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Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known
that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation
of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core
and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different
levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the
expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified
sirtuinsmore prone to degradation by the proteasome.Oxidative posttranslationalmodifications have been identified in vitro and in
vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interactionwith other proteins,
like SIRT1with its protein inhibitorDBC1 resulting in a net increase of deacetylase activity. In the sameway,manipulation of cellular
NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against
obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of
sirtuins to further design adequate pharmacological interventions.

1. Introduction

Sirtuins are a conserved family of enzymes, originally defined
as histone deacetylases (class III HDAC) [1].They deacetylate
not only histones but also other proteins. In addition, they
catalyze the hydrolysis of lysines modified with longer acyl
chains (deacylase activity) [2]. Unlike classes I, II, and IV
HDAC that utilize zinc for catalysis, sirtuins use a complex
mechanism depending on cofactor NAD that already dis-
closes a fine-regulated activity.

Since the discovery of yeast Sir2 (Silent Information
Regulator 2) 30 years ago [3], the founding member of
the family, an intensive research went on to elucidate the
biological functions of sirtuins, especially after the early
found connection of sirtuins with lifespan [1, 4]. The number
of publications grew exponentially in the search of potential
activators or inhibitors of sirtuins that fight against metabolic
disorders, cancer, and even aging [5].

In S. cerevisiae, besides Sir2, four more sirtuins were
described, Hst1–4. In C. elegans, four homologs of yeast
Sir2 were named Sir2.1–2.4, whereas seven paralogs were
described in mammals, SIRT1–7. Phylogenetic analysis
groups the mammalian SIRT1, SIRT2, and SIRT3 as subclass
I which shows close homology to yeast Sir2, SIRT4, and
SIRT5 as subclasses II and III, respectively, and SIRT6-SIRT7
in subclass IV [6].

The seven mammalian SIRT differ in sequence (although
they all share a conserved catalytic core), in subcellular
location, enzyme activity, and substrate specificity. The list
depicted in Table 1 is by no means comprehensive since new
in vivo substrates and specificities are discovered every day.
The most studied human isoform is SIRT1, a nuclear protein
reported to regulate critical physiological processes and
associated with chronic inflammatory diseases andmetabolic
dysfunctions like diabetes, obesity, aging, and even cancer
[7].
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(a)

His 363

(b)

Figure 1: Structure of sirtuins. (a) Crystal structure of a partial sequence of hSIRT1 (PDB 4KXQ) with bound substrates, acetylated peptide,
and NAD.The catalytic core is depicted in yellow with the Zn2+ binding domain. (b) Zoom of catalytic site with the catalytic histidine colored
in yellow.

This review focuses on the effect of oxidative stress on
structure and activity of sirtuins and the biological conse-
quences of their redox regulation.Understanding the role and
mechanismof action of sirtuins in the context of a pathophys-
iological inflammatory condition will help to identify novel
interventions to manage important chronic diseases.

2. Sirtuins Structure

Crystal structures of sirtuins from archaea to eukaryotes
show a central catalytic core comprised of 245 residues. The
core is made up of a large domain containing a Rossmann
fold typical of NAD-dependent proteins and a small domain
containing a Zn2+ ribbonmotif, separated by a cleftwhere the
peptide substrate binds (Figure 1).TheNADmolecule adopts
an extended conformation binding to a grove between the
two domains with the adenine base facing the large domain
and the nicotinamide group close to the small domain
(Figure 1). SIRT1 is the biggest isoform with extended N- and
C-terminals very flexible, unstructured, which offers more
sites of activity modulation (posttranslational modifications,
interaction with proteins and ligands).

The Zn2+ binding site is composed of three antiparallel
beta strands containing two Cys-X-X-Cys conserved motifs
separated by 15–20 residues that coordinate a single zinc
ion that has an important structural role. It has long been
known that mutation of these cysteine residues by alanine
causes loss of activity [8]. Although the zinc tetrathiolate is
fairly exposed, only high concentrations of zinc chelator were
able to disrupt it with the corresponding loss of activity [9].
Another report on P. falciparum Sir2 obtained the inactive
apoenzyme by treatment with potent zinc chelator and
restored activity upon reconstitution with exogenous zinc
chloride [10].

The zinc ion is located in the small domain, far away
from the NAD binding pocket, excluding the possibility of
participation in the catalysis, in contrast with other HDAC
types where zinc is part of the catalytic mechanism [11].

3. Enzymatic Activities of Sirtuins

Sirtuins are defined as protein deacylases. They catalyze
the reaction depicted in Figure 2 using NAD as a cofactor,
yielding the deacylated protein, nicotinamide (that displays
inhibition by product), and acylated ADPR as final products.

Kinetic studies and isotope exchange indicate that sirtuins
first bind the acetylated substrate, followed by NAD binding
to forma ternary enzyme complexwhere the carbonyl oxygen
of the acetyl group attacks ribose C1 to formO-alkylamidate
intermediate. Crystal structures of binary complexes were
solved between Sir2-like enzyme and NAD [9], or ADP-
ribose [12], or acetylated p53 [13]. Moreover, the crystal
structure of a ternary complex was reported between yeast
Hst2, an acetylated histone peptide, and a nonhydrolyzable
NAD analog [14]. Crystal data confirm the peptide substrate
binds in a narrow channel that positions the acylated lysine
residue near the nicotinamide ring of NAD (Figure 1). Upon
peptide binding, a conformational change on the NAD site
must occur to facilitate the nucleophilic attack on ribose
C1 to cleave the nicotinamide-ribosyl bond, first step in the
catalytic pathway. A conserved histidine residue (H363 in
hSIRT1) has been identified as critical for the catalysis, first
acting as a general base hydrogen bonded to 3 OH-ribose
and, then, as a general acid protonating the lysine residue in
the last step of the catalysis.

Besides protein deacetylation, it was early recognized
that sirtuins can also catalyze ADP ribosylation of a protein
acceptor (or the enzyme itself) via a similar mechanism
(Figure 2) [14–17].

More recently, it has been found that some sirtuin
isoforms previously considered poor deacetylases are actually
good deacylases; that is, they catalyze the hydrolysis of lysine
amides derivatized with a longer-chain carboxylic acid, for
example, succinate or malonate. Indeed, SIRT5 functions as
desuccinylase or demalonylase [18], whereas SIRT6 functions
as demyristoylase [2, 19]. Moreover, SIRT6 deacetylase activ-
ity has been recently shown to be regulated by free-fatty
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Figure 2: Scheme of reactions catalyzed by sirtuins. Deacetylation is the most common reaction catalyzed by sirtuins, but some sirtuins
catalyze deacylation of other posttranslational lysine modifications and mono ADP ribosylation. NAM = nicotinamide, OAADPR = O-
acetyl-ADP-ribose.

acids in vitro, opening the possibility that fatty acids might
be acting as endogenous regulators of sirtuin activity in vivo
[2].

Acetylation is an important posttranslational modifica-
tion even outside chromatin.The acetylome shows that many
proteins are acetylated as a mechanism of regulation of
cellular function, and it is even possible that is as common in
cellular life as phosphorylation [20, 21]. Comparative studies
onDrosophila and humans have demonstrated that acetylated
lysines are highly conserved [22, 23]. An acetylome peptide
microarray has been described that reveals new deacetylation
substrate candidates for all sirtuin isoforms [24].

4. Sirtuins and Oxidative Stress

Asmentioned above, increasing evidence supports the role of
sirtuins in the regulation of cellular homeostasis, in particular
metabolism and inflammation [25, 26]. During conditions
of metabolic stress, like obesity and metabolic syndrome, an
oxidative stress environment is created, mainly due to a state
of chronic inflammation. Based on the key role of sirtuins in
the regulation of metabolic responses [27, 28], it is pertinent
to ask how changes in the redox status of the cells affect the
activity of sirtuins and what are the biological consequences
of these alterations.

Oxidative stress, considered as an overwhelmed genera-
tion of reactive species (ROS/RNS) or a general disruption of

redox cellular homeostasis [29, 30], can affect the activity of
sirtuins at different levels:

(1) Inducing or repressing the expression of SIRT gene.
(2) Posttranslational oxidative modifications of SIRT.
(3) Altering SIRT-protein interactions.
(4) Changing NAD levels.

4.1. Changes in Sirtuin Expression during Oxidative Stress.
It has been observed that mild oxidative stress conditions
induce the expression of SIRT1, changing its activity and thus
affecting SIRT1 targets that are involved in the response
to changes in the redox state of the cell [31–33]. The first
major SIRT1 substrate identified was p53, a transcription
factor involved in activating antioxidant genes like SOD2
(superoxide dismutase 2, MnSOD) and GPx1 (glutathione
peroxidase) [34]. Another redox transcription factor deacety-
lated by SIRT1 (as well as SIRT2 and SIRT3) is FOXO3a
which induces an antioxidant response via SOD2 and catalase
expression [35–40]. PGC1𝛼, a known substrate of SIRT1, is
reported to regulate expression of mitochondrial antioxi-
dants like SOD2 [41–43]. SIRT1 can deacetylate p65 NF𝜅B
subunit diminishing its activity and, thus, the production
of proinflammatory cytokines [44–46]. In addition, upon
increased production of ROS at the mitochondria, induction
of SIRT3 was observed [47]. It was reported that SIRT3
deacetylates and thus activates SOD2 reducing oxidative
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stress in the mitochondria [48]. In adult mouse hearts, SIRT1
was significantly upregulated (4-fold) in response to oxidative
stress (paraquat injection) and, similarly, 3-fold increase in
SIRT1 levels was observed in old versus young monkey
hearts [49]. In the same way, modest overexpression of SIRT1
retarded age-dependent changes in the heart of transgenic
mice [49]. Low levels of H

2
O
2
promoted deacetylation of the

tumor suppressor protein PLM in HeLa cells via SIRT1 and
SIRT5 [50].

On the contrary, exposure to high levels of H2O2 or harsh
oxidative stress resulted in increased proteasomal degradation
of SIRT1, desumoylation, and enzyme inactivation that leads
to apoptosis [51]. Human monocytes exposed to high dose
of H
2
O
2
(250 𝜇M, 24 h) resulted in a significant decrease

in SIRT1 activity (measured as levels of acetylated p53) and
lower SIRT1 gene and protein expression [52]. Human lung
epithelial cells exposed to oxidants (H

2
O
2
, aldehyde-acrolein,

and cigarette smoke extract) presented decreased levels of
SIRT1 concomitant with decreased SIRT1 activity [53]. A
recent work on human endothelial cells showed no effect of
low doses of H

2
O
2
but a drastic drop to 50% SIRT1 activity

after exposure to 100 𝜇M H
2
O
2
for 30min, along with a

decrease in free thiol content of SIRT1 [54].
An interesting view suggested by Tong et al. [55] is

that active sirtuins provide an adequate level of 𝑂-acetyl-
ADP-ribose (OAADPR) (product of the reaction catalyzed
by sirtuins with deacetylase activity, Figure 2) that readily
converts to ADP-ribose and both may function as cellular
signals. Increased ADPR/OAADPR levels protect cells from
oxidative stress via two mechanisms: (1) inhibition of Com-
plex I of the mitochondrial electron transport chain with
concomitant lower production of ROS and (2) inhibition of
glyceraldehyde-3-phosphate dehydrogenase, central enzyme
in glycolysis, diverting glucose to the pentose phosphate
pathway with the concomitant increase in NADPH, main
reductant for detoxifying ROS enzymes.

4.2. Posttranslational Modifications (PTM) of Sirtuins. Phos-
phorylation was the first PTM found in SIRT1. SIRT1 is
the most studied mammalian isoform although a crystal
structure of the whole protein is not available and we rely
on a simulation model [56]. Apart from the central catalytic
structured core, SIRT1 has long C- and N-terminal domains
which are flexible and disordered, not present in the other
SIRT structures, and considered potential sites of enzyme
regulation. Early mass spectrometry (MS) analysis detected
several serine/threonine phosphorylation sites at the N- and
C-terminal domains of SIRT1 [57]. Several kinases are known
to phosphorylate SIRT1, and many of them are regulated by
oxidative stress. CdkI (also known asCdc2), a kinase involved
in cell cycle progression and regulated by oxidative stress
[58], phosphorylates SIRT1 in its C-terminus domain (T530
and S540) [57]. Mutations of these two sites on SIRT1 affect
cell cycle progression [58]. SIRT1 is also phosphorylated by
Casein Kinase II (CKII) in serines S154, S649, S651, and S683
[59]. CKII activity is tightly regulated by oxidative stress [60],
and, indeed, ionizing radiation activates CKII, leading to
SIRT1 phosphorylation and activation [59]. Phosphorylation
of SIRT1 in different residues by AMPK has also been shown

to regulate its activity mainly by affecting binding to its
protein inhibitor DBC1 [61, 62]. AMPK is a key sensor and
regulator of redox state of the cell and its biological activity
is regulated by oxidative stress [63], although no direct link
between oxidative stress and SIRT1 involving AMPK has
been shown until now. Finally, phosphorylation of SIRT1
at different C-term residues has been shown to change its
enzymatic activity. SIRT1 phosphorylation (T530) triggers a
conformational change that increases its deacetylase activity
[64–66]. Also, PKA-dependent phosphorylation of SIRT1
(S434) stimulates its activity [67]. Sumoylation at the C-
terminal domain of SIRT1 (K734) has been detected and
shown to increase activity as well [51]. Phosphorylation sites
at the C-terminal of SIRT2 (S368, S372) were also reported to
regulate enzyme function [68, 69]. In the case of SIRT6, phos-
phorylation at T294 and S303 were identified in a proteomic
analysis, with no report on functional consequences [70, 71].
Another report shows that phosphorylation of SIRT6 at S338
by AKT leads to its degradation in breast cancer cells [72].
Moreover, mutation of that phosphorylation site made breast
cancer cells more sensitive to chemotherapeutic agents [72].

Oxidative modifications of sirtuins are less well studied.
Treatment of recombinant hSIRT1 with nitrosoglutathione
(GSNO) was first reported [73] to modify C67 (located in
the noncatalytic C-terminal domain) by S-glutathionylation,
with no effect on basal deacetylase activity but loss of
stimulation by resveratrol in vitro (although it has to be
mentioned that the activity was measured using the fluori-
metric assay that it is known to yield an artefactual activation
of SIRT by resveratrol [74]). In this work [73], differential
alkylation revealed 5 out of the 19 cysteines on human SIRT1
as reactive towards GSNO. Three of those five modified
cysteines are solvent exposed residues (C67, C268, and C623)
as indicated in the computer generated model of human
SIRT1 structure [56]. However, in that same year 2010, it
was published that treatment of SIRT1 with GSNO resulted
in nitrosylation (not glutathionylation) of the enzyme with
loss of deacetylase activity [75]. The residues modified (C387
and C390 from the mouse ortholog that coordinates the
zinc ion) were different from those proposed previously [75].
These authors reported that treatment of intact HEK293 cells
with GSNO resulted in nitrosylation of SIRT1 (SIRT1-SNO)
via transnitrosylation from GAPDH-SNO translocated to
the nucleus [75]. Nitrosylation of nuclear SIRT1 inhibited
deacetylation of PGC1𝛼 in HEK293 cells. Mutational analysis
on transfected cells with mouse SIRT1 plasmids identified
C387 and C390 from the zinc tetrathiolate motif as the
sites of S-nitrosylation. Surprisingly, C363 and C366 that
also participate in zinc coordination were not susceptible
to transnitrosylation. More recently, C371 and C374 from
hSIRT1 (corresponding to C363 and C366 in mSIRT1) have
been identified as the cysteines reduced by APE/Ref-1 to
stimulate endothelial SIRT1 activity (although the other two
cysteines involved in zinc ion coordination were not tested)
[54].

When HepG2 cells transiently transfected with mouse
SIRT1 WT were treated with increasing concentrations of
CysNO or H

2
O
2
, decrease in p53 deacetylase activity was

observed [76]. However, when cells were transfected with
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mSIRT1 mutants C61S, C318S, and/or C613S, the deacetylase
activity was initially higher than with WT overexpression
and less susceptible to oxidants [76]. The authors suggested
reversible oxidative modification of SIRT1 forming GSH-
adducts with these cysteine residues that are reverted by
glutaredoxin 1. In this case, the reported cysteine residues
oxidatively modified are not part of the Zn-binding motif.

Treatment of human epithelial cells with alkylating agent
NEM diminished SIRT1 protein levels and free cysteine
residues on immunoprecipitated SIRT1, although the specific
residues modified were not identified [53].

Increased protein carbonylation of SIRT3 was found
in liver mitochondrial extracts of ethanol-consuming mice
[77]. The authors identified in vitro covalent modification
of rSIRT3 by the electrophilic compound 4-hydroxynonenal
at C280 (critical zinc-binding cysteine residue), resulting in
inhibition of rSIRT3 activity [77].

More recently, mapping protein S-sulfenylation in cells
treated with exogenous H

2
O
2
as well as endogenous H

2
O
2

(EGF treatment in A431 cells), SIRT6 was found among the
most highly and consistently S-sulfenylated proteins [78].
Cysteine C18, a highly conserved residue close to the amino
terminus, was identified as Cys-SOH that could form a
covalent complex with HIF1𝛼 via disulfide bond, suggest-
ing SIRT6-mediated redox control of HIF1𝛼 transcriptional
activity [78].

Even though sirtuins do not have critical cysteine residues
that participate in themechanismof catalysis,modification of
cysteine residues affects their activity, because it alters either
the enzyme structure or the interaction with other proteins.
The four cysteines in the zinc tetrathiolate motif, highly
conserved, are essential for having a properly folded enzyme;
thus, mutation of these cysteines to serine, not surprisingly,
diminished deacetylase activity [54].

Another PTM (tyrosine nitration) on SIRT6 was recently
reported [79]. Treatment of recombinant SIRT6 with the
peroxynitrite donor SIN-1 revealed nitration of the enzyme
and diminished activity.The authors identified tyrosine Y257
as one of the amino acid residues modified and mutation
Y257F causes loss of deacetylase activity and susceptibility to
nitration by SIN-1. Nitrated SIRT6 was also found in retina in
a model of endotoxin-induced retinal inflammation [79].

4.3. Regulation of Sirtuins by Protein-Protein Interaction
duringOxidative Stress. Oxidative stress regulates the activity
of different sirtuins by altering their binding to regulatory
proteins. From all sirtuins, the most extensively studied in
terms of regulation by protein-protein interaction is SIRT1.
The main protein regulators of SIRT1 described so far are
DBC1 (deleted in breast cancer 1) [80] and AROS (active
regulator of SIRT1) [81], and both have been involved in
SIRT1-mediated response to oxidative stress [81, 82]. In the
case of AROS, it was shown that its knock-down decreases
SIRT1-mediated response to oxidative stress in cells, although
it is not clear whether the protein plays an active role in
such response or it is binding to SIRT1 the critical event.
Oxidative stress also alters the interaction of SIRT1 with
its protein inhibitor DBC1. Oxidative stress promotes phos-
phorylation of DBC1 (Thr454) by an ATM/ATR-dependent

mechanism, increasing its affinity for SIRT1 and leading to
sirtuin inhibition [82]. Interestingly, in mice, both obesity
and aging [83, 84] promote SIRT1 binding to DBC1 [80],
leading to a decrease in SIRT1 activity. Finally, it was shown
recently that during oxidative stress SIRT1 can be inactivated
by cytoplasmic sequestration and localization into caveolae
by direct binding to caveolin-1 [85].

Thus, many different mechanisms might be operating to
regulate SIRT1 activity during oxidative stress.

4.4. Alterations of Intracellular NAD Levels and Sirtuin
Regulation during Oxidative Stress. NAD availability is key
in the regulation of all sirtuins [86]. In fact, it has been
shown that NAD levels decline during aging, obesity, and
other metabolic diseases [87], affecting the activities of
sirtuins in different tissues. Importantly, interventions that
prevent NAD decline in tissues protect against metabolic
and age-related diseases [87–91]. Genetic deletion [90] and
also pharmacological inhibition of the protein CD38 [92],
the main NAD glycohydrolase in mammalian tissues [92],
activate SIRT1 [93] and protect against obesity and metabolic
syndrome [90]. Similar results were found by inhibition of
other major NAD-consuming enzymes in tissues like PARP-
1 [91]. In fact, SIRT1 and PARP-1 activities can influence
each other, since it has also been reported that SIRT1 can
deacetylate PARP-1, decreasing its activity [94]. Furthermore,
pharmacological treatment withNADprecursors, like nicoti-
namide mononucleotide (NMN) or nicotinamide riboside
(NR), prevents NAD decline and protects against many
aspects ofmetabolic syndrome, including glucose intolerance
[87, 88]. Altogether, these results open the possibility of using
NAD therapy for the treatment of metabolic and age-related
diseases.

It is well established that aging and also metabolic
disorders like obesity lead to an increased oxidative stress
in tissues. In addition, it has been shown that NAD decline
inversely correlates with oxidative stress during aging [95]
and that oxidative stress negatively impacts onmitochondria,
leading to NAD depletion in the matrix [96]. Interest-
ingly, caloric restriction, an intervention shown to increase
healthspan and to prevent metabolic syndrome, decreases
oxidative stress leading to increased NAD levels and improv-
ing mitochondrial function by SIRT3-mediated increase in
SOD2 activity [48].

5. Sirtuins as Pharmacological Targets for
Metabolic and Age-Related Diseases

There has been considerable debate about pharmacological
sirtuin activation and its effect on metabolism, cancer, and
aging. The original observation that the polyphenol resver-
atrol and other small molecules (STACs, for sirtuin acti-
vating compounds) extend lifespan in S. cerevisiae through
activation of Sir2 and that resveratrol could also activate
human SIRT1 [97] puts sirtuins on the spot as ideal pharma-
cological targets for the treatment of aging and age-related
diseases. Early on, an intense debate started about the role
of resveratrol and other STACs as direct SIRT1 activators,



Oxidative Medicine and Cellular Longevity 7

since such activation appeared to rely on a specific activity
assay and could not be reproduced by other means in vitro
[98]. Since then, many molecular mechanisms have been
proposed for SIRT1 activation by resveratrol in vivo, including
direct SIRT1 activation [97, 99], activation of the AMPK-
SIRT1 axis with NAD levels linking AMPK activation to
SIRT1 activation [100], activation of the AMPK-SIRT1 axis
through SIRT1 phosphorylation and dissociation from DBC1
[61], and SIRT1 activation through increase in cAMP levels by
phosphodiesterase inhibition [101].

Thedevelopment of novel, structurally different STACs by
Sirtris Pharmaceuticals showed that SIRT1 activation by these
new molecules (SRT1720, SRT1460, and SRT2183) prevents
metabolic diseases in mice [99], and in the case of SRT1720,
it was later shown that it also increases healthspan and
lifespan inmice [102, 103]. Interestingly, the debate rose again
about the specificity of these STACs for SIRT1 [104]. Recent
research, however, has provided new evidence showing that
these STACs, and even more potent new generations (STAC-
5, STAC-9, and STAC-10), are indeed SIRT1 activators [105,
106].

Although the mechanism of action of resveratrol and
other STACs may still need to be further investigated, it is
clear that they provide beneficial effects against age-related
disease in vivo. Resveratrol protects against high-fat diet
induced obesity, type II diabetes, cardiovascular diseases, and
cancer [99, 101, 107–114]. Similar results have been found
with newly developed STACS [107, 107, 115, 116]. Interestingly,
both resveratrol and the newly developed STACs decrease
oxidative stress in vitro and in vivo, either by promoting
antioxidant defenses or by improvingmitochondrial function
[103, 117–122].

The effect of STACS on human subjects has also been
debated. Most of the evidence relies on studies conducted
on volunteers who received resveratrol at different doses and
for different periods of time.The evidence, reviewed in [153],
shows that resveratrol might have some beneficial effects in
humans, although its bioavailability is poor. Recently, phase
I and II clinical trials were published with a new STAC
(SRT2104), showing that it is well tolerated by the elderly, who
showed decrease in cholesterol, LDL, and triglycerides levels,
opening the possibility that STACsmight become an available
treatment for age-related diseases in humans [154, 155].

Finally, it is worth mentioning that SIRT6 might also
be a pharmacological target for the treatment of age-related
diseases, including inflammation, genomic stability, and
cancer. The fact that SIRT6 is activated by fatty acids [2]
might provide new avenues into the treatment of age-related
diseases [156, 157].

6. Conclusions and Perspectives

Sirtuins areNAD-dependent deacylases that catalyze not only
deacetylation of histones but also deacylation of other pro-
teins including transcription factors and metabolic enzymes
thereby regulating cell cycle, differentiation, metabolism,
stress resistance, senescence, and aging. Fine regulation of
expression and activity of sirtuins is critical to maintain
cellular homeostasis. Although it is clear that sirtuins are

modulated by oxidative stress, the molecular mechanisms
are not well understood. Active sirtuins protect cells from
ROS-induced damage via their product OAADPR/ADPR
that inhibits mitochondrial ROS production and increases
NADPH levels from pentose phosphate pathway. Mild
oxidative stress induces sirtuin expression as a compen-
satory mechanism, while harsh or prolonged oxidant condi-
tions result in dysfunctional modified sirtuins more prone
to degradation by the proteasome. The increase in the
NAD/NADH ratio under oxidative stress conditions can
result in higher availability of the NAD cofactor, thus an
apparent increase in sirtuin activity. Oxidative PTM of
sirtuins have been identified, both in vitro and in vivo, to
inhibit deacylase activity, although they can also affect the
interaction with modulators, like SIRT1 with its endogenous
inhibitor DBC1, resulting in a net increase of SIRT1 activity.
Further research is needed to establish the mechanisms of
redox regulation of sirtuins. Particularly interesting is to
investigate redox modulation of SIRT3 in the mitochondrial
matrix where most of cellular oxidants are formed. The fact
that sirtuins can be activated, either by modulating NAD
bioavailability in tissues or by pharmacological activation
by small molecules, gives a therapeutic opportunity for the
treatment of metabolic and age-related diseases.
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