) that the curve shows a sensitivity for the transition rate t3,2 on the right side of t∗3,2 more than
on left side. This sensitivity is greater, compared to t4,3. Indeed, the growth is linear starting from
t∗3,2 (Figures 4(b) and 4(c)). In all cases, (Emax − E)/Emax is less than 2 10−2.

5.3. The effect of the fishing parameters:
In this paragraph, we will study the effect of fishing on a stable population of groupers in favorable
survival conditions. The fishing rates 1 − pi constitute important parameters of the model since
they characterize the fishing effort on the population.

As was discussed in subsection 2.2., the fishing affects especially the adult class. So we suppose
in the sequel that there is no fishing for immature classes, i.e. p1 = p2 = 1, and we perform

171



S. Ben Miled et al. Mathematical modeling describing the effect of fishing

(a) t3,2 = t3,2
∗. (b) t4,3 = t4,3

∗.

(c) k1 = k1
∗.

Figure 4: The variation of (Emax − E) for t3,2 = t3,2
∗ = 0.05, t4,3 = t4,3

∗ = 0.09 and k1 = k1
∗ =

0.7.
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numerical simulations on female and male fishing, p3 and p4, respectively. For that we will perturb
the non trivial equilibrium point of the model corresponding to equation (5.1).

In the first plot of Fig 5, we analyze the effect of a higher female fishing effort bigger than 0.7
and for different value of male fishing efforts on the different classes of the population. We can
notice from these figures that for all p3 ∈ [0.7, 1] and p4 ∈ {0.1, 0.5, 1}, the individuals number for
each subclass increases with female fishing p3 and that the growth coefficient increases with male
fishing p4.

Now considering a fixed value of p3 ∈ {0.8, 0.9, 1} and for all p4 ∈ [0.1, 1] (figure 6), the
maximum of the individual number of each class, except the male ones, is reached for p3 = 1 and
p4 < 1. We observe the same phenomenon for the total population number at the equilibrium state
N∗

2 , Tp (figure 7) and for the exploitation rate, E (figure 8). This phenomenon can be explained
by the fact that male fishing favors the integration of immature adults in the territory. Moreover,
as the male number is smaller than the total number of individual from the other classes, the total
population dynamical behavior likes female one. This leads to an asymmetry of the effect of fishing
on the total population.

6. Discussion and conclusion
In Tunisia, the grouper is subjected to two types of fishing, one known as ”traditional”, and the
other known as ”recreational” fishing or ”sport-fishing”. Traditional fishing uses hand-lines, lines
of more than 100 hooks; the fishing effort depends on the number of hooks by boat. This fishing
affects primarily the small females. The other type of fishing is practiced either as a sport or
by some sponge fishermen as a wage complement. It affects only the large individuals, mainly
the large dominant males or the large females. This type of fishing destabilizes the population,
especially if the females are fished before reproduction. On the other hand, as we proved in this
paper, male fishing favors the integration of the young in the territory, which implies that, without
females fishing, the maximum number of individuals in the total population is reached when the
male fishing rate, (1− p4), is equal to 0.5 (figure 6). Consequently, the grouper stocks may be less
sensitive to the removal of large individuals (male) if female population are totally protected. This
result has already been observed by Alonzo and Mangel [2] for sex-changing fish.

On the other hand, even if there is no fishing pressure on the males, if more than 30% of the
female classes are fished, the grouper population is predicted to die out. This shows that the grouper
population may be vulnerable to fishing. Size selective fisheries have the potential of drastically
reducing reproductive rates and thus the sex ratio, the size-dependent fecundity and the spawning
in aggregation size, as was also observed in [2]. This explains that one of the most important
dynamical characteristics of the grouper, the fact that it is a protogynous hermaphrodite.

From the numerical results, we note that fishing does not disturb the demographic structure
of the population since the population pyramid at the equilibrium point solution keeps always an
expansion aspect, i.e. broad base and narrow top. This is in agreement with the observations made
by Chauvet [9] on the demographic structure of the grouper populations present in the southern
part of the Western Mediterranean basin and on the pacific ocean. Chauvet showed that, in the
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Figure 5: Effect of fishing on the grouper population for p3 ∈ [0.7, 1], p4 ∈ {0.1, 0.5, 1}.
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Figure 6: Effect of fishing on the grouper population for p4 ∈ [0, 1], p3 ∈ {0.8, 0.9, 1}.
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Figure 7: Effect of male fishing on the total population, Tp for p3 = 1 and p4 ∈ [0, 1].
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Figure 8: Effect of fishing on the exploitation rate for (p3, p4) ∈ [0.7, 1]× [0.1, 1].
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Mediterranean sea, the number of Epinephelus marginatus decreases from south to north, but with
a same population pyramid type. Chauvet suggested that the change in the demographic patterns
of these protogynous species is the result of the progressive cooling of the Mediterranean waters
from south to north [9] and that the structure of the population pyramid does not depend on fishing,
but rather on the survival conditions. Our work comes to support this hypothesis.

One of the most complex characteristics of the grouper is its hermaphroditic nature. Generally
in the literature [12], the sexual inversion of Epinephelus marginatus is seen as a spontaneous ec-
togenic mechanism, i.e. for a given size (or a given age) with a certain individual variability. The
optimal age of sexual inversion can be the result of selection and evolution, and thus be an adapta-
tion to the average mating group size over many generations. On the other hand, the observations
made by Chauvet [9] plead for a different system, in which the sexual inversion would not be an
inevitable process, but would rather depends on social factors, such as the demographic density, the
size (or age) group ratios or the sex ratio. So, the sex inversion is fixed neither during evolution nor
ontogeny, but remains flexible throughout adult life and can be adjusted to current environmental
conditions. In this case, the inversion is jeopardized every year, as well as the succession from
female to male classes.

In our case, we assume a fixed size inversion, i.e. the social factors are not taken into account.
Therefore, it would be interesting to develop a new model that considers social factors in the sex
changing mechanism and to compare both models to experimental or observation data, in order to
assess the social impact on the population dynamics.
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(edit.), Les Espèces Marines Protéger en Méditerranée. GIS Posidonie pub., France, 1991,
255–275.

[7] C. Chauvet. Calcul par otolimetrie de la relation long. T-Age d’Epinephelus guaza (Linnaeus,
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