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RESEARCH ARTICLE
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Abstract

Background

Rift Valley fever (RVF) is a vector-borne disease affecting ruminants and humans. Mada-

gascar was heavily affected by RVF in 2008–2009, with evidence of a large and heteroge-

neous spread of the disease. The identification of at-risk environments is essential to

optimize the available resources by targeting RVF surveillance in Madagascar. Herein, the

objectives of our study were: (i) to identify the environmental factors and areas favorable to

RVF transmission to both cattle and human and (ii) to identify human behaviors favoring

human infections in Malagasy contexts.

Methodology/Principal Findings

First, we characterized the environments of Malagasy communes using a Multiple Factor

Analysis (MFA). Then, we analyzed cattle and human serological data collected at national

level using Generalized Linear Mixed Models, with the individual serological status (cattle or

human) as the response, and MFA factors, as well as other potential risk factors (cattle den-

sity, human behavior) as explanatory variables. Cattle and human seroprevalence rates were

positively associated to humid environments (p<0.001). Areas with high cattle density were at

risk (p<0.01; OR = 2.6). Furthermore, our analysis showed that frequent contact with rawmilk

contributed to explain human infection (OR = 1.6). Finally, our study highlighted the eastern-

coast, western and north-western parts as high-risk areas for RVF transmission in cattle.

Conclusions/Significance

Our integrated approach analyzing environmental, cattle and human datasets allow us to

bring new insight on RVF transmission patterns in Madagascar. The association between
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cattle seroprevalence, humid environments and high cattle density suggests that concomi-

tant vectorial and direct transmissions are critical to maintain RVF enzootic transmission.

Additionally, in the at-risk humid environment of the western, north-western and the east-

ern-coast areas, suitable to Culex and Anopheles mosquitoes, vectorial transmission prob-

ably occurs in both cattle and human. The relative contribution of vectorial or direct

transmissions could be further assessed by mathematic modelling.

Author Summary

Rift Valley fever virus (RVFV) is a pathogen that causes a vector-borne tropical disease.
The disease affects ruminants and humans and severely impacts the health and economy
of affected countries. Madagascar was heavily affected by Rift Valley fever (RVF) in 2008–
2009, with evidence of a large and heterogeneous spread of the disease. Our study aims at
identifying environmental and human-related risk factors for RVFV transmission. First,
we characterized Malagasy environments according to their putative influence on RVFV
mosquito density and population dynamics. Then we statistically analyzed cattle and
human serological data collected at a national level with the individual serological status as
response, and Malagasy environments previously characterized by climatic and landscape
variables as well as other potential risk factors as explanatory variables. Our results identi-
fied humid environments of the western, north-western and eastern parts of the island as
risky areas. The identification of at-risk environments is essential to focus veterinary sur-
veillance and control of RVFV.

Introduction
Rift Valley fever virus (RVFV) is an arthropod-borne zoonotic virus belonging to the Bunyavir-
idae family and affecting ruminants and humans. Infection causes abortion in pregnant rumi-
nants and acute deaths in newborns [1,2]. In the majority of human cases, infection is
asymptomatic or causes mild symptoms such as fever, headaches and muscle pains [2]. How-
ever severe cases occur, characterized by retinitis, encephalitis, or hemorrhagic forms that may
lead to death [2]. Ruminants are infected through vector bites and probably also by direct con-
tact with infected tissues or fluids, such as blood or abortion products [2,3]. Humans are
mainly infected through direct contact with infectious tissues or fluids of ruminants but vecto-
rial transmission has been suspected in Central African Republic (RCA) and Gabon [4,5].
Virus circulation has been reported in several eco-climatic areas: arid in Western Africa and
Arabic Peninsula [1,6], sub-humid in Eastern Africa [7,8], wet forests in central Africa [5],
dam and irrigated agricultural land under hot climatic conditions in Egypt, Mauritania and
Sudan [9–11] and recently humid highlands in Madagascar [3,12]. The respective roles of
direct and vectorial transmissions remain unevaluated in both human and cattle and probably
vary among these eco-climatic areas.

Madagascar experienced two major Rift Valley fever (RVF) outbreaks: 1990–91 in the east-
ern-coast and central highlands and 2008–09 in the south, the north and the highlands [13–
15]. The last outbreaks occurred in two epidemic waves during the two successive rainy seasons
of 2007–08 and 2008–09. Following the first wave, passive surveillance and emergency
response were developed. Sentinel surveillance in herds were set up with field veterinarians
[16]. This sentinel surveillance allowed the early detection of the second wave of outbreak in
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cattle at the end of 2008 and thus the implementation of local control measures to prevent the
spreading of RVF outside the region [15,16]. At the end of the epidemic, about 700 suspected
human cases were recorded from which 26 were fatal. About 400 human and cattle samples
were received for laboratory analyses and RVF infection was confirmed or considered as proba-
ble in 86 human and 46 ruminant samples [15]. Following the 2008–09 epidemics, studies
showed a wide and heterogeneous spread of RVFV infection both in human and cattle [15,17]
suggesting that some areas were more favorable than others to transmission [17]. Madagascar
has a large variety of eco-climatic patterns, including semi-arid in the south, tropical in the
west and on the eastern-coast, and temperate in the central highlands [18]. Apart from the
highlands [3,12,19], RVF epidemiology is poorly understood in this country [15,17]. Since
2007, a human syndromic-based surveillance system has been developed which has allowed
the detection of the first case of RVF in humans in 2008 [15]. Besides, retrospective investiga-
tions suggested that RVFV circulated among livestock since December 2007 [15], revealing a
dearth in veterinary surveillance. The main difficulty to implement veterinary surveillance in
Madagascar is the lack of basic means to collect and communicate veterinary information [20].
Thus, the identification of at-risk environments is essential to optimize the available resources
by targeting RVF surveillance. In addition, there is a need to provide insight into the role of the
two transmission routes and better adapt available control measures.

Herein, the objectives of our study were: (i) to identify the environmental factors and areas
favorable to RVFV transmission to both cattle and human and (ii) to identify human behaviors
favoring human infections in Malagasy contexts.

Materials and Methods
To achieve these goals, we characterized the environments of Malagasy communes using a
Multiple Factor Analysis (MFA). Then we analyzed cattle and human serological data using a
Generalized Linear Mixed Models (GLMMs), with the individual serological status (cattle or
human) as the response, and MFA factors, as well as potential other risk factors (covariates), as
explanatory variables.

Cattle and human datasets
The cattle dataset contained results of a national cross-sectional serological survey performed
in August 2008 on 3,450 ruminants [17]. Only cattle with known breeding location were
included in the study (n = 1,432; Fig 1; [17]). The human dataset contained data from a
national cross-sectional serological survey conducted from November 2011 to April 2012 and
from October 2012 to May 2013 in 56 sites (cities or villages). Six percent of these sera were
used in a previous study [21]. In each of these sites, 30 adults were randomly chosen and sam-
pled on a voluntary basis (Fig 1). Potential contacts with ruminants or fresh ruminant fluids
(secretion, blood, milk) and socio-professional categories—butcher, farmer, health worker,
worker in contact with environment (water, forest) and others (teacher, student, administrative
worker, retired)—were documented through a dedicated questionnaire.

Ethics statement
The cattle study was performed in collaboration with the Malagasy Veterinary Services and
animals were sampled by qualified veterinarians [17]. The human study protocol was approved
by the Malagasy competent authorities, the Malagasy Ethic National Committee (authorization
N°066/MSAMP/CE, 26th July 2011). After reading of the informed consent letter, written and
oral consent was obtained from volunteering individuals. Participants were sampled by quali-
fied investigators and the data were analyzed anonymously.

Rift Valley Fever Risk Factors in Madagascar
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Covariates
The following covariates were selected according to their putative influence on mosquito den-
sity and population dynamics or on the risk of contact with ruminants:

• Cattle density. This variable has previously been identified as a risk factor for RVF transmis-
sion [7,24].

• Surface covered by water bodies and landscape classes (such as forest, shrub, and agricultural
areas). Density and population dynamics of vectors are influenced by environmental factors
such as climate, the presence of water bodies and other landscape features [1,25]. The pres-
ence of temporary water bodies and floodplains are known as risk factors for RVF in semi-
arid areas in eastern Africa, the Arabian Peninsula and Western Africa [1]. Artificial water
bodies such as dam and irrigated rice fields are also known to be associated with high abun-
dance of RVFV vectors in western Africa [1]. Furthermore, RVFV transmission occurred in
forested or shrubby areas [5,8,26,27]. A recent study details the mosquito species and their
habitat in Madagascar [28]. Briefly, RVF potential mosquito vectors belong to the genera
Aedes, Anopheles, Culex, Eretmapodites andMansonia [28]. The breeding areas of the Aedes
genus are mostly associated with temporary water bodies such as flooded area, temporary
pond, puddles, rice field [28]. Culex and Anophelesmosquitoes breeding areas are diversified
and could be temporary (rice field, swamps) or permanent (lakes, pond). Stagnant and per-
manent water bodies are the habitat of Eretmapodites andMansonia respectively [28].

• Rainfall, Normalized Difference Vegetation Index (NDVI) and temperatures. The risk of
RVFV infection in Eastern and Southern Africa has been shown to vary as a function of rain-
fall, NDVI and temperatures [29,30].

• Human related factors: habitat, gender, profession, contact with ruminant and ruminant
products [31].

Values of covariates were computed at the commune level (except for human behaviors
which were at the individual level).

Fig 1. Cattle and human sampling sites [17]. Animal and human sera were analyzed using commercial
ELISA kits (Biological Diagnostic Supplies Ltd., BDSL) to detect anti-RVFV immunoglobulin (Ig) G [17,22,23].
Cattle and human data were aggregated at the commune level (n = 1,578).

doi:10.1371/journal.pntd.0004827.g001
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Cattle density. For each of the 1,578 communes considered, cattle density was estimated
using the new global distribution maps for cattle produced by the Food and Agriculture Orga-
nization of the United Nations (FAO; http://www.fao.org/Ag/againfo/resources/en/glw/GLW_
dens.html; [32]).

Water bodies and landscape classes. A landscape map of Madagascar was obtained from
Globcover project [33]. The GlobCover 2009 landscape product is a 300-m global landscape map
produced from an automated classification of Medium Resolution Imaging Spectrometer
(MERIS) time series. The global landscape map included 22 landscape classes defined with the
United Nations (UN) Land Cover Classification System (LCCS). Among these 22 classes, we iden-
tified 5 relevant LCCS categories: “Cultivated Terrestrial Areas andManaged Lands” (so-called
Crops), “Woody/ Trees”, “Shrubs”, “Herbaceous”, “Artificial Surfaces (so-called Urbanization)”.
To reflect the availability of potential breeding habitats of RVF vectors in Madagascar such as arti-
ficial, irrigated, permanent and temporary water bodies, we needed to combine different data
sources extracted from several GIS databases. The first one described inland permanent water
point, such as lake, and was available from DIVA-GIS (http://www.diva-gis.org/). Marshland data
representing temporary water bodies were obtained from Geographical Information Systems at
the Royal Botanic Gardens, Kew [34]. Wetland locations representing temporary water bodies
were extracted from the International Panel on Climate Change (IPCC; [35]). Irrigated area loca-
tions came from Global Map of Irrigation Areas (GMIA) from AQUASTAT-FAO [36].

Climatic variables: Precipitation, temperatures and NDVI. To depict the climatic condi-
tions at each commune of Madagascar, day and night Land Surface Temperature (LST) and
NDVI were retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS; http://
iridl.ldeo.columbia.edu/). For the period 2001 to 2010, day and night LST were extracted from
MODIS data produced every 8 days at 1 km spatial resolution (MODIS MOD11A2 product:
Land Surface Temperature and Emissivity). For the same period, NDVI data were obtained
fromMODIS data produced every 16 days at 250 m spatial resolution (MODIS MOD13A1:
Vegetation Indices). Rainfall data were retrieved from the Tropical Rainfall Measuring Mission
(TRMM; http://pmm.nasa.gov/trmm/mission-end). These data were produced at 25 km spatial
resolution. Finally, for each commune and the same period, we computed the annual mean of
day and night LST, NDVI and precipitation. Seasonality of NDVI and precipitation was also
considered by computing the difference between the cumulated value over 3 months of the
rainy season (November, December and January) and the cumulated value over 3 months of
the dry season (June, July and August).

Human related factors. Human density was computed for each commune using data gener-
ated from Landscan 2007 Global Population Grid from Oak Ridge National Laboratory & the US
Department of Defense (OCHA, 2007). Based on our field knowledge, the communes with more
than 5,000 persons per square kilometer were considered as “urban”. Other communes were clas-
sified as “rural”. Human behaviors were documented through a dedicated questionnaire.

For each of the 1,578 communes considered, the percentage of surface covered by each land-
scape class (vegetation and water bodies), as well as the values of climatic, NDVI and cattle
density covariates were computed with the Quantum GIS software [37]. Malagasy commune
administrative boundaries and data come from the layers data merged by the Office for the
Coordination of Humanitarian Affairs (OCHA) and based on data obtained from the Malagasy
National Disaster Management Office in 2011.

Multiple Factor Analysis
Synthetic variables characterizing the environment of communes were computed using a MFA
combining the previously mentioned climatic and landscape variables [38,39]. By performing a
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factor analysis inside each variable category and then between categories, MFA produces a
quantitative summary of the initial set of variables taking the form of a set of linear combina-
tion of variables, referred to as factors [39]. The climatic category included the annual means
of day and night LST, the annual mean and seasonality of precipitation. The landscape category
included the percentage of the surface of the commune covered by each landscape category
and the annual mean and seasonality of NDVI. The value of each factor was computed for each
of the 1,578 Malagasy communes. Correlation between MFA factor values and cattle density
distribution was assessed using Pearson product-moment correlation coefficient test.

Statistical analysis
As a first step univariate analyses of association between suspected risk factors and cattle or
human RVFV serological status were undertaken using Chi square tests for categorical factors
and generalized linear models for quantitative factors. Risk factors with significance level
�0.20 were then included as explanatory variables in GLMMs, with cattle or human individual
serological status as the binomial response. In these models, it was assumed that the relation-
ships between serological prevalence and quantitative factors were linear on the logit scale. To
account for interdependency of serological status of individuals sampled in the same locality,
the smallest administrative unit—the commune for the cattle model and the city/village for
human model- were included in the models as a random effect. Multicollinearity among
explanatory variables was assessed using Variance Inflation Factors (VIF) and correlation tests.
Collinear factors were not included in a same model. The selection of the best models was
based on the Akaike Information Criterion (AIC). When needed, a multi-model inference
approach was used to estimate model-averaged fixed effects (mafe) and the relative importance
(RI) of each explanatory variable [40]. Within the set of models tested, only those with an AIC
within 2 units difference from the best model were considered [40].

Internal validity of sets of models was evaluated using the Receiver Operating Characteristic
(ROC) curve method [41].

In addition, we calculated the 10-fold cross-validation prediction. Because, it is not possible
to perform 10-fold cross-validation on GLMM, this procedure was applied to Generalized Lin-
ear Models that were similar to the selected GLMM except that did not include the site of sam-
pling as random effect. Firstly, the cattle seroprevalence dataset was split randomly into 10
parts. Then, the model was fitted to 90% of the data and used to predict the serological status of
the remaining 10% individuals as validation step. The procedure was performed 10 times, each
time with 1 of the 10 parts as validation step. [42].

Finally, parameter estimations derived from the best cattle model were used to predict and
map cattle seroprevalence at the commune scale for the whole island.

Data analyses were performed using R software version 3.0.1 [43–49].

Results

Environmental characterization of Malagasy communes
Four MFA factors contributing to 60% of the total variance were selected. Table 1 shows the
correlation between each quantitative covariate included in the MFA and each of these four
factors:

• Factor 1 separated areas based on seasonality in primary productivity (photosynthetic activ-
ity measured by NDVI), vegetation, land use and temperature. Large positive values
described ecosystems with high seasonal primary productivity dominated by herbaceous veg-
etation and with low surfaces of crops under dry and hot climatic conditions (Fig 2A in

Rift Valley Fever Risk Factors in Madagascar
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green). Large negative values described ecosystems with low seasonal primary productivity
including crops under wet and less hot climatic conditions (Fig 2A in brown). The com-
munes with the largest positive values for Factor1 are located in the south-western part of
Madagascar (Fig 2A in green) while the communes with the largest negative values for Fac-
tor1 are located on the north-eastern part (Fig 2A in brown);

• Factor 2 separated areas based on seasonality in primary productivity, vegetation, land use
and temperature. Large positive values described ecosystems with high seasonal primary

Table 1. Correlation between each quantitative covariate included in the MFA and each factor (Factor 1, Factor 2, Factor 3 and Factor 4).

Covariate Factor 1 Factor 2 Factor 3 Factor 4

Mean LST-day 0.92 -0.19 0.11 /

Mean LST-night 0.50 -0.66 0.14 0.26

Mean precipitation -0.70 / 0.32 0.31

Seasonality of precipitation 0.17 -0.15 0.82 0.09

Mean NDVI -0.83 -0.34 / /

NDVI seasonality 0.63 0.45 0.08 0.08

Herbaceous 0.84 -0.12 -0.24 0.11

Shrubs 0.11 0.40 0.30 -0.17

Wood–Trees -0.33 0.56 0.37 -0.19

Urbanization / 0.14 -0.30 0.27

Crops -0.62 -0.61 -0.24 0.10

Irrigated area / 0.66 -0.08 0.37

Wetlands / 0.24 -0.39 0.46

Water bodies / / 0.07 0.22

Marshlands / 0.07 0.18 0.71

/: The correlation coefficients were not significantly different from zero and so not included in the results

doi:10.1371/journal.pntd.0004827.t001

Fig 2. Geographical representation of the MFA factor values and cattle density of the 1,578 Malagasy communes. (A) Factor 1, (B) Factor 2,
(C) Factor 3, (D) Factor 4, (E) cattle density categories. For each factor, green colors represent positive values and brown negative values. The
darkest colors represent the highest values. Cattle were sampled in communes surrounded in black and human were enrolled in communes
surrounded in purple.

doi:10.1371/journal.pntd.0004827.g002
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productivity including ligneous vegetation and irrigated areas (rice fields) under climatic
conditions characterized by low night temperatures (Fig 2B in green). Large negative values
described ecosystems with low seasonal primary productivity including crops under climatic
conditions characterized by warm night temperatures (Fig 2B in brown). The communes
with the largest positive values of Factor 2 are located in the central highlands (Fig 2B in
green). The communes with the largest negative values are mostly located in the eastern part
of the island (Fig 2B in brown);

• Factor 3 was a rainfall seasonality index. The highest values of Factors3 (highly seasonal rain-
fall) are observed in the north-western part of the island (Fig 2C in green);

• Factor 4 represented a humid areas (marshlands, wetland and irrigated lands) index. The
highest values are mostly located on the eastern-coast and the north-western part of the
island (Fig 2D in green).

Considering each of the 1,578 communes of Madagascar, MFA factors values ranged from
-1.9 to 3.3 (Factor 1), -1.9 to 2.8 (Factor 2), -5.1 to 2.7 (Factor 3) and -1.1 to 7.3 (Factor 4).

Description of data and univariate statistical analysis (Table 2)
A total of 1,432 individuals from the initial cattle dataset, sampled in 26 communes belonging
to 22 Malagasy districts were included in the study (Fig 1). The number of animals sampled
per commune ranged from 1 to 110. Cattle ages ranged from 1 to 12 years (mean age 4.5
years). The overall seropositivity rate was 19.3% (CI 95% [17.3–21.8]). Age was categorized in
4 groups: 1–2, 3–4, 5–6 and more than 7 years old. Cattle density was classified as follows
according to quartiles: below 9.7; 9.7 to 14.3; 14.3 to 19.1 and more than 19.1 per square kilo-
meter. MFA factor values of the 26 sampling communes ranged from -1.7 to 2.6 (Factor 1),
-0.9 to 1.5 (Factor 2), -1.5 to 2.3 (Factor 3) and -1.1 to 0.6 (Factor 4). Age category, cattle den-
sity category, Factor 1, Factor 3 and Factor 4 were statistically associated with cattle seropreva-
lence (p� 0.20). A total of 1,679 people were sampled, 91% (n = 1,529) living in rural areas and
9% (n = 150) living in urban areas (Fig 1). Age of volunteers ranged from 18 to 99 years (mean
age 37.6 years) with a ratio of 1.03 (male/female). The overall seropositivity rate was 9.5% (95%
CI [8.1–11.0]). Age was categorized in 4 groups: 18 to 26, 26 to 37, 37 to 46 and more than 46
years old. Cattle density of the related communes was classified as following: below 6.3; 6.3 to
11.7; 11.7 to 22.0 and more than 22.0 per square kilometer. A total of 267 individuals declared
no contact with live animals or animal product and were categorized as “other profession”.
Among them, 24 individuals were seropositive (9.0% 95% CI [5.8–13.1]). MFA factor values of
the 48 communes ranged from -1.86 to 3.29 (Factor 1), -1.87 to 2.77 (Factor 2), -5.08 to 1.75
(Factor 3) and -0.75 to 4.51 (Factor 4). Habitat, gender, contact with ruminants, contact with
raw milk, profession, age category, cattle density category, Factor 2, Factor 3 and Factor 4 were
statistically associated with human seroprevalence (p� 0.20).

Multivariate analysis
Both cattle and human seroprevalences increased gradually with age categories (Table 2). It
was thus assumed that the relationship between age and seroprevalence was linear: age was
thus included as a quantitative variable in multivariate models. Since the variation in cattle or
human seroprevalence along cattle density categories was not clearly gradual, cattle density
was included as a categorical variable in both cattle and human multivariate models. Cattle
density was correlated with Factor 1, Factor 2 and Factor 3 and thus was included separately
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from Factor 1, Factor 2 and Factor 3 in both cattle and human multivariate models. The multi-
collinearity test did not detect any correlation between human related factors (VIF< 1.5).

For cattle, the single selected model (weight 0.99; S1 Table) included age, cattle density and
Factor 4 as explanatory variables (S1 Table and Table 3). Factor 4 and age had a significant pos-
itive effect on seroprevalence (estimation of fixed effect at 1.73 and 0.17 respectively; p<0.001

Table 2. Descriptive and univariate analyses for cattle and human seroprevalences.

Characteristics Positive Total Seroprevalence [95% CI] Chi2

Cattle Age 1 to 2 46 353 13.0 [9.7–17.0] p<0.001

3 to 4 69 422 16.4 [13.0–20.2]

5 to 6 72 361 19.9 [15.9–24.4]

> 7 90 296 30.4 [25.2–36.0]

Cattle density per sq. km < 9.7 69 359 19.2 [15.3–23.7] p < 0.001

9.7–14.3 55 357 15.4 [11.8–19.6]

14.3–19.1 37 362 10.2 [7.3–13.8]

> 19.1 116 354 32.8 [27.9–37.9]

Factor 1 / / / p < 0.01

Factor 2 / / / p >0.20

Factor 3 / / / p < 0.10

Factor 4 / / / p < 0.10

Total cattle 277 1432 15.9 [14.0–17.8] /

Human Habitat Urban 9 150 6.0 [2.8–11.1] p < 0.20

Rural 150 1,529 9.8 [8.4–11.4]

Gender F 50 851 5.9 [4.4–7.7] p < 0.001

M 109 828 13.2 [10.9–15.7]

Contact with ruminant No 103 1,209 8.5 [7.0–10.2] p < 0.05

Yes 56 470 11.9 [9.1–15.2]

Contact with raw milk No 140 1,576 8.9 [7.5–10.4] p < 0.005

Yes 19 103 18.4 [11.5–27.3]

Contact with fresh ruminant fluids No 158 1,675 9.4 [8.1–10.9] NA

Yes 1 5 20 [0.1–71.6]

Profession Butcher 1 6 16.7 [0.0–64.4] p < 0.005

Farmers 95 755 12.6 [10.3–15.2]

Health 1 19 5.3 [0.0–26.0]

Contact with environment 9 52 17.3 [8.2–30.3]

Others 53 847 6.3 [4.7–8.1]

Age 18 to 26 30 455 6.6 [4.5–9.3] p < 0.05

26 to 37 35 423 8.3 [5.8–11.3]

37 to 46 40 361 11.1 [8.0–14.8]

> 46 54 440 12.3 [9.4–15.7]

Cattle density per sq. km < 6.3 51 450 11.3 [8.6–14.6] p < 0.05

6.3–11.7 51 420 12.1 [9.2–15.7]

11.7–22.0 28 389 7.2 [4.8–10.2]

> 22.0 29 420 6.9 [4.7–9.8]

Factor 1 / / / p >0.20

Factor 2 / / / p < 0. 01

Factor 3 / / / p < 0. 2

Factor 4 / / / p < 0.10

Total human 159 1,679 9.5 [8.1–11.0] /

doi:10.1371/journal.pntd.0004827.t002
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for both explanatory variables; Table 3). Areas with high cattle density (> 19.1 per sq. km)
were at risk (p<0.01; OR = 2.6 95% CI [1.3–5.4]; Table 3). According to AIC, seven models
were considered as suitable for describing seroprevalence in humans and thus were analyzed
using a multi-model inference approach (S1 Table). These models included age, Factor 2, Fac-
tor 3, Factor 4, gender, habitat, contact with raw milk, contact with fresh ruminant product,
with live ruminant as explanatory variables (S1 Table and Table 4). Age, gender (male;
OR = 2.3 95% CI [1.6–3.3]) and Factor 4 had a significant positive effect on seroprevalence
(p<0.001, p<0.05 and p<0.05 respectively; Table 4). Factor 2 had a significant negative effect
on seroprevalence (p<0.05) whereas Factor 3 had a minor importance in this set of models
(RI = 0.27; Table 4). Contact with raw milk had a moderate effect on individual seroprevalence
(OR = 1.6 95% CI [1.0–3.5]) whereas direct contacts ruminants and/or with fresh ruminant flu-
ids, and habitat had a low impact on seroprevalence (RI = 0.12 or less; Table 4).

Internal validity of both cattle and human sets of models were satisfactory with an Area
Under the Curve (AUC) of 0.82 (95% CI [0. 79–0.84]) and 0.80 (95% CI [0.77–0.84]) for cattle
and human models respectively. The 10-fold cross-validation estimated an individual predic-
tion error of about 14%.

Cattle seroprevalence was predicted according to Factor 4, cattle density categories and for a
fixed cattle age of 5 years. To avoid biased estimations resulting from extrapolations, the pre-
diction of seroprevalence was restricted to communes included in the range of the Factor 4 val-
ues corresponding to communes where cattle were sampled (i.e [-1.1–0.6]; n = 1,368). The

Table 3. Results from the best cattle model.

Variable Estimate 95% CI p-value

Intercept / -2.34 [-3.02–-1.72] /

Age / 0.17 [0.10–0.23] p < 0.001

Cattle density per sq. km < 6.3 Reference / /

6.3–11.7 -0.24 [-1.01–0.54] NS

11.7–22.0 -0.66 [-1.61–0.24] NS

> 22.0 0.97 [0.30–1.69] p < 0.01

Factor 4 / 1.73 [0.96–2.55] p < 0.001

NS = not significant

doi:10.1371/journal.pntd.0004827.t003

Table 4. Results from themulti-model inference approach for human dataset analysis.

Variables model-averaged fixed effects (mafe) 95% CI p-value Relative importance (RI) Number of models

Age 0.02 [0.01–0.03] 0.001 1 7

Factor 2 -0.41 [-0.74–-0.09] 0.05 1 7

Factor 3 0.17 [-0.08–0.41] NS 0.27 2

Factor 4 0.34 [0.08–0.61] 0.05 1 7

Gender 0.83 [0.52–1.14] 0.001 1 7

Contact with raw milk 0.60 [0.05–1.15] NS 0.75 5

Contact with fresh ruminant fluids 1.04 [-1.26–3.36] NS 0.12 1

Cattle density categories / / NS / 0

Profession / / NS / 0

Contact with ruminant -0.07 [-0.44–0.29] NS 0.10 1

Habitat -0.42 [-1.42–0.57] NS 0.12 1

NS = not significant

doi:10.1371/journal.pntd.0004827.t004
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prediction map highlights the western, north-western part and eastern-coast of Madagascar as
high-risk areas for RVF transmission (Fig 3). Nineteen percent of the communes affected by
outbreaks in ruminants during the 1990–91 and 2008–09 epizootics are located in areas with a
predicted seroprevalence higher than 25%. Yet, 24% of the communes affected by these epizo-
otics are located in low risk areas (predicted seroprevalence lower than 10%). Observed and
predicted seroprevalence at the district level are compared in the S1 Appendix.

Discussion
Following the 2008–09 epidemics, studies showed that RVFV spread widely but heteroge-
neously over Madagascar in both cattle and human populations [15,17]. This could be
explained by the presence of ecosystems that are more or less suitable to the RVF candidate
vector genera in Madagascar, including mosquitoes in the Aedes, Anopheles, Culex, Eretmapo-
dites andMansonia genera [25, 28]. Indeed, vector density and population dynamics are influ-
enced by environmental factors such as climate and landscape features [1,25]. However, to
date, environmental factors linked to the transmission of RVFV have never been investigated

Fig 3. Predicted cattle seroprevalence in Madagascar and areas affected by RVF outbreaks in
ruminant during 1990–1991 and 2008-2009. The cattle seroprevalence (SP) was predicted per commune
and according to the best cattle model (Factor 4, cattle density and fixed age 5 years old).

doi:10.1371/journal.pntd.0004827.g003
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in Madagascar. To characterize Malagasy environments, we used MFA methods to generate
environmental indicators that combined climatic, NDVI and landscape variables selected
according to their putative influence on mosquito vector populations. Our MFA classification
is in accordance with the known Malagasy ecosystems [18].

The risk of transmission and respective roles of direct and vectorial transmission are proba-
bly different among eco-climatic areas. In the case of direct transmission the force of infection
is expected to depend on the number of potentially infectious contacts that a susceptible indi-
vidual experiences over a time unit. This contact rate is expected to depend, among others, on
cattle density. A positive association between cattle density and IgG seroprevalence rate in cat-
tle and/or humans would thus suggest a direct transmission of RVFV. In the case of direct cat-
tle to human transmission, the force of infection in the human population is also expected to
depend on the frequency of human behaviors resulting in exposure to ruminant fluids or prod-
ucts. By contrast, in the case of vectorial transmission, due to the so-called “dilution effect” and
for a fixed vector density, increased cattle density would decrease the probability for a suscepti-
ble individual to be bitten by an infectious vector over a time unit [50,51]. Therefore, a negative
association between cattle density and IgG seroprevalence rates in cattle and/or in humans
would rather suggest a vectorial transmission. The force of infection is also expected to increase
with vector density. In Madagascar the density of vectors mostly depends on climatic and land-
scape factors [1,25,28]. High cattle densities are not systematically associated with high vector
densities, as the main RVF vectors breed rather in large water bodies [25] than in artificial con-
tainers created from livestock-related activities. Thus, a positive association between cattle and/
or human seroprevalence, local environmental and climatic conditions favorable to mosquitoes
is expected under the hypothesis of vectorial transmission.

According to our analysis, cattle seroprevalence increased with age suggesting an enzootic
circulation. Cattle seropositivity was positively associated to humid environment (large surface
of permanent wetlands, marshlands and irrigated lands) each of these factors being favorable
to Culex and Anophelesmosquitoes [25]. Actually, during the 2008–09 epidemics, 3 mosquito
species were found to be naturally infected by RVFV: Anopheles coustani, An. squamosus and
Culex antennatus [52]. Cx. antennatus is considered a RVFV vector and both Anopheles species
as candidate vectors [25]. Cattle seroprevalence was also positively associated with cattle den-
sity suggesting the existence of a direct transmission between cattle, as suggested by Nicolas
et al [3,19]. However, in our study cattle density and environmental factors were not indepen-
dent (correlation with Factor 1, Factor 2 and Factor 3). Because of such associations it was
impossible to disentangle the influence of cattle density from the influence of environmental
conditions and thus to thoroughly assess the relative importance of vectorial and direct trans-
mission. The prediction map of cattle seroprevalence highlighted the eastern-coast, western
and north-western parts as high-risk areas. Surprisingly, some districts affected by RVFV out-
breaks are located in the predicted low risk area [13–15]. The last outbreaks were mostly
reported in the highlands, which are highly connected by road to the capital city, Antananarivo.
Outbreaks occurring in isolated areas may have been missed explaining why a low proportion
of outbreaks were located in predicted at-risk areas. On the other hand, enzootic transmission
could have maintained a sufficient level of immunity in cattle in the high risk area restraining
the outbreak magnitude in these regions. RVF could have been introduced in low risk areas
through cattle trade and because of the low level of cattle immunity in these zones, trigger out-
breaks. Nevertheless, as RVF cases were suspected to be under-reported, it was not possible to
assess the relationship between the prediction of the herd immunity and the case notifications.
Using satellite measurements (sea surface temperatures, rainfall and NDVI) and human cases
as model output, Anyamba et al. [29] identified mainly the east-coast and some small areas of
northern and north-western parts as at-risk for 2008–2009 RVF outbreaks in Madagascar.
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Considering that, during the 2008–09 outbreaks, several human cases occurred from the con-
tact with infected fresh meat from traded ruminants [15], all the human infections could not
be attributed to local infection [15]. Moreover, the detection of human cases depends on the
intensity of the local circulation between ruminants and vectors, the probability of human
exposure, the presence of clinical signs and the declaration to health services. Then, the human
case data were probably not an optimum indicator of spatial distribution of RVF cases as sug-
gested by Anyamba et al. [29]. Our prediction map is based on cattle for which the infection
could be attributed to a local infection and identifies larger at-risk areas on western part of
Madagascar than Anyamba et al. [29]. The discrepancy between results of Anyamba et al.
study [29] and our study may be due the methodological differences: environmental variables
included in both models and human clinical cases as model output on one side, bovine serolog-
ical results on the other hand.

The estimated overall human seroprevalence was 9.5% (IC95% [8.2–11.0]). This seropreva-
lence is higher than adult seroprevalence observed in the island of Mayotte (2011) and Tanza-
nia (2007–08) [24,53] but lower than adult seroprevalence in Kenya or Saudi Arabia [54,55].
Additionally, this seroprevalence is higher than the seroprevalence estimated for Madagascar
in Gray et al [21]. The difference in the sampling area could explain this difference. Indeed,
sera from the study of Gray et al. [21] were mainly sampled in south where RVF seroprevalence
in human is low. Because of the different eco-epidemiological contexts and survey settings it is
difficult to compare our results with the studies performed in Mayotte, Tanzanian, Kenya and
Saudi Arabia [24, 53–55]. Human RVF seropositivity increased with age, suggesting an
endemic transmission in human populations. As observed in cattle, human seropositivity was
positively associated with the presence of temporary and artificial water points. In addition, 24
seropositive individuals declared no contact with ruminant or ruminant products, and the 3
mosquito species considered as potential vectors in Madagascar are zoo-anthropophilic feeders
[25,52]: these results strongly suggest the existence of a vectorial transmission from ruminant
to humans. Our analysis showed that frequent contact with raw milk contributed to explain
human infection as previously suspected in Kenya [31]. Direct contact with fresh blood was
not identified as human related risk factor whereas this way is suspected to be the main route
of human infection in other studies [31]. In our sample, the number of people in contact with
fresh blood was very low resulting in a low statistical power. However, this way of transmission
has still to be considered, especially in the areas unfavorable to mosquitoes where direct contact
could explain human infections [15].

Our integrated approach analyzing environmental, cattle and human datasets allow us to
bring new insight on RVF transmission patterns in Madagascar. The association between cattle
seroprevalence, humid environments and high cattle density suggests that concomitant vecto-
rial and direct transmissions are critical to maintain RVFV enzootic transmission.

Even if the 2008–09 outbreaks are suspected to be associated with infected domestic animals
imported from east Africa [56], our study confirms that enzootic and endemic circulations
occur in Madagascar as suggested before [3,12,21].

The identification of at-risk environments is essential to focus veterinary surveillance and
control of RVFV. Because of the variety of ecosystems and socio-cultural practices inMadagas-
car, it is likely that some areas are more favorable to direct transmission [3,19], while others are
more favorable to vectorial transmission or to both transmission pathways. In the at-risk humid
environment of the western, north-western and the eastern-coast areas, suitable for Culex and
Anophelesmosquitoes, vectorial transmission probably occur in both cattle and human. In the
future, mathematical modeling may be used to decipher the relative contribution of each trans-
mission pathway in both human and ruminants, integrate the role of animal trade in disease
spread in the Malagasy context, and thus propose adapted surveillance and control measures.
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