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Abstract – The genus Culicoides includes vectors of important animal diseases such as bluetongue and
Schmallenberg virus (BTV and SBV). This genus includes 1300 species classified in 32 subgenera and 38 unclassified
species. However, the phylogenetic relationships between different subgenera of Culicoides have never been studied.
Phylogenetic analyses of 42 species belonging to 12 subgenera and 8 ungrouped species of genus Culicoides from
Ecuador, France, Gabon, Madagascar and Tunisia were carried out using two molecular markers (28S rDNA
D1 and D2 domains and COI mtDNA). Sequences were subjected to non-probabilistic (maximum parsimony) and
probabilistic (Bayesian inference (BI)) approaches. The subgenera Monoculicoides, Culicoides, Haematomyidium,
Hoffmania, Remmia and Avaritia (including the main vectors of bluetongue disease) were monophyletic, whereas
the subgenus Oecacta was paraphyletic. Our study validates the subgenus Remmia (= Schultzei group) as a valid
subgenus, outside of the subgenus Oecacta. In Europe, Culicoides obsoletus, Culicoides scoticus and Culicoides
chiopterus should be part of the Obsoletus complex whereas Culicoides dewulfi should be excluded from this
complex. Our study suggests that the current Culicoides classification needs to be revisited with modern tools.
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Résumé – Phylogénie moléculaire de 42 espèces de Culicoides (Diptera, Ceratopogonidae) de trois continents.
Le genre Culicoides comprend des vecteurs de maladies animales importantes telles que la fièvre catarrhale et le virus
Schmallenberg. Ce genre comprend 1300 espèces classées dans 32 sous-genres et 38 espèces non classées. Cependant,
les relations phylogénétiques entre les différents sous-genres de Culicoides n’ont jamais été étudiées. Des analyses
phylogénétiques de 42 espèces appartenant à 12 sous-genres et 8 espèces non groupées du genre Culicoides
d’Équateur, de France, du Gabon, de Madagascar et de Tunisie ont été réalisées en utilisant deux marqueurs
moléculaires (ADNr 28S domaines D1 et D2 et ADNmt COI). Les séquences ont été soumises à des approches
non probabilistes (maximum de parcimonie) et probabilistes (inférence bayésienne). Les sous-genres
Monoculicoides, Culicoides, Haematomyidium, Hoffmania, Remmia et Avaritia (y compris les principaux vecteurs
de la fièvre catarrhale du mouton) étaient monophylétiques alors que le sous-genre Oecacta était paraphylétique.
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Notre étude valide le sous-genre Remmia (= groupe Schultzei) sous la forme d’un sous-genre valide, en dehors du
sous-genre Oecacta. En Europe, Culicoides obsoletus, Culicoides scoticus et Culicoides chiopterus devraient faire
partie du complexe Obsoletus alors que Culicoides dewulfi devrait être exclu de ce complexe. Notre étude suggère
que la classification actuelle de Culicoides doit être revisitée avec des outils modernes.

Introduction

Biting midges of the genus Culicoides Latreille 1809
(Diptera: Ceratopogonidae) are among the world’s smallest
haematophagous flies, measuring from 1 to 3 mm, and are
described worldwide, except in Antarctica and New Zealand
[45]. They are mainly known as vectors of bluetongue virus
(BTV), Schmallenberg virus (SBV) and Oropouche virus
(OROV) [12].

Currently, approximately 1300 living and 42 fossil species
of Culicoides have been described worldwide. Their classifica-
tion includes 32 subgenera [9] and 38 groups although 13% of
occurring species remain ungrouped [11]. This classification is
exclusively typological, based on common morphological
similarities (e.g. characteristics of reproductive organs, wings,
antennae and palps), without any phylogenetic considerations.
As most species feature spotted wings, the accurate identifica-
tion of adults is largely based on subtle variations in size, shape
and position of spots that form wing patterns [61–63].

In Africa, Asia and Europe, Culicoides imicola and the
Obsoletus complex (both from the subgenus Avaritia Fox)
are considered the most important vectors of BTV, SBV and
epizootic haemorrhagic disease virus [20, 35, 45, 60]. Other
groups of Culicoides are also involved in the transmission of
these viruses, such as the Schultzei group (now in the subgen-
era Remmia Glukhova and sometimes synonymised with
Oecacta Poey) [4, 11], Culicoides pulicaris and C. punctatus
(Culicoides Latreille), C. circumscriptus (Beltranmyia Vargas)
[45], and C. paraensis (Haematomydium Goeldi) only for
OROV in South America [12].

Since the recent European bluetongue epizootic outbreak,
there has been growing interest in DNA barcoding of
Culicoides based on the mitochondrial DNA (mtDNA) cyto-
chrome oxidase I (COI) gene, ribosomal (rDNA) regions such
as internal transcribed spacer 1 (ITS1) and internal transcribed
spacer 2 (ITS2), and the nuclear CAD gene [29]. The rise of
DNA barcoding and the lack of taxonomic experts thus
enabled COI sequencing to become a tool for rapid identifica-
tion of Culicoides species [1].

Ribosomal DNA markers have been used to investigate
phylogenies of closely related species (ITS1 and ITS2:
[25, 26, 49]; 28S: [27, 28]), interspecific genetic distances
(ITS1 [43, 47]) and population structure (ITS1: [53]) within
Culicoides. The sequences obtained with ITS1 are generally
of low quality [47]. Polymerase chain reaction (PCR) products
with ITS2 seem to include many different sequences, even
from one individual sample [38].

The lack of phylogenetic data about Culicoides does not
allow hypotheses about the vector competence for diseases
caused by different Culicoides-borne viruses. Due to the wide
distribution and the great economic importance of veterinary
diseases transmitted by biting midges, it seems important

to build a modern classification of these insects based on
phylogenetic studies to help in epidemiological analyses.

In this study, we carried out a phylogenetic analysis of
42 Culicoides species from Europe, America and Africa
(including Madagascar) using specimens available in our
laboratory. Our sampling included major proven vectors of dis-
eases (i.e. subgenera Avaritia, Culicoides, Haematomydium,
and Schultzei group). In each case, the mtDNA COI and the
D1 and D2 regions of the 28S rDNA were analysed. The
latter regions were chosen based on the fact that they
appear to contain major phylogenetic information at the con-
sidered taxonomic level [18, 30, 51] especially for Culicoides
[27, 28, 58].

Material and methods

Collection of Culicoides and identification

Midges were collected in Ecuador, France, Gabon,
Madagascar and Tunisia between 2009 and 2010 using
ultraviolet CDC traps and standard CDC miniature light traps
(John W. Hock Company, Gainesville, FL, USA). Insects were
stored in ethanol 95�. Specimens were identified to species,
species group or subgenera (Table 1; Figs. 1–4) using different
morphological keys [13, 14, 17, 21, 22, 24, 31, 36, 62].

Specimen identification was performed after mounting the
head, wings and spermathecae on microscope slides, leaving
the thorax and legs for subsequent DNA extraction [2].
Consequently, we were unable to identify C. fulvithorax and
C. ochrothorax without their thorax that includes their discrim-
inant character. Moreover, the accurate identification of
females of some closely related specimens, such as C. cataneii
and C. gejgelensis, was not possible [36]. Two specimens from
Gabon, belonging to subgenus Avaritia, present new morpho-
logical characters compared with currently known species;
hereafter we will refer to these specimens as Culicoides sp.
At least two specimens of each species were sequenced, except
for 13 species from which only one specimen was available
(Table 1; Figs. 1–4).

A total of 68 specimens belonging to 42 species were
analysed: 34 species belonging to the subgenera Anilomyia,
Avaritia, Beltranmyia, Culicoides, Haematomyidium,
Hoffmania, Meijerehelea, Monoculicoides, Oecacta, Remmia,
Trithecoides and Wirthomyia, and 8 species belonging to
unclassified groups [11]. Species distribution included:
(i) Ecuadorian specimens (12 species) assigned to subgenera
Anilomyia, Haematomyidium and Hoffmania and the
unclassified groups Carpenteri group, Fluvialis group and
Leoni group; (ii) French specimens (11 species) assigned to
subgenera Avaritia, Culicoides, Monoculicoides, Oecacta
and Wirthomyia; (iii) four Gabonese specimens assigned to

2 D. Augot et al.: Parasite 2017, 24, 23



Table 1. List of Culicoides spp. used in the phylogenetic analyses, classification of Borkent, 2014.

Subgenus Taxa present Country No. (codification) GenBank accession number

Group Species COI D1D2

Anilomyia C. metagonatus EC EC-meta-1-D458 KY707782 KF286339
C. chiopterus FR FR-chio1-P6C61 KY707805 KF286340
C. dewulfi FR FR-dew1-P5C46 HM022877 KF286341

FR-dew2- P3C17* HM022878
C. dubitatus MA MA-dub1-D358 KY707796 KF286342

GA GA-dub2- D558 KY707795 KF286343
MA MA-dub3 D379 KY707797 KF286344

Avaritia C. imicola TU TU-im1-S4Cf3 KJ729975 KF286345
TU-im2-S6Cf111* KJ729976

C. kibatiensis MA MA-kib1-D364* KY707781 KF286348
MA-kib2-D401

C. miombo MA MA-mio1-D394* KY707800 KF286349
MA-mio2-D412

C. sp. GA GA-img1-D439 KY707791 KF286346
GA-img2-D550 KY707790 KF286347

C. obsoletus FR FR-obs-1-P2C12*
FR-obs-2-D223 HM022852 KF286350

C. scoticus FR FR-sco1-P7C5 HM022875 KF286351
FR-sco2 P6C25 HM022857 KF286352

Beltranmyia C. circumscriptus TU TU-cir2-B1Cf31* KJ729971 KF286353
C. impunctatus FR FR-del2-D91 KY707808 KF286355

FR-del3-D94*
Culicoides C. lupicaris FR FR-lup1-P5C34 KY707776 KF286354

C. newsteadi TU TU-new1-S3CM42 KKJ729989 KF286356
TU-new2-S6Cf51 KJ729990 KF286357

C. punctatus FR FR-pun1-D327 KY707806 KF286358
FR-pun2-D242*
FR-pun3-D250*

Haematomyidium C. limonensis EC EC-para2-D460 KY707809 KF286360
C. paraensis EC EC-para1-D423 KF286359

Hoffmania Guttatus group C. diabolicus EC EC-bat1-D451 KY707783 KF286361
EC-bat2-D453 KY707787 KF286362

C. guttatus EC EC-gu1-D481 KY707785 KF286363
Hylas group C. hylas EC EC-hyl1-D449 KF286364

C. pseudoheliconiae EC EC-hyl2-D505 KY707784 KF286365
Meijerehelea C. distinctipennis GA GA-leu1 D555 KY707792 KF286366
Monoculicoides C. nubeculosus FR FR-nub-D179 KF178273 KF286367

C. parroti FR FR-par-D27 KF178276 KF286368
C. puncticollis TU TU-pco1-B7CM49 KJ730002 KF286369

TU-pco2-B7Cf60* KJ29998 KJ730024
Oecacta C. cataneii/ TU TU-cag1-B2CM132 KJ729968 KF286388

C. gejgelensis TU-cag2-B2Cf34 KJ729967 KF286389
C. festivipennis FR FR-fes2-D66 KY707777 KF286377

FR-fes3-D103*
C. jumineri TU TU-jum1-S3Cf124 KJ729979 KF286383

TU-jum2-S3CM1* KJ729980 KF286384
TU-jum3-S3CM71 KJ729982 KF286384

C. sahariensis TU TU-sah2-B28Cf6* KJ30004 KF286387
Remmia C. enderleini MA MA-scg2-D378* KF186429 KF286379

MA-scg3-D363
C. kingi TU TU-kin1-S3Cf167 KJ729985 KF286338
C. nevilli MA MA-scg1-D357 KF186428 KF286378

Trithecoides C. fulvithorax/C. ochrothorax GA GA-fuo1-D437 KY707793 KF286371
Wirthomyia C. segnis FR FR-seg1-D113* KY707778 KF286372

FR-seg2-D108
Unplaced 1 Carpenteri group C. belemensis EC EC-bel1-D477 KY707786 KF286373
Unplaced 2 Fluvialis group C. castillae EC EC-cast1-D474 KF286374

EC-cast2-D472*
C. tetrathyris like EC EC-fug3-D470 KY707788 KF286375

(continued on next page)
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subgenera: Avaritia, Meijerehelea and Trithecoides; (iv) Mala-
gasy specimens (7 species) assigned to subgenera Avaritia,
Remmia and to the Milnei group and (v) Tunisian specimens
(8 species) assigned to six subgenera (Avaritia, Beltranmyia,
Culicoides, Monoculicoides, Oecacta, Remmia) and 1 species
was C. paolae (incertae sedis).

DNA extraction and PCR amplification

DNA was extracted from individual Culicoides using the
QIAmp DNA Mini Kit (Qiagen GmbH, Hilden, Germany),
following the manufacturer’s instructions. Polymerase chain
reactions (PCRs) for D1-D2 and cytochrome oxidase genes
were performed in a 50 lL volume using 5 lL of DNA
solution and 50 pmol of primers C01 (50-ACCCGCTGAATT-
TAAGCAT-30) and D2 (50-TCCGTGTTTCAAGACGGG-30)
for D1-D2 [18] and C1J1718 (50-GGAGGATTTGGAAATT-
GATTAGT-30), C1N2191 (50-CAGGTAAAATTAAAATA-
TAAACTTCTGG-30) or LepF (50-ATTCAACCAATCATA
AAGATA TTGG-30) and LepR (50-TAAACTTCTGGATGTC-
CAAAAAATCA-30) for COI [2, 57].

Amplification conditions for D1-D2 were: initial denatura-
tion step at 94 �C for 3 min followed by 35 cycles of
denaturation at 94 �C for 30 s, annealing at 58 �C for 90 s
and extension at 68 �C for 60 s followed by a final extension
at 68 �C for 10 min. For COI amplification, conditions
included: (1) initial denaturation step at 95 �C for 15 min, then
5 cycles at 95 �C for 40 s, 45 �C for 40 s, 72 �C for 1 min,
were followed by 45 cycles at 95 �C for 40 s, 50 �C for
40 s, 72 �C for 1 min and a final extension step at 72 �C for
20 min for C1J1718/C1N2191, and (2) initial denaturation step
at 94 �C for 3 min, 5 cycles of denaturation at 94 �C for 30 s,
annealing at 45 �C for 90 s and extension at 68 �C for 60 s
were followed by 35 cycles of denaturation at 94 �C for
30 s, annealing at 51 �C for 90 s, and extension at 68 �C
for 60 s and a final extension at 68 �C for 10 min for
LepF1/LepR. Amplicons were analysed by electrophoresis in
1.5% agarose gel stained with 0.1% ethidium bromide.
All sequences obtained are available in GenBank (Table 1).

Phylogenetic analyses

Most sequences of COI and D1-D2 genes were analysed
separately and concatenated, except for four specimens

(Culicoides castillae, C. hylas, C. paraensis and C. tetrathyris).
The phylogenetic tree was constructed using both non-
probabilistic (maximum parsimony, MP) and probabilistic
approaches (Bayesian inference, BI), using Atrichopogon sp.
and Forcipomyia sp. as outgroups [7].

Maximum parsimony analysis was carried out with PAUP*
4.0b10 [59] by selecting the heuristic search option with tree
bisection reconnection branch swapping (TBR) and 1000
random sequence addition (RSA). All sites were equally
weighed but a step matrix (ponderation TS/TV = 2) was
applied. Sequences were edited and aligned manually using
Se-Al [52]. The insertion of several interlocked gap zones
was therefore necessary to align sequences. Sequence align-
ment was performed respecting the criteria defined by [6]:
(1) to minimise the number of inferred mutations (number of
steps); (2) to prefer substitution to insertion-deletion, and (3)
to prefer transitions to transversions because they have a higher
probability of occurrence.

A total of 423 bp and 613 bp were analysed for COI and
D1-D2, respectively.

For the model-based approach, the best-fit model of
nucleotide substitutions was computed with jModelTest
v2.1.4 [16] using the Akaike Information Criterion (AIC).
The Hasegawa, Kishino and Yano (HKY) +I+C model was
indicated as the best-fit model for the mitochondrial COI gene.
The general time reversible (GTR) +I+C model was indicated
as the best-fit model for both D1-D2 and concatenated markers
(rDNA marker D1D2 and COI). Bayesian analyses were
carried out using MrBayes 3.1.2 [54] with 4,000,000 genera-
tions, 10,000 of the saved trees were discarded, and the
30,000 remaining were used to construct the resulting BI tree.
The robustness of tree nodes was assessed by clade posterior
probability values (CPP).

A first maximum parsimony analysis on COI sequences
showed trees of 2786 steps with a consistency index (CI of
0.225) and a retention index (RI of 0.443). The codon position
3 in the COI gene was found to have saturated transition
information as compared to position 1+2 (data not shown).
Therefore, we decided to remove the codon position 3.
A new analysis was performed with COI codon position 1+2
including 10,000,000 generations. As many as 25,000 of the
saved trees were discarded. Both COI and D1-D2 sequences
were analysed independently using the BI and MP approaches
and a concatenated fragment using the BI approach.

Table 1. (continued)

Subgenus Taxa present Country No. (codification) GenBank accession number

Group Species COI D1D2

C. tetrathyris EC EC-tetra1-D517 KF286370
Unplaced 3 Leoni group C. glabellus EC EC-leg1-D528 KY707789 KF286376
Unplaced 4 Milnei group C. moreli MA MA-mor1-D420 KY707804 KF286382

C. zuluensis MA MA-mig1-D388 KY707802 KF286380
MA-mig2-D365 KY707803 KF286381

Unplaced 5 C. paolae TU TU-pao2-S5CM1 KJ729992 KF286385
TU-pao3-S3Cf66 KJ729991 KF286386

EC: Ecuador; FR: France; GA: Gabon; MA: Madagascar; TU: Tunisia. D1D2 rDNA sequences (*specimens having identical sequences) and
COI sequences).
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Results

A first run of amplification was carried out using
the C1J1718/C1N2191 primers. Pseudogenes were amplified for
six specimens from Ecuador (C. castillae, C. hylas, C. pseudo-
heliconiae, C. guttatus, C. tetrathyris and C. diabolicus) and one
specimen from Gabon (C. distinctipennis). Consequently, the
COI of these specimens was tentatively amplified and sequenced
using the LepF1/LepR primers. Finally, the COI of all these
specimens was obtained, except for Culicoides castillae and
C. tetrathyris.

For the parsimony analysis, the sequences for COI with 127
variable characters, of which 97 were parsimony-informative
were analysed. The most parsimonious trees obtained were
557 steps long. With D1D2 sequences, 203 variable characters
were found, out of which 169 were parsimony-informative.
The most parsimonious trees obtained were 639 steps long.
The ribosomal gene had a much higher proportion of
parsimony-informative sites than the mitochondrial gene
(Table 2).

Topologies of the trees obtained by MP and BI are
presented in the Appendices. Our main findings were that:

Figure 1. Culicoides wing pattern details of species included in our study. The specimen codes are linked with the table. The wings were
photographed using a ·4 lens. Bars = 200 lm.
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(i) the MP COI tree (data not shown) is unusable; (ii) the MP
D1D2 tree (Appendix 1) shows that the subgenera
Monoculicoides, Culicoides, Haematomyidium and Remmia
were monophyletic, whereas the subgenera Hoffmania and
Avaritia were paraphyletic; (iii) the BI COI tree (Appendix 2)
shows that the subgenera Avaritia, Culicoides, Hoffmania,
Monoculicoides and Remmia were monophyletic, whereas
the subgenus Oecacta was paraphyletic, and (iv) the BI
D1D2 tree (Appendix 3) shows that the subgenera Culicoides,
Hoffmania, Monoculicoides and Remmia were monophyletic,
whereas the subgenus Oecacta was paraphyletic.

Results of the concatenated Bayesian inference analysis of
Culicoides relationships are shown in Figure 5 and presented
below.

According to the combined data analysis, the genus
Culicoides was clearly monophyletic.

The subgenus Culicoides was also monophyletic: Tunisian
specimens of C. newsteadi were grouped in one clade
(CPP = 100) with French specimens of C. punctatus,
C. lupicaris and C. impuctatus.

The subgenus Hoffmania (species from Ecuador) displayed
two clusters with C. batesi and C. guttatus as the sister group

Figure 2. Culicoides wing pattern details of species included in our study. The specimen codes are linked with the table. The wings were
photographed using a ·10 lens. Bars = 200 lm.
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of the Hylas group. The tree shows that the subgenus
Hoffmania was monophyletic (CPP = 100), and in the position
of sister species of the Milnei group and the subgenera
Trithecoides, Anilomyia and Avaritia.

The subgenus Avaritia was also monophyletic
(CPP = 100). C. chiopterus, C. obsoletus and C. scoticus were
grouped together as a clade, the sister group of all other
members of the subgenus Avaritia (CPP = 78). C. dewulfi
was shown to be closely related to the new Culicoides species
from Gabon (CPP = 92). The analysis also revealed that the
Imicola group was monophyletic. C. imicola s. st. is the sister

species of C. miombo (CPP = 100) and C. kibatiensis is the
sister species of them (CPP = 86).

The Schultzei group, which includes C. enderleini,
C. nevilli and C. kingi, was monophyletic (CPP = 100).

The subgenus Monoculicoides, including C. nubeculosus,
C. parroti and C. puncticollis, was monophyletic (CPP = 100).

Culicoides distinctipennis (subgenus Meijerehela) from
Madagascar and C. festivipennis (subgenus Oecacta) from
France exhibited similar wing patterns (white spots on the
wing apex) but they were not grouped in our cladogram
(CPP = 61).

Figure 3. Culicoides wing pattern details of species included in our study. The specimen codes are linked with the table. The wings were
photographed using a ·10 lens. Bars = 200 lm.
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The Milnei group, which includes C. zuluensis and
C. moreli, was monophyletic (CPP = 53).

Bayesian analysis showed that the subgenus Oecacta was
paraphyletic: C. circumscriptus – subgenus Beltranmyia and
Culicoides distinctipennis – subgenus Meijerehela are included
within the members of this subgenus, and C. sahariensis is
separated from the other members of subgenus Oecata.

The monophyly of the Fluvialis group (CPP = 74) is
discussed due to the inclusion in this clade of the incertae sedis
C. paolae. The subgenus Haematomyodium is the sister group
of the Fluvialis group (BI, CPP = 91).

Discussion

The present study is, to our knowledge, the first systematic
molecular analysis carried out on the genus Culicoides at a
large taxonomic level, not focusing on closely related species
(42 species belonging to 12 subgenera and unclassified groups
collected in Afrotropical, Neotropical and Palaearctic areas).
The data, based on COI and D1-D2 sequences, were subjected
to a range of MP and BI analyses in order to explore the

phylogenetic signal. To date, other molecular phylogenies,
based mainly on COI sequences, were commonly restricted
to a single subgenus or group located in Afrotropical or
Palaearctic areas [29], except for one containing 37 Palaearctic
species representing 10 subgenera [1]. Phylogenies studies
based on ITS1 and ITS2 have also been reported on 25 French
species [49] and 9 Italian species [26], respectively.

Pseudogenes are homologous sequences arising from
currently or evolutionarily active genes that have lost their
ability to function as a result of disrupted transcription or
translation. They may contain stop codons, repetitive elements,
have frame shifts and/or lack of transcription. However, they
might retain gene-like features [65]. Pseudogenes have been
identified in the mitochondrial genome of insects, also widely
used in phylogenetic studies, with the risk of obtaining
erroneous results during phylogenetic reconstruction [34].
To our knowledge, this is the first report of pseudogenes in
Culicoides.

The subgenera Anilomyia, Beltranmyia, Meijerehelea,
Trithecoides, Wirthomyia and some groups are only repre-
sented by a single species. Consequently, further studies are
required to discuss their monophylies.

Figure 4. Culicoides wing pattern details of species included in our study. The specimen codes are linked with the table. The wings were
photographed using a ·10 lens. Bars = 200 lm.
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We demonstrate here the monophyly of the subgenus
Monoculicoides that is in agreement with previous studies
(ITS1: [49]; COI: [1, 55]).

Similarly, our results suggest that the subgenus Culicoides
is also monophyletic, as previously reported by another study
based on COI sequences [1], whereas studies based on ITS1
[32, 49], ITS2 [32] and COI [55] sequences suggested the
paraphyly of this subgenus. Within this group, our findings
suggest (according to molecular [33, 43, 48] and morphologi-
cal studies [17, 38, 57]) the validity of C. lupicaris, whereas it
is sometimes synonymised with C. delta [11].

Monophyly of the subgenus Avaritia is clearly supported
by the present study, which corroborates previous results
obtained from both morphological [46] and molecular data
based on COI [15] and ITS1 [32, 49]. However, the para-
phyly of the subgenus Avaritia has also been reported by
analysis of COI [1, 50, 55] and ITS2 [32] sequences, taking
into account the phylogenetic position of C. dewulfi outside
this subgenus.

Most authors erroneously included C. dewulfi in the
obsoletus complex or the obsoletus group [25, 41]. Our results
clearly suggest that C. dewulfi does not belong to this group
(Fig. 1) as previously emphasised by different molecular mark-
ers [25, 28, 43, 56]. Based on morphological, morphometrical
and molecular data [2, 23, 28, 46, 47], C. obsoletus and
C. scoticus are two closely related species belonging to the
Obsoletus complex [5, 28, 60]. According to [42], the Imicola
group in the Afrotropical region includes C. imicola and
C. miombo. C. kibatiensis could present similar characters to
C. trifasciellus, and subgroup trifasciellus is distinct from
Culicoides imicola and the Imicola group [24]. C. trifasciellus
belongs to the Orientalis group of the Afrotropical region [41]
and its taxonomic position with C. kibatiensis is not resolved.
Our results show that C. imicola is a cryptic species of
C. miombo, C. kibatiensis being the sister species of the clade
formed by these two species. Future studies are needed to carry
out investigations at a subgeneric scale in order to determine
the species status of the most important vector subgenera.
Interestingly, the specimens collected in Gabon belong to
the subgenus Avaritia and show unique morphological
characters and nucleotide substitutions (COI). Therefore,

a morphological description of this new species of Culicoides
is in progress.

Our study validates the subgenus Remmia (= Schultzei
group) as a valid subgenus, outside of the subgenus Oecacta
[3, 11], and includes C. kingi [4, 14]. The status of the
Schultzei group and its subgeneric affiliation has been
disputed. It is sometimes included in the subgenus Remmia
Glukhova [11, 19, 43], the latter considered by some authors
as a junior synonym of the subgenus Oecacta (Poey)
[14, 64] or sometimes unclassified [62]. Unlike many authors,
we believe the subgenus Oecacta includes only the Furens
group and/or perhaps the Schultzei group, if the first group
is excluded from the latter as previously suggested [3, 14].
Future integrative taxonomy studies [27–29] should define this
group with more precision, especially its relationships with the
subgenus Oecacta.

C. paolae from Tunisia is included in the Fluvialis
group constituted by New World species in our sampling
(C. castillae, C. fluvialis, C. tetrathyris and C. tetrathyris like).
The hypothesis that Culicoides paolae could be a synonym of
the Central American species C. jamaicensis seems fair.
Indeed, C. paolae and C. jamaicensis present huge morpholog-
ical similarities [8, 44], thus raising the possibility that it was
introduced into the Mediterranean Region at the time of
Columbus, and was only discovered 500 years later and named
C. paolae [44].

The subgenus Hoffmania is monophyletic with two
clades (Hylas and Guttatus groups). To our knowledge, no
recent data exist in the literature. This subgenus includes 82
extant species from South America and Asia. The wide geo-
graphic distribution warrants further studies of the subgenus
Hoffmania using phylogenetic and integrative approaches at
several scales.

The Milnei group is monophyletic. The species constitut-
ing this group have been described from the Afrotropical
region [11] and transmit several pathogenic organisms, e.g.
Akabane virus, BTV, Letsitele virus, unidentified virus isolates
(Cul. 5/69), Dipetalonema perstans and Dipetalonema
streptocerca [10]. To our knowledge, this group has been
understudied and future integrative taxonomy studies [27–29]
should more precisely define this group [24].

Palaearctic, Neotropical and Afrotropical Culicoides are
mixed in our cladogram (Fig. 5) and there is no geographic
clustering, indicating that the palaeobiogeography of the genus
Culicoides does not follow the generalised tracks [37].
Consequently, Culicoides settled in different areas by wind
[45], animal carriage [39] or by human activities [44]. For
example, C. imicola specimens collected in Laos, Thailand,
Vietnam and Reunion Island are of African origin [40]. In a
Culicoides catalogue [11], 42 fossils were recorded from
ambers from the Dominican Republic, the USA, Canada,
Germany, Poland, the Baltic area and Russia, suggesting a
Laurasian origin of the genus.

In conclusion, this study showed that the subgenera
Monoculicoides, Culicoides, Haematomyidium, Hoffmania
and Avaritia (including the main vectors of bluetongue disease)
are monophyletic, whereas the subgenus Oecacta is
paraphyletic. As proposed by Harrup et al. [29], a cladistic
reinterpretation of the subgeneric classification of Culicoides,

Table 2. Information about DNA sequences used in this study, in
relation to one of the most parsimonious trees resulting from the
combined analysis and mapped in a combined matrix.

DNA region COI D1-D2

Aligned matrix (bp)/number of characters
included

423 661

Number of constant sites 352 456
Number of variable sites 127 203
Number of parsimoniously informative

characters
97 169

Number of variable parsimony uninformative
characters

30 34

Tree length (L) 557 639
CI 0.227 0.436
RI 0.361 0.689
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and species delimitations, should represent Culicoides taxon-
omy. Integrative taxonomy (including morphological, mito-
chondrial and other markers) and modern morphometric
analysis (based on wing characteristics including type speci-
mens) can help taxonomists as suggested by Hadj-Henni et al.
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Figure 5. Bayesian tree resulting from the phylogenetic analysis of the concatenated dataset according to the best-fit partitioning strategy.
Robustness of nodes is indicated by the posterior probability values (%).
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Appendix 1. Parsimonious tree based on D1-D2 28S rDNA nucleotide sequences. Majority-rule 50% consensus: values between 50% and
100% are indicated on the branches.
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Appendix 2. Bayesian tree resulting from the phylogenetic analysis of the COI mtDNA according to the best-fit partitioning strategy.
Robustness of nodes was indicated by the posterior probability values.
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Appendix 3. Bayesian tree resulting from the phylogenetic analysis of the D1D2 28S rDNA according to the best-fit partitioning strategy.
Robustness of nodes was indicated by the posterior probability values.
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