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Abstract

Microbial drinking water quality can be altered in large buildings, especially after stagnation.
In this study, bacterial profiles were generated according to the stagnation time and the vol-
ume of water collected at the tap. Successive volumes of cold and hot water were sampled
after controlled stagnation periods. Bacterial profiles revealed an important decline (> 2 log)
in culturable cells in the first 500 mL sampled from the hot and cold water systems, with a
steep decline in the first 15 mL. The strong exponential correlation (R? > 0.97) between the
culturable cell counts in water and the pipe surface-to-volume ratio suggests the biofilm as
the main contributor to the rapid increase in suspended culturable cells measured after a
short stagnation of one-hour. Results evidence the contribution of the high surface-to-vol-
ume ratio at the point of use and the impact of short stagnation times on the increased bacte-
rial load observed. Simple faucets with minimal internal surface area should be preferred to
minimize surface area. Sampling protocol, including sampling volume and prior stagnation,
was also shown to impact the resulting culturable cell concentration by more than 1000-fold.
Sampling a smaller volume on first draw after stagnation will help maximize recovery of
bacteria.

Introduction

Drinking water microbial quality is regulated and monitored prior to, and throughout, munic-
ipal distribution systems, ensuring quality water is delivered to the consumer’s premise plumb-
ing [1] and regrowth of microorganisms is minimized. However, monitoring of microbial
quality after stagnation in premise plumbing is generally not performed, despite the significant
quality alterations that can occur, especially within large buildings [2-4]. Biofilm formation,
periodical stagnation, high surface-to-volume ratios, favorable temperatures and pipe materi-
als are factors that can promote bacterial growth in premise plumbing [5, 6].

In healthcare building premise plumbing, culturable bacteria levels are used as an indicator
of the risk for opportunistic pathogen infections, as illustrated by infection prevention
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guidelines for Legionella pneumophila and Pseudomonas aeruginosa [7-9]. In France, an
increase of culturable cells by more than 1 log between the cold water infeed and the point-of-
use is considered an abnormal variation and indicative of regrowth within the system [7]. Het-
erotrophic plate counts (HPC) were found to be a reliable indicator to monitor regrowth in
the drinking water environment, together with more specific Aeromonas and Mycobacterium
measurements [10]. Culturable cell counts are valuable to identify under which conditions the
abundance of microorganisms can increase in premise plumbing water. However, culture-
based methods do not provide indications on the presence of viable but non culturable
(VBNC) cells in full scale distribution systems and premise plumbing [11, 12]. VBNC cells
may present a health risk as they retain and are able to regain virulence, together with their cul-
turability, under suitable conditions [13].

Previous studies reported microbial amplification in distal points of large building premise
plumbing, with 5- to 30-fold increases observed in HPC between the plumbing system and the
points-of-use [5, 14, 15]. The distal points refer to points of use such as taps and showers, and
their connection to the principal water distribution system. Comparisons are typically done
between a first flush sample of 1 liter at a point-of-use and a sample from the principal water
system taken after flushing (1 to 5 minutes). Culturable and viable bacterial profiling in full
scale buildings show a decrease from the first liter and then progressively with flushing in the
cold and hot water from premise systems [2, 16, 17]. These observations raise important ques-
tions with regards to the choice of sampling strategy, especially the use of flushing and the sam-
pling volume, which could greatly affect the results obtained.

Previous investigations on the role of water stagnation in the distal microbial load increase
have revealed the importance of overnight inactivity [2, 16, 18]. The hypothesis is that amplifi-
cation is caused by a combination of bacterial growth, bacterial cell detachment and sloughing
from the biofilm during stagnation and flow. The risk of exposure to bacteria can be reduced
by implementing a practice of flushing taps for 1 to 5 min before use, a procedure recom-
mended in areas inactive for prolonged periods of times [9]. However, extended flushing of all
faucets after overnight stagnation can be time-consuming, especially in large buildings with
multiple points-of-use such as in healthcare facilities. In addition, the impact of shorter stagna-
tion periods frequently occurring throughout the day is poorly documented. There are very
few reports of the impact of stagnation on the microbial profiles in the first liters of hot water
[19].

The main objective of the present study was to establish the bacterial load profile in cold
and hot water systems according to the stagnation time and the volume of water collected at
the point-of-use, in order to define an optimum sampling protocol and better interpret sam-
pling results. The results will also reveal where are located the bacteria in the premise plumbing
and if short stagnation periods encountered throughout the day impact bacterial loads in the
water.

Materials and methods
Description of the study site

The study was performed in a ten-story 450 bed children’s hospital in Canada (45°30’10"N,
73°37°26"W), fed by chlorinated surface filtered drinking water. The cold water system was
sampled in July 2012 with an incoming municipal water mean temperature of 26.2°C, a mea-
sured residual chlorine of 0.4 mg Cl,/L, an average of 5x10”> CFU/mL and 7x10° viable cells/
mL. The mean water temperature exiting the heater and feeding into the hot water system was
61.6°C and the residual chlorine concentration was below 0.1 mg Cl,/L. The hot water system
was sampled between November and December 2012.
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Sampling protocol

The sampling was conducted separately for cold and hot water systems, on two designated
manual taps that were dedicated exclusively to the study throughout its duration, without addi-
tional water usage. Hot and cold water systems were sampled in separate events to ensure con-
trolled stagnation of the first liter. Each water system was sampled twice at each tap for each
stagnation time. An initial flush of 5-min was conducted on the tap prior to the start of stagna-
tion. Sampling was performed immediately upon opening the water, without prior sterilization
of the tap, after 1, 24, 48, 72, 120 and 240 hours of controlled stagnation, for a total of 6 sam-
pling events for each water system (hot and cold). For each sampling event at a tap, successive
separate volumes composing the first liter were sampled in sterile 50 mL tubes or propylene
bottles: 1% volume of 15 mL, 2™ volume of 35 mL, 3" volume of 200 mL, 4™ volume of 250
mL, 5% volume of 500 mL (Fig 1). Two additional samples of 250 mL were collected after 2 L
and 5 L of flow. The last sample was collected after 5 min of flow, corresponding to an average
volume of 9.1 L, at an average flow rate of 0.9 L/min. A low flow rate was set to facilitate the
collection of small volumes within the first liter. The flow was not changed during sampling to
avoid change of flow regime. Sampling volumes and flush times were selected as representative
of different sections within the premise plumbing (Fig 1), based on the studied system archi-
tecture: the first volume (15 mL) corresponds to the water within the body of the faucet; the

Wall Surface-to-
— 7 volume ratio
]
} 15mL| #1 n49
] 3.6
35mL|  #2
#1to#5
= #3 3.1
1% liter #4 — 200 mL
250 mL Flexible
A _J\_connecting pipe -
2.6
to
El Copper
% connecting pipe 3.1
#5 500 mL
1.6
to
25

250 mL
#6 I}aﬂer 2L of flow
Vertical riser

250 mL
#7 after 2 min.

#8

- 250 mL
after 5 min.
I

Main horizontal pipe

Fig 1. Sampling sequence illustrating the origin of the water within the premise plumbing, and estimated surface-
to-volume ratio for each section.

https://doi.org/10.1371/journal.pone.0199429.g001
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second volume (35 mL) corresponds to the water that stagnated within the tap connection; the
third volume (200 mL) is indicative of the water that stagnated in the flexible connecting pipes
between the faucet and the wall; the fourth volume (250 mL) is associated to the water in the
copper pipe, connecting to the vertical riser; the fifth volume (500 mL) and samples collected
after 2L and 5 L of flow represent water from the vertical riser. The last sample was collected
after 5 min of flow and is representative of the main horizontal pipe. Based on the system
architecture, it was estimated that the first 500 mL only were subject to controlled stagnation,
as this section of the plumbing is specific to the tap. The other volumes were representatives of
pipes that fed water to multiple outlets and didn’t experience full stagnation. The protocol was
submitted and authorized by the head of the hospital department of microbiology and immu-
nology and the director of technical services.

Full dechlorination of samples was achieved through the addition of sodium thiosulfate in
the sampling container (final concentration 1.1 mg/L). The concentration of thiosulfate was
optimized to ensure full dechlorination and yet minimize interferences with epifluorescence-
based methods. For each sampled volume, HPCs, direct viable and total bacterial cell counts
were assessed as described in the microbiological analysis section. Temperature, pH and resid-
ual chlorine were measured immediately following the first liter for each sampling event.
Residual chlorine concentrations were measured with a Pocket Colorimeter II (HACH, USA).
For hot water, temperature was also measured after the last sampled volume (5-min flush).

Microbiological analysis

All samples were maintained at 4°C during storage and transportation, and analyzed within 24
hours from sampling. Heterotrophic plate counts (HPCs) were performed on R2A agar at
22°C, after 7 days of incubation according to method 9215-D [20]. Viable and total cell counts
were determined by fluorescence microscopy following staining with the LIVE/DEAD Bac-
Light Bacterial Viability Kit (Molecular Probes, Eugene, USA) [21]. This kit differentiates
intact (viable) from damaged cells using membrane integrity criteria. Briefly, 1 mL of sample
or dilution in 0.85% sterile saline solution was mixed with 3 pl of stain (propidium iodide and
SYTO?9), incubated in the dark for 15 min and filtered on a black 0.2 um pore diameter, 25
mm diameter polycarbonate filter (Millipore, Bedford, USA). Enumeration was done with an
epifluorescence microscope (Olympus) at 1000-fold magnification, on ten fields of view. Total
bacterial cells are defined as the sum of intact (green) and damaged (red) cells.

Results & discussion

In this study, water quality profiles were systematically performed at two taps, in cold and hot
water systems from a large building. Variable controlled stagnation time periods were induced
to understand the impact on water microbial quality for both cold and hot water systems. As
described in Fig 1, different volumes were sampled successively during flushing of the tap to
understand the contribution of each plumbing section on water quality.

Culturable, viable and total cell profiles observed in cold and hot water

Culturable, viable and total cell profiles were determined in cold and hot water after stagnation
times between 1h and 10 days. The pH and the chlorine residual were measured over time at
each tap and in each water system. pH ranged between 7.5 and 8.1 (mean 7.8) and the chlorine
residual measured after the first liter was between 0.05 and 0.45 mg Cl,/L (mean 0.25 mg Cl,/
L) in cold water, and <LD-0.07 mg Cl,/L (mean 0.02 mg/L) in hot water. These variations in
pH and chlorine residuals are within previously reported range in water samples collected
from large building premise plumbing [22, 23]. Water temperature measured after 1 L of flow
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Fig 2. Mean HPC, viable and total cell count profiles from 2 taps for different stagnation times. Mean bacterial
loads in water were evaluated in successive volumes of cold and hot water sampled from 2 taps. In cold water, (a)
culturable, (c) viable and (e) total cells were plotted for stagnation time of 1 hour, 1, 2, 3, 5 and 10 days. Results
measured in hot water are also shown for (b) culturable, (d) viable and (f) total cells.

https://doi.org/10.1371/journal.pone.0199429.g002

ranged between 24.1 and 27.7 °C (mean of 23.6°C) in cold water and between 24.6 and 47.5°C
(mean of 35.5°C) in hot water. The large variation observed in the hot water temperature after
one liter was attributed to tap location within the building. At the time of sampling, the hot
water distribution system was poorly balanced hydraulically and hot water temperature at the
tap varied depending on its location within the hospital [22]. As a result, the maximum hot
water temperature for each of the two taps differed by close to 10°C (44.1 and 53.9°C).
Culturable bacteria profiles for all stagnation times were fitted with a power regression with
a good correlation in cold water (R* = 0.87-0.99) and hot water (R* = 0.72-0.95). A rapid
decline in culturable bacterial cell counts was observed in the first part of the profile in cold
and hot water, between 0 and 0.5 L (Fig 2A and 2B). This volume corresponds to the pipe sec-
tion attached upflow of the tap, and therefore experiencing full stagnation between samplings.
In large buildings, stagnation of a given device will reflect on the volume of water within the
faucet and immediate connecting piping to that device, while the rest of the system might cir-
culate due to usage at other devices (cold and hot water) or forced recirculation (hot water).
The steepest slope decline is observed in the first 15 mL, corresponding to the water volume
contained in the faucet, where the surface-to-volume ratio is maximum (Fig 1). The higher
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Fig 3. Culturable cell concentration after 1-hour stagnation as a function of surface-to-volume ratio in cold and
hot water. An exponential correlation was observed between the HPC level and the surface-to-volume ratio
corresponding to the section of the plumbing to which sampled water was associated. This was observed for both
sampled taps in cold water (o: Tap 1, R?=0.99; o Tap 2, R? = 0.98) and hot water (®: Tap 1, R%?=0.98; m: Tap 2, R?=
0.97).

https://doi.org/10.1371/journal.pone.0199429.9003

culturable cell counts per ml observed in this sample is likely associated with an increased pres-
ence of biofilm. The capacity for biofilm growth in piping and faucets is mainly determined by
the surface available for colonization and the nature of the material [24-26]. Faucets contain a
large number of internal parts (ball, cylinder or cartridge assembly) and seals in contact with
water (S1 Fig). These assemblies result in recesses and crevices that add up to large projected
surfaces, providing more attachment sites for biofilm development. In addition to the large
surfaces present, wetted elements within faucets are generally made of various plastic and elas-
tomeric materials that are favorable to biofilm growth [24, 27].

To better understand the contribution of the biofilm to the high culturable cell counts
observed at the faucet, surface-to-volume ratios were calculated for the various sections of the
device plumbing corresponding to the first 500 mL of sampled water. A plot of culturable cell
counts against the average surface-to-volume ratio reveals an excellent exponential correlation
after one-hour stagnation (Fig 3, R*> > 0.97) and similar trends for longer stagnation time (S2
Fig, R® = 0.72-0.99). These results strongly suggest that release of biofilm bacteria is an impor-
tant contributor to the increased culturable counts in water collected from the faucet and its
connecting pipes. In healthcare facilities, simple faucets with minimal internal surface areas
and simple or no aerators will reduce surfaces available for biofilm growth [28, 29]. The pres-
ence of flow restriction devices composed of complex structures with large surfaces of plastic
materials are favorable to biofilm growth and can lead to outbreaks or colonization by oppor-
tunistic pathogens [14, 30].

Between 1 L and the 5-minute flush, the culturable cell count in cold water decreased from
7.8 CFU/mL (Fig 2A) to 0.39 CFU/mL (not shown), almost 2 log higher than levels in the
incoming municipal water (5 x 107> CFU/mL). This suggests a contribution of the vertical and
horizontal pipes to the increase observed within premise plumbing, despite a reduced surface-
to-volume ratio and less stagnation due to water usage by other devices driving water circula-
tion. In hot water, culturable cell counts leveled 0.3 to 1.3 log higher than in cold water (Fig 2A
and 2B). In large buildings, hot water must be recirculated in order to maintain target

PLOS ONE | https://doi.org/10.1371/journal.pone.0199429  June 21, 2018 6/14


https://doi.org/10.1371/journal.pone.0199429.g003
https://doi.org/10.1371/journal.pone.0199429

@° PLOS | ONE

Microbial water quality: Stagnation and sampling in large buildings

2%
: | |
3
o
3 1%
S
(&}
S
00/° T é == == - == - - -

0.015 0.05 0.25 0.5 1 2 5 10
Cumulated volume (L)

Fig 4. Percent culturability profiles in cold (light grey) and hot (dark gray) water systems measured at the faucet
(n = 12). The box represents 25-75%, with the median and non-outlier range.

https://doi.org/10.1371/journal.pone.0199429.9004

temperatures throughout the system [31]. Thus, bacterial loads in vertical risers and main hor-
izontal pipes are expected to be relatively uniform throughout the hot water distribution sys-
tem, reflecting the growth conditions in the recirculating loops and the level of dilution
provided by make-up water.

Differences in trends were noted for viable and total cell counts. The dynamic of HPCs was
most notable in a very distal faucet volume, and somewhat controlled by flushing of the first
500 mL. However, viable and total cell count profiles did not display a similar decline in the
first 500 mL (Fig 2C and 2E), suggesting that flushing a larger volume of water is required to
reduce viable and total cell counts after stagnation in cold water. Profiles were comparable for
all stagnation times in cold water, except after one-hour stagnation (Fig 2C and 2E). For stag-
nation times of 1 to 10 days, viable cell counts decreased by 1.6+0.3 log between the first 15 mL
and 5 minutes of flushing, reaching levels found in the incoming cold water (7x10> viable cells/
mL). A similar decrease in cell concentration was also observed by Lautenschlager et al.
between the first liter and 5 min flushed samples, after overnight stagnation of cold water [16].
Viable and total cell count profiles in hot water did not decrease with flushing (Fig 2D and 2F).
Viable cell count profiles in hot water were stable and leveled to 2.7x10* cells/mL (Fig 2D),
0.56 log above incoming cold water levels. Similar trends were observed for culturable cells
and suggest a background contamination in the hot recirculating water system.

No correlation was observed between the viable and culturable cell counts in the first 15 mL
sampled from the tap (R* = 0.07, Panel a in S3 Fig), whereas a linear correlation was estab-
lished in flushed samples (R* = 0.69, Panel b in S3 Fig). The lack of correlation in the first 15
mL is associated to the large cell culturability variation observed within this first volume of
water, which is also reflected on the percent of culturable cells measured in the different vol-
umes sampled (Fig 4). High variability was observed in the first 15 mL whereas a low and stable
percent culturability was measured in system water. Environmental stressors such as chlorine
residual, pH, and copper concentrations in the stagnant volume at the tap can affect the recov-
ery of culturable cells without affecting viable cell counts [32, 33]. During stagnation within
the tap, water quality can deteriorate with temperature changes, residual disinfectant con-
sumption, nutrient leaching materials and detachment from the biofilm. The increased corre-
lation observed between culturable and viable cell counts after flushing reflects the more stable
conditions encountered in the circulating water.
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Impact of short stagnation time and biofilm contribution to bacterial load
in bulk water

Overnight or longer stagnation periods drive an increase in culturable cell levels in water from
the tap [2, 16, 18], that can then be reduced through flushing in the morning or after a week-
end [8, 9]. However, short stagnations can occur throughout the day, between water usages.
To understand the impact of short stagnation on the water microbial quality, a one-hour stag-
nation following a 5-minute flush was studied and compared to stagnation periods of one to
ten days. In cold water, the culturable cell concentrations after flushing were 0.9 x 10~" CFU/
mL for tap 1 and 2.7 x 10~ CFU/mL for tap 2. After one hour of stagnation, the tap was sam-
pled and the resulting culturable cell profile was fitted by a power regression (Fig 2A, R* =
0.87), similar to observed profiles after longer periods of stagnation (1 to 10 days). However,
culturable bacteria measured in the first 15 mL of water collected after one hour of stagnation
were 10- to 100-fold lower than after stagnation periods of 24 hour or more (Fig 2A), suggest-
ing the benefit of flushing in the morning or after the weekend.

The similar results measured in cold water after 24-hour to 10-day stagnation (Fig 2A) raise
questions regarding the length of stagnation after which flushing should be performed as a pre-
ventive measure to reduce bacterial load. Current guidelines and regulations require flushing at
a frequency varying from daily to every other week for low use faucets [8, 9, 34]. However, since
bacterial load measured was not systematically higher with increasing stagnation time between
24h and 10-day, investigation should be pursued to confirm the need for daily flushing of infre-
quently used taps or in sections of buildings that are unoccupied vs flushing prior to usage.

In hot water, the initial culturable cell load measured in the first 15 mL was comparable to
levels observed after longer stagnation times: 1.0 x 10° CFU/mL after 1-hour vs a mean value
of 3.0 x 10> CFU/mL for all other stagnation times (Fig 2B). Similar to cold water, the increase
in culturable cells observed after water stagnation within the tap was predominantly within the
first 500 mL of water sampled (Fig 2B).

The increase in culturable cells density in bulk water after a short stagnation can be associ-
ated with several phenomena, including: 1) cell growth; 2) regain of culturability; and 3)
detachment of culturable cells from the biofilm. Although cell growth is a source of increase
reported for prolonged stagnation [16], it is unlikely in the present study due to the short stag-
nation of one hour and considering the average HPC generation rate in drinking water of 7 to
140 hours [35]. A regain of culturability could occur in the faucet, where the absence of chlo-
rine residual and better availability of oxygen provide favorable conditions [13]. However,
documented culturability recovery for drinking water stressed cells occurred over the course
of several hours and is unlikely to be significant within a one-hour period [32, 33]. The most
likely phenomenon to drive the rapid increase in bulk water culturable cell density after short
stagnation is therefore the detachment of bacteria from the biofilm, following two main mech-
anisms: cell dispersion and biofilm erosion [36]. During periods of stagnation, shear stress is
reduced to zero and affects the cell adhesion strength, favoring the release of planktonic bacte-
ria into the water phase [37]. Biofilm erosion or cell sloughing may occur at the end of the stag-
nation period, marked by an increased flow of water susceptible to erode the biofilm cells that
are closest to the bulk water interface [38]. In a previous study, a small increase in flowrate for
a short period of time was sufficient to increase cell detachment by 2 log, resuming to initial
levels within 3 hours or less after the event [39]. Daughter cells produced at the biofilm inter-
face and cells not embedded in the biofilm matrix are prone to dispersion and erosion mecha-
nisms, and would likely be culturable [40].

Repeated release of culturable cells from the biofilm into the water during stagnation would
not significantly affect the biofilm microbial population density despite the slow growth rate
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reported for HPC in biofilms from drinking water [41]. The fraction of bacteria released from
the biofilm is minimal compared to the attached cell counts. In this study, the maximum cul-
turable cells released during one-hour stagnation period in the first 15 mL volume was esti-
mated to 4x10? CFU, a small fraction of the reported biofilm culturable cell densities in
premise plumbing, ranging between 2.8 x 10° CFU/cm” and 3.1 x 10° CFU/cm? [3, 42].

A cell release per unit surface was calculated for each sampled volume using the increment
over a defined period of stagnation. In cold water, the apparent culturable cell released per sur-
face was highest in the first 15 mL and the following 35 mL volumes (Fig 5A), corresponding
to smaller diameter pipes. Viable and total cell release per surface were not affected by the sur-
face-to-volume ratio, but decreased with increasing stagnation time (Fig 5B and 5C). However,
culturable, viable and total cell released within one hour of stagnation were significantly lower
than for all other stagnation times. This was not observed in hot water, where a similar number
of cells were released per surface for the one-hour stagnation time compared to longer stagna-
tion (54 Fig). Warmer water temperature and absence of residual chlorine at the beginning of
the stagnation could explain in part the different dynamic observed between hot and cold
water cell release within the one-hour stagnation period.

Importance of sampling protocol on results interpretation

There is currently no consensus on the sampling volumes to use for the detection of indicators
and opportunistic pathogens such as Pseudomonas aeruginosa and Legionella pneumophila
[43]. The data presented here demonstrate that the sampling protocol, including sample vol-
ume and prior stagnation, will impact the resulting culturable cell concentration measure-
ments. For example, sampling a volume of 15 mL instead of 1 L on first draw led to more than
10-fold higher culturable bacterial levels, whereas sampling after overnight stagnation vs after
a short stagnation led to 100-fold increase (Fig 6). Overall, more than 50% of culturable bacte-
ria in the first liter were recovered in the first 15 mL (3.4 x 10* CFU vs 5.5 x 10* CFU). In a pre-
vious study, we observed similar trends for P. aeruginosa, with concentrations in the first 25
mL six to nine times higher than in the first liter, and a decrease in culturable P. aeruginosa as
a function of water volume flushed from the taps [44]. In a healthcare environment, the
increased contamination in the distal volume is concerning for opportunistic pathogen con-
trol. In such setting, the selection of a small sampling volume on first flush would be preferable
to evaluate distal contamination and to increase chances of bacteria recovery. Furthermore,
sampling during periods of no or low water use will maximize the recovery of planktonic
bacteria.

Conclusion

The strong correlation observed between the surface-to-volume ratio and the bacteria levels
found in the bulk water after one-hour stagnation suggests the biofilm as a major contributor
for water contamination following stagnation. Although this correlation needs to be validated
for other building systems with different water quality or fed by unchlorinated water, this is an
important consideration for healthcare facilities opting for reduced faucet and connecting
pipe diameters to achieve flow reduction or to reduce the volume of water that is not recircu-
lated. Such design choices will lead to increased surface-to-volume ratio, and risk of infection
should be carefully assessed when considering the implementation of water saving actions and
devices. The selection of faucets with minimum internal surface areas, materials with low bio-
film formation potential and minimal stagnant water volume in the faucet and its connecting
pipe would be a valid approach to reduce available surfaces for biofilm growth and to minimize
the bacterial increase associated to stagnation. In case of extended non occupancy of a sector
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Fig 5. Apparent cell release per unit of pipe surface in cold water during stagnation at the tap. Release of bacteria
was calculated based on cell increase over the duration of the stagnation period, for (a) culturable, (b) viable and (c)
total cells.

https://doi.org/10.1371/journal.pone.0199429.9005

of the building, a daily flush may not present additional benefits compared to a weekly flush,
considering the similar bacterial profiles observed in water collected at a tap following stagna-
tion periods between 24-hour and 10 days. However, in presence of low use taps or after
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stagnation of 24h or more, flushing the volume of stagnant water specific to the tap and its
connecting pipes will eliminate a large proportion of the culturable cells. Established bacterial
load profiles evidenced the high level of culturable cells present in water from the tap after stag-
nation periods. Discarding the first flush of water may help reduce exposure to the elevated ini-
tial culturable bacterial load observed, especially in hospital environment where patients are
more vulnerable to opportunistic pathogens. Sampling protocols in healthcare facilities should
take into account the increased distal culturable bacterial load when defining sampling vol-
ume. Consideration should be given to systematically include sample volume and prior stagna-
tion in guidelines and regulations for the control of indicators and opportunistic pathogens in
premise plumbing. Standardized sampling protocols will enable a better risk assessment over
time and better interpretation of results against targeted thresholds for infection prevention.

Supporting information

S1 Fig. Images of a cartridge inside a monolever manual faucet.
(TIFF)

$2 Fig. HPC concentration as a function of surface-to-volume ratio in cold and hot water at
two different taps (Tap 1, Tap 2) for controlled stagnation time of 24h (a), 48h(b), 72h (c),
120h (d) and 240h (e).

(TIF)

S3 Fig. Heterotrophic plate counts correlation with total cell counts (full circle) and viable cell
counts (empty circle) in tap water at a) first flush volume (15 mL) and b) after 2-minute flush.
(TTF)
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S4 Fig. Calculated cell detachment rate in hot water from the tap. Cell detachment rate was
calculated based on the total cell increase over the duration of the stagnation period, for (a)
culturable cells, (b) viable cells and (c) total cells.

(TIF)
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