

Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms?

Josef Finsterer, Sinda Zarrouk-Mahjoub

▶ To cite this version:

Josef Finsterer, Sinda Zarrouk-Mahjoub. Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms?. Journal of Translational Medicine, 2016, pp.182. 10.1186/s12967-016-0939-0. pasteur-01467096

HAL Id: pasteur-01467096 https://riip.hal.science/pasteur-01467096

Submitted on 14 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

COMMENTARY

Open Access

Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms?

Josef Finsterer^{1*†} and Sinda Zarrouk-Mahjoub^{2†}

Keywords: Mitochondrial DNA, Chronic fatigue syndrome, Exercise intolerance, Exhaustion, Respiratory chain

Letter to the Editor

With interest we read the article by Billing-Ross et al. [1] about 193 patients with chronic fatigue syndrome (CFS) diagnosed according to the Fukuda or Canadian Consensus criteria and undergoing sequencing of the mtDNA, the DePaul Symptom questionnaire and the Medical Outcome Survey Short Form-36. The study showed that CFS is associated with mtDNA haplogroups J, U and H, that 8 mtDNA single nucleotide polymorphisms (SNPs) were associated with 16 symptom categories, and that three haplogroups were associated with six symptom categories [1]. We have the following comments and concerns.

The main limitation of this study is that only the mtDNA was investigated for sequence variants. Since it is well-known that mitochondrial disorders (MIDs) may be also caused by mutations in nDNA-located genes, particularly in children [2], disease-causing mutations or SNPs facilitating the development of CFS may have been missed. Furthermore, MIDs may not only be due to respiratory chain dysfunction but also due to disruption of other mitochondrial pathways, such as the beta-oxidation, the hem synthesis, the calcium handling, the coenzyme-Q metabolism, or the urea cycle. There is also consensus that investigations of mtDNA mutations or SNPs in mtDNA from lymphocytes may not be constructive since some mutations may not be present or

*Correspondence: fifigs1@yahoo.de

[†]Josef Finsterer and Sinda Zarrouk-Mahjoub contributed

equally to this work

¹ Krankenanstalt Rudolfstiftung, Postfach 20, 1180 Vienna, Austria Full list of author information is available at the end of the article

A further limitation of the study is that neither immune-histological nor biochemical investigations of the muscle biopsy were carried out. Immune-histological investigations of the muscle biopsy may show NADH-, SDH-, or COX-deficiency. Biochemical investigations of the muscle homogenate may show reduced activity of one or several respiratory chain complexes or coenzyme-Q deficiency [4]. Morphological and functional studies are essential not to miss dysfunction of the respiratory chain or other mitochondrial pathways.

We also should be informed how causes of fatigue, exhaustion, and exercise intolerance other than CFS, were excluded. How many patients had muscle disease other than a MID, which may be also associated with fatigue, such as muscular dystrophies or congenital myopathies [5, 6]? How many had hypothyroidism, sleep apnea syndrome, malignancy, electrolyte disturbances, adrenal dysfunction, or pituitary insufficiency? Were any of the routine laboratory parameters abnormal in the 193 patients? How many had creatine-kinase (CK) elevation or lactacidosis? How many presented with features other than fatigue which could be attributed to a MID? How many had epilepsy, cognitive impairment, extra-pyramidal disease, or psychiatric disease? How many had a cataract, glaucoma, retinitis, or chronic progressive external ophthalmoplegia (CPEO)? It would be interesting to known if any of the patients had cardiac disease, gastrointestinal disease, renal impairment, endocrine disturbances, or lung disease indicative of a MID?

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Overall, this interesting study may profit from providing more information about the individual patients and their relatives and from carrying out more comprehensive morphological, functional, and genetic studies not to miss metabolic defects, which may be due to sequence variations in nDNA located mitochondrial genes. There is also a need to exclude cardiac, pulmonary, or systemic disease not to miss differentials of CSF.

Author details

¹ Krankenanstalt Rudolfstiftung, Postfach 20, 1180 Vienna, Austria. ² Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia.

Competing interests

The authors declare that they have no competing interests.

Received: 5 May 2016 Accepted: 3 June 2016 Published online: 18 June 2016

References

- Billing-Ross P, Germain A, Ye K, Keinan A, Gu Z, Hanson MR. Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/ chronic fatigue syndrome. J Transl Med. 2016;20(14):19. doi:10.1186/ s12967-016-0771-6.
- Desguerre I, Hully M, Rio M, Nabbout R. Mitochondrial disorders and epilepsy. Rev Neurol (Paris). 2014;170:375–80.
- Pallotti F, Binelli G, Fabbri R, Valentino ML, Vicenti R, Macciocca M, Cevoli S, Baruzzi A, DiMauro S, Carelli V. A wide range of 3243A>G/tRNALeu(UUR) (MELAS) mutation loads may segregate in offspring through the female germline bottleneck. PLoS One. 2014;9:e96663. doi:10.1371/journal. pone.0096663.eCollection2014.
- Delonlay P, Rötig A, Sarnat HB. Respiratory chain deficiencies. Handb Clin Neurol. 2013;113:1651–66.
- Hedermann G, Vissing CR, Heje K, Preisler N, Witting N, Vissing J. Aerobic training in patients with congenital myopathy. PLoS One. 2016;11:e0146036. doi:10.1371/journal.pone.0146036.
- Pangalila RF, van den Bos GA, Bartels B, Bergen M, Stam HJ, Roebroeck ME. Prevalence of fatigue, pain, and affective disorders in adults with duchenne muscular dystrophy and their associations with quality of life. Arch Phys Med Rehabil. 2015;96:1242–7.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services

Submit your manuscript at www.biomedcentral.com/submit

• Maximum visibility for your research

