J. Wong, M. Hezareh, and H. Gunthard, Recovery of Replication-Competent HIV Despite Prolonged Suppression of Plasma Viremia, Science, vol.278, issue.5341, pp.1291-1295, 1997.
DOI : 10.1126/science.278.5341.1291

R. Davey, . Jr, N. Bhat, and C. Yoder, HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression, Proceedings of the National Academy of Sciences, vol.278, issue.5342, pp.15109-15114, 1999.
DOI : 10.1126/science.278.5342.1447

G. Dornadula, H. Zhang, and B. Vanuitert, Residual HIV-1 RNA in Blood Plasma of Patients Taking Suppressive Highly Active Antiretroviral Therapy, JAMA, vol.282, issue.17, pp.1627-1632, 1999.
DOI : 10.1001/jama.282.17.1627

P. Harrigan, M. Whaley, and J. Montaner, Rate of HIV-1 RNA rebound upon stopping antiretroviral therapy, AIDS, vol.13, issue.8, pp.59-62, 1999.
DOI : 10.1097/00002030-199905280-00001

D. Richman, D. Margolis, and M. Delaney, The Challenge of Finding a Cure for HIV Infection, Science, vol.191, issue.9, pp.1304-1307, 2009.
DOI : 10.1086/428777

T. Chun, D. Nickle, and J. Justement, Persistence of HIV in Gut???Associated Lymphoid Tissue despite Long???Term Antiretroviral Therapy, The Journal of Infectious Diseases, vol.5, issue.5, pp.714-734, 2008.
DOI : 10.1111/j.1600-065X.1997.tb00966.x

S. Palmer, L. Josefsson, and J. Coffin, HIV reservoirs and the possibility of a cure for HIV infection, Journal of Internal Medicine, vol.26, issue.Suppl 1, pp.550-560, 2011.
DOI : 10.1038/nbt1410

T. Chun and A. Fauci, HIV reservoirs, AIDS, vol.26, issue.10, pp.1261-1268, 2012.
DOI : 10.1097/QAD.0b013e328353f3f1

URL : http://pdfs.journals.lww.com/aidsonline/2012/06190/HIV_reservoirs___pathogenesis_and_obstacles_to.15.pdf?token=method|ExpireAbsolute;source|Journals;ttl|1506884453402;payload|mY8D3u1TCCsNvP5E421JYK6N6XICDamxByyYpaNzk7FKjTaa1Yz22MivkHZqjGP4kdS2v0J76WGAnHACH69s21Csk0OpQi3YbjEMdSoz2UhVybFqQxA7lKwSUlA502zQZr96TQRwhVlocEp/sJ586aVbcBFlltKNKo+tbuMfL73hiPqJliudqs17cHeLcLbV/CqjlP3IO0jGHlHQtJWcICDdAyGJMnpi6RlbEJaRheGeh5z5uvqz3FLHgPKVXJzdN2ziiHhY6wPF9tfA80juns4wmW/vuv6ES7o6SQDZLic=;hash|xIebLt1Etn90JkpggU5IEg==

M. Peluso, F. Ferretti, and J. Peterson, Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load, AIDS, vol.26, issue.14, pp.1765-1774, 2012.
DOI : 10.1097/QAD.0b013e328355e6b2

C. Chan, I. Dietrich, and M. Hosie, Recent developments in human immunodeficiency virus-1 latency research, Journal of General Virology, vol.94, issue.Pt_5, pp.917-932, 2013.
DOI : 10.1099/vir.0.049296-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/94/5/917_vir049296.pdf?itemId=/content/journal/jgv/10.1099/vir.0.049296-0&mimeType=pdf&isFastTrackArticle=

C. Van-lint, S. Bouchat, and M. A. , HIV-1 transcription and latency: an update, Retrovirology, vol.10, issue.1, p.67, 2013.
DOI : 10.1186/1742-4690-10-67

C. Gavegnano and R. Schinazi, Antiretroviral therapy in macrophages: implication for HIV eradication, Antiviral Chemistry & Chemotherapy, vol.20, issue.2, pp.63-78, 2009.
DOI : 10.3851/IMP1374

A. Kumar, W. Abbas, and G. Herbein, HIV-1 Latency in Monocytes/Macrophages, Viruses, vol.3, issue.12, pp.1837-1860, 2014.
DOI : 10.1371/journal.pone.0074414

W. Abbas, M. Tariq, and M. Iqbal, Eradication of HIV-1 from the Macrophage Reservoir: An Uncertain Goal?, Viruses, vol.50, issue.455, pp.1578-1598, 2015.
DOI : 10.1189/jlb.0206126

S. Crowe, T. Zhu, and W. Muller, The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection, Journal of Leukocyte Biology, vol.72, issue.Suppl 1, pp.635-641, 2003.
DOI : 10.1126/science.287.5453.602

M. Stevenson, Role of myeloid cells in HIV-1-host interplay, Journal of NeuroVirology, vol.28, issue.12, pp.242-248, 2015.
DOI : 10.1097/QAD.0000000000000166

L. Montaner, S. Crowe, and S. Aquaro, Advances in macrophage and dendritic cell biology in HIV-1 infection stress key understudied areas in infection, pathogenesis, and analysis of viral reservoirs, Journal of Leukocyte Biology, vol.80, issue.5, pp.961-964, 2006.
DOI : 10.1189/jlb.0206110

E. Eisele and R. Siliciano, Redefining the Viral Reservoirs that Prevent HIV-1 Eradication, Immunity, vol.37, issue.3, pp.377-388, 2012.
DOI : 10.1016/j.immuni.2012.08.010

S. Jorajuria, N. Dereuddre-bosquet, and F. Becher, ATP binding cassette multidrug transporters limit the anti-HIV activity of zidovudine and indinavir in infected human macrophages, Antivir Ther, vol.9, pp.519-528, 2004.

K. Robillard, G. Chan, and G. Zhang, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.58, issue.3, pp.1713-1722, 2014.
DOI : 10.1128/AAC.02031-13

T. Vyas, L. Shah, and M. Amiji, Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites, Expert Opinion on Drug Delivery, vol.79, issue.5, pp.613-628, 2006.
DOI : 10.1023/A:1011050209986

J. Das-neves, M. Amiji, and M. Bahia, Nanotechnology-based systems for the treatment and prevention of HIV/AIDS, Advanced Drug Delivery Reviews, vol.62, issue.4-5, pp.458-477, 2010.
DOI : 10.1016/j.addr.2009.11.017

R. Mallipeddi and L. Rohan, Progress in antiretroviral drug delivery using nanotechnology, Int J Nanomedicine, vol.5, pp.533-547, 2010.

B. Edagwa, D. Guo, and P. Puligujja, Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes, The FASEB Journal, vol.28, issue.12, pp.5071-5082, 2014.
DOI : 10.1096/fj.14-255786

URL : http://www.fasebj.org/content/28/12/5071.full.pdf

A. Kell, K. Slater, and M. Barnes, Functionalised silica nanoparticles stable in serum-containing medium efficiently deliver siRNA targeting HIV-1 co-receptor CXCR4 in mammalian cells, International Journal of Nano and Biomaterials, vol.4, issue.3/4, pp.223-242, 2012.
DOI : 10.1504/IJNBM.2012.051704

S. Mahajan, R. Aslinkeel, and W. Law, Anti-HIV-1 nanotherapeutics: promises and challenges for the future, International Journal of Nanomedicine, vol.7, pp.5301-5314, 2012.
DOI : 10.2147/IJN.S25871

C. Lavigne, K. Slater, and N. Gajanayaka, downregulation of CXCR4 HIV-1 co-receptor, Expert Opinion on Biological Therapy, vol.71, issue.7, pp.973-985, 2013.
DOI : 10.1021/mp700080m

A. Shibata, E. Mcmullen, and A. Pham, Polymeric Nanoparticles Containing Combination Antiretroviral Drugs for HIV Type 1 Treatment, AIDS Research and Human Retroviruses, vol.29, issue.5, pp.746-754, 2013.
DOI : 10.1089/aid.2012.0301

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636590/pdf

D. Guo, G. Zhang, and T. Wysocki, Endosomal Trafficking of Nanoformulated Antiretroviral Therapy Facilitates Drug Particle Carriage and HIV Clearance, Journal of Virology, vol.88, issue.17, pp.9504-9513, 2014.
DOI : 10.1128/JVI.01557-14

A. Guedj, A. Kell, and M. Barnes, Preparation, characterization , and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages, Int J Nanomedicine, vol.10, pp.1-15, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01352158

S. Tsuchiya, M. Yamabe, and Y. Yamaguchi, Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), International Journal of Cancer, vol.42, issue.2, pp.171-176, 1980.
DOI : 10.1016/B978-0-12-427150-0.50168-6

S. Tsuchiya, Y. Kobayashi, and Y. Goto, Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester, Cancer Res, vol.42, pp.1530-1536, 1982.

C. Derdeyn, J. Decker, and J. Sfakianos, Sensitivity of Human Immunodeficiency Virus Type 1 to the Fusion Inhibitor T-20 Is Modulated by Coreceptor Specificity Defined by the V3 Loop of gp120, Journal of Virology, vol.74, issue.18, pp.8358-8367, 2000.
DOI : 10.1128/JVI.74.18.8358-8367.2000

J. Kappes and X. Wu, Cell-based method and assay for measuring the infectivity and drug sensitivity of immunodeficiency virus, pp.4622-4623, 2004.

A. Thierry, S. Abes, and S. Resina, Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.3, pp.364-374, 2006.
DOI : 10.1016/j.bbamem.2005.10.010

S. Faucher, A. Crawley, and W. Decker, Development of a Quantitative Bead Capture Assay for Soluble IL-7 Receptor Alpha in Human Plasma, PLoS ONE, vol.50, issue.8, p.66, 2009.
DOI : 10.1371/journal.pone.0006690.t001

M. Pelletier, A. Bouchard, and D. Girard, In Vivo and In Vitro Roles of IL-21 in Inflammation, The Journal of Immunology, vol.173, issue.12, pp.7521-7551, 2004.
DOI : 10.4049/jimmunol.173.12.7521

F. Binet, H. Cavalli, and E. Moisan, Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis, British Journal of Haematology, vol.83, issue.3, pp.349-358, 2006.
DOI : 10.1007/s00277-004-0920-5

F. Binet and D. Girard, -terminal MAPK but not extracellular signal-regulated kinases-1/2, Journal of Leukocyte Biology, vol.21, issue.6, pp.1613-1622, 2008.
DOI : 10.1073/pnas.0706438104

M. Pelletier, C. Roberge, and M. Gauthier, Activation of human neutrophils in vitro and dieldrin-induced neutrophilic inflammation in vivo, J Leukoc Biol, vol.70, pp.367-373, 2001.

A. Lee, M. Whyte, and C. Haslett, Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators, Journal of Leukocyte Biology, vol.54, issue.4, pp.283-288, 1993.
DOI : 10.1002/jlb.54.4.283

M. Whyte, L. Meagher, and J. Macdermot, Impairment of function in aging neutrophils is associated with apoptosis, J Immunol, vol.150, pp.5124-5134, 1993.

D. Gonçalves, S. Chiasson, and D. Girard, Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles, Toxicology in Vitro, vol.24, issue.3, pp.1002-1008, 2010.
DOI : 10.1016/j.tiv.2009.12.007

F. Antoine, J. Simard, and D. Girard, Curcumin inhibits agent-induced human neutrophil functions in vitro and lipopolysaccharide-induced neutrophilic infiltration in vivo, International Immunopharmacology, vol.17, issue.4, pp.1101-1107, 2013.
DOI : 10.1016/j.intimp.2013.09.024

URL : https://hal.archives-ouvertes.fr/pasteur-01128566

S. Resina, P. Prevot, and A. Thierry, Physico-Chemical Characteristics of Lipoplexes Influence Cell Uptake Mechanisms and Transfection Efficacy, PLoS ONE, vol.4, issue.6, p.6058, 2009.
DOI : 10.1371/journal.pone.0006058.s001

F. Chellat, A. Grandjean-laquerriere, and R. Naour, Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles, Biomaterials, vol.26, issue.9, pp.961-970, 2005.
DOI : 10.1016/j.biomaterials.2004.04.006

URL : https://hal.archives-ouvertes.fr/inserm-00069209

H. Chen, S. Su, and C. Chien, Titanium dioxide nanoparticles induce emphysema-like lung injury in mice, The FASEB Journal, vol.20, issue.13, pp.2393-2395, 2006.
DOI : 10.1096/fj.06-6485fje

N. Grabowski, H. Hillaireau, and J. Vergnaud, Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages, International Journal of Pharmaceutics, vol.482, issue.1-2, pp.75-83, 2015.
DOI : 10.1016/j.ijpharm.2014.11.042

P. Kumarathasan, D. Breznan, and D. Das, Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells, Nanotoxicology, vol.2, pp.148-161, 2015.

E. Thomson, D. Breznan, and S. Karthikeyan, Cytotoxic and inflammatory potential of size-fractionated particulate matter collected repeatedly within a small urban area, Particle and Fibre Toxicology, vol.25, issue.Suppl 1, p.24, 2015.
DOI : 10.1006/meth.2001.1262

C. Olbrich, U. Bakowsky, and C. Lehr, Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA, Journal of Controlled Release, vol.77, issue.3, pp.345-355, 2001.
DOI : 10.1016/S0168-3659(01)00506-5

I. Rivolta, A. Panariti, and B. Lettiero, Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles, J Physiol Pharmacol, vol.62, pp.45-53, 2011.

S. Arora, J. Rajwade, and K. Paknikar, Nanotoxicology and in vitro studies: The need of the hour, Toxicology and Applied Pharmacology, vol.258, issue.2, pp.151-165, 2012.
DOI : 10.1016/j.taap.2011.11.010

A. Elsaesser and C. Howard, Toxicology of nanoparticles, Advanced Drug Delivery Reviews, vol.64, issue.2, pp.129-137, 2012.
DOI : 10.1016/j.addr.2011.09.001

M. Riley, D. Boesewetter, and R. Turner, Comparison of the sensitivity of three lung derived cell lines to metals from combustion derived particulate matter, Toxicology in Vitro, vol.19, issue.3, pp.411-319, 2005.
DOI : 10.1016/j.tiv.2005.01.001

B. Tavitian, S. Marzabal, and V. Boutet, Characterization of a synthetic anionic vector for oligonucleotide delivery using in vivo whole body dynamic imaging, Pharmaceutical Research, vol.19, issue.4, pp.367-376, 2002.
DOI : 10.1023/A:1015133205457

H. Dou, C. Grotepas, and J. Mcmillan, Macrophage Delivery of Nanoformulated Antiretroviral Drug to the Brain in a Murine Model of NeuroAIDS, The Journal of Immunology, vol.183, issue.1, pp.661-669, 2009.
DOI : 10.4049/jimmunol.0900274

M. Zhu, G. Nie, and H. Meng, Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Accounts of Chemical Research, vol.46, issue.3
DOI : 10.1021/ar300031y

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414238/pdf

S. Doktorovova, E. Souto, and A. Silva, Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers ??? A systematic review of in vitro data, European Journal of Pharmaceutics and Biopharmaceutics, vol.87, issue.1, pp.1-18, 2014.
DOI : 10.1016/j.ejpb.2014.02.005

A. Pelchen-matthews, B. Kramer, and M. M. , Infectious HIV-1 assembles in late endosomes in primary macrophages, The Journal of Cell Biology, vol.2, issue.3, pp.443-455, 2003.
DOI : 10.1128/JVI.75.6.2982-2992.2001

M. Schmutz, D. Durand, and A. Debin, DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage, Proceedings of the National Academy of Sciences, vol.349, issue.6309, pp.12293-12298, 1999.
DOI : 10.1038/349475a0

A. Thierry, V. Norris, and F. Molina, Lipoplex nanostructures reveal a general self-organization of nucleic acids, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.5, pp.385-394, 2009.
DOI : 10.1016/j.bbagen.2009.03.017

URL : https://hal.archives-ouvertes.fr/hal-00431779

Y. Chiu, A. Ali, and C. Chu, Visualizing a Correlation between siRNA Localization, Cellular Uptake, and RNAi in Living Cells, Chemistry & Biology, vol.11, issue.8, pp.1165-1175, 2004.
DOI : 10.1016/j.chembiol.2004.06.006

S. Berezhna, L. Supekova, and F. Supek, siRNA in human cells selectively localizes to target RNA sites, Proceedings of the National Academy of Sciences, vol.110, issue.2, pp.7682-7687, 2006.
DOI : 10.1016/S0166-0934(03)00134-4

C. Lavigne and A. Thierry, Specific subcellular localization of siRNAs delivered by lipoplex in MCF-7 breast cancer cells, Biochimie, vol.89, issue.10, pp.1245-1251, 2007.
DOI : 10.1016/j.biochi.2007.05.002

B. Chen, W. Xu, and R. Pan, Design and characterization of a new peptide vector for short interfering RNA delivery, Journal of Nanobiotechnology, vol.2014, issue.1
DOI : 10.1155/2014/257040

G. Kenny, A. Bienemann, and A. Tagalakis, Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the Brain, Biomaterials, vol.34, issue.36, pp.9190-9200, 2013.
DOI : 10.1016/j.biomaterials.2013.07.081

A. Tagalakis, G. Kenny, and A. Bienemann, PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes, Journal of Controlled Release, vol.174, pp.177-187, 2014.
DOI : 10.1016/j.jconrel.2013.11.014

W. Cho, R. Duffin, and M. Bradley, Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles, Particle and Fibre Toxicology, vol.10, issue.1, p.55, 2013.
DOI : 10.1136/oem.2005.024802

D. Gonçalves and D. Girard, Zinc oxide nanoparticles delay human neutrophil apoptosis by a de novo protein synthesis-dependent and reactive oxygen species-independent mechanism, Toxicology in Vitro, vol.28, issue.5, pp.926-931, 2014.
DOI : 10.1016/j.tiv.2014.03.002

G. López-rincón, A. Pereira-suárez, D. Toro-arreola, and S. , Lipopolysaccharide induces the expression of an autocrine prolactin loop enhancing inflammatory response in monocytes, Journal of Inflammation, vol.10, issue.1, p.24, 2013.
DOI : 10.1073/pnas.092160699

A. Schildberger, E. Rossmanith, and T. Eichhorn, Monocytes, Peripheral Blood Mononuclear Cells, and THP-1 Cells Exhibit Different Cytokine Expression Patterns following Stimulation with Lipopolysaccharide, Mediators of Inflammation, vol.60, issue.4, p.697972, 2013.
DOI : 10.1016/j.cellimm.2010.02.017

URL : http://doi.org/10.1155/2013/697972

J. Simard, F. Vallieres, and R. De-liz, Silver Nanoparticles Induce Degradation of the Endoplasmic Reticulum Stress Sensor Activating Transcription Factor-6 Leading to Activation of the NLRP-3 Inflammasome, Journal of Biological Chemistry, vol.20, issue.9, pp.5926-5939, 2015.
DOI : 10.4049/jimmunol.1303424

URL : https://hal.archives-ouvertes.fr/pasteur-01352655

C. Lavigne, J. Yelle, and G. Sauvé, Lipid-based delivery of combinations of antisense oligodeoxynucleotides for the in vitro inhibition of HIV-1 replication, AAPS PharmSci, vol.3, issue.1, p.7, 2001.
DOI : 10.1208/ps030107