
HAL Id: pasteur-01912544
https://riip.hal.science/pasteur-01912544

Submitted on 5 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Genetic diversity in two Plasmodium vivax protein
ligands for reticulocyte invasion

Camille Roesch, Jean Popovici, Sophalai Bin, Vorleak Run, Saorin Kim,
Stéphanie Ramboarina, Emma Rakotomalala, Rado Lalaina Rakotoarisonid,

Tsikiniaina Rasoloharimanana, Zo Andriamanantena, et al.

To cite this version:
Camille Roesch, Jean Popovici, Sophalai Bin, Vorleak Run, Saorin Kim, et al.. Genetic diversity in
two Plasmodium vivax protein ligands for reticulocyte invasion. PLoS Neglected Tropical Diseases,
2018, 12 (10), pp.e0006555. �10.1371/journal.pntd.0006555�. �pasteur-01912544�

https://riip.hal.science/pasteur-01912544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Genetic diversity in two Plasmodium vivax

protein ligands for reticulocyte invasion

Camille Roesch1, Jean PopoviciID
1, Sophalai Bin1, Vorleak Run1, Saorin Kim1,
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Abstract

The interaction between Plasmodium vivax Duffy binding protein (PvDBP) and Duffy antigen

receptor for chemokines (DARC) has been described as critical for the invasion of human

reticulocytes, although increasing reports of P. vivax infections in Duffy-negative individuals

questions its unique role. To investigate the genetic diversity of the two main protein ligands

for reticulocyte invasion, PvDBP and P. vivax Erythrocyte Binding Protein (PvEBP), we ana-

lyzed 458 isolates collected in Cambodia and Madagascar from individuals genotyped as

Duffy-positive. First, we observed a high proportion of isolates with multiple copies PvEBP

from Madagascar (56%) where Duffy negative and positive individuals coexist compared to

Cambodia (19%) where Duffy-negative population is virtually absent. Whether the gene

amplification observed is responsible for alternate invasion pathways remains to be tested.

Second, we found that the PvEBP gene was less diverse than PvDBP gene (12 vs. 33

alleles) but provided evidence for an excess of nonsynonymous mutations with the complete

absence of synonymous mutations. This finding reveals that PvEBP is under strong diversi-

fying selection, and confirms the importance of this protein ligand in the invasion process of

the human reticulocytes and as a target of acquired immunity. These observations highlight

how genomic changes in parasite ligands improve the fitness of P. vivax isolates in the face

of immune pressure and receptor polymorphisms.

Author summary

Until recently, P. vivax was thought to infect only Duffy positive individuals, due to its

dependence on binding the Duffy blood group antigen as a receptor for reticulocyte
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invasion and to be absent from parts of Africa where the Duffy-negative phenotype is

highly frequent. However, a number of recent studies from across sub-Saharan Africa

have reported P. vivax infections in Duffy-negative individuals. Invasion into Duffy-posi-

tive reticulocytes is mediated by the P. vivax Duffy binding protein (PvDBP). The mecha-

nism for invasion into Duffy-negative reticulocytes is not known. A homologue of

PvDBP, namely, P. vivax erythrocyte binding protein (PvEBP), has been recently identi-

fied but its role in Duffy independent invasion is not clearly defined. Here, we provide

unique insights into the roles of these two key ligands by studying the genetic diversity of

P. vivax isolates collected from Cambodia, where most of the individuals are Duffy posi-

tive (not all), and Madagascar where both Duffy-positive and Duffy-negative individuals

coexists. Our data suggest that PvEBP may play an important functional role in invasion

into Duffy-negative reticulocytes. PvEBP appears to be a target of naturally acquired anti-

body responses following natural exposure to P. vivax infection and such as a consequence

an important vaccine candidate, together with PvDBP.

Introduction

Plasmodium vivax is a predominant cause of malaria outside Africa, which causes significant

morbidity (estimate of 8.5 million cases in 2016) and places an enormous economic burden on

many resource poor countries [1]. Until recently, vivax malaria was considered a benign infec-

tion compared to P. falciparum, although clinical episodes and regular recurrent infections

cause significant morbidity [2]. Moreover, P. vivax infections can sometimes lead to severe

life-threatening pathologies [3].

Previous data from malaria therapy, which was used extensively for over two decades

(1920–1940) for treatment of neurosyphilis (e.g. paralysis of the insane), as well as experimen-

tal infections of volunteers have demonstrated that individuals of African origin were naturally

resistant to P. vivax infection [4–6]. Thereafter, following identification of the Duffy blood

group [7], it was shown that the Duffy blood group antigen (Fya or Fyb) was not expressed on

red blood cells (RBCs) of individuals of African origin (Duffy-negative) [8, 9]. Seminal works

with controlled experimental infections of volunteers through sporozoite challenge and in
vitro invasion studies using P. knowlesi as a model subsequently established the paradigm that

the Duffy antigen is required for reticulocyte invasion by P. vivax [9–11]. Consequently, vivax

malaria was long thought to be absent from parts of Africa where the Duffy-negative pheno-

type is highly frequent [12].

Host cell invasion by Plasmodium merozoites is a complex, multi-step process that involves

multiple interactions between erythrocyte receptors and ligands on merozoites. Unlike P. fal-
ciparum merozoites, which can use several erythrocyte receptors for invasion, it was thought,

until recently, that invasion of human reticulocytes by P. vivax is completely dependent on the

interaction between the P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy

antigen receptor for chemokines (DARC) [13, 14]. However, over the last decade, two reports

both from Brazil [15, 16] and a growing body of studies conducted in Africa (review in [12])

have reported PCR-positive vivax malaria cases in Duffy-negative individuals. These frequent

observations raise the emerging issue of P. vivax infection in Duffy-negative populations, and

the possibility of alternative invasion mechanism(s). At present, we do not know whether

these clinical reports are common and were previously undetected or if they are due to the

emergence and spread of specific P. vivax strains that use alternative Duffy-independent path-

ways to invade Duffy-negative reticulocytes. Whatever the reason for the increasing frequency

Plasmodium vivax protein ligands
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of observations of P. vivax in Duffy-negative populations, it is a cause for concern and

demands attention.

Recent whole genome sequencing studies of monkey-adapted P. vivax strains and field iso-

lates (all isolates were collected from Duffy-positive patients) have revealed that the PvDBP
gene was duplicated in multiple P. vivax isolates, particularly at high prevalence in Madagas-

car, a setting where Duffy-positive and Duffy-negative individuals coexist [17]. Initially, this

epidemiological pattern suggested that the duplication of this gene was likely associated with

the capability of the parasite to overcome the barrier of Duffy negativity. Since then, this

hypothesis has been challenged by Hostetler et al. [18] who found that PvDBP gene duplica-

tions were widespread even in malaria endemic areas in Southeast Asia where Duffy-negativity

is not present. Another recent study [19] reported evidence of PvDBP gene amplification (3

and 8 copies) in two Duffy-negative Ethiopian isolates. In addition, sequence data generated

from a P. vivax field isolate (C127 isolate from Cambodia), which used reconstruction of long

reads without relying on the reference genome (e.g. the monkey-adapted Salvador I strain),

identified 792 predicted genes [20]. Among them, two contigs contained predicted protein

coding genes similar to known Plasmodium red blood cell invasion proteins. One of these

genes harbored all the hallmarks of a Plasmodium erythrocyte binding protein, including con-

served Duffy-binding like and C-terminal cysteine-rich domains. Further analysis showed that

this gene, which is present in most of studied P. vivax genomes, clustered separately from all

known Plasmodium erythrocyte-binding protein genes [20]. Further functional investigations

demonstrated that the recombinant PvEBP (derived from the C127 PvEBP allele) bound pref-

erentially to immature (CD71high) and Duffy-positive reticulocytes [21]. A minimal binding

was observed with Duffy-negative reticulocytes, and no binding was observed with mature red

blood cells or normocytes. PvDBP and PvEBP were clearly shown to be antigenically distinct.

These findings were slightly modulated in another study that reported that the region II of

PvEBP expressed in COS-7 cells bound both Duffy-positive and Duffy-negative erythrocytes

although at low frequency suggesting that PvEBP may be a ligand for invasion of Duffy-nega-

tive reticulocytes [19].

To gain insight into the natural genetic diversity and polymorphisms in the two main pro-

tein ligands for reticulocyte invasion (PvDBP and PvEBP), we collected and analyzed P. vivax
isolates from two distinct settings: in Cambodia, where the vast majority of individuals are

Duffy-positive[2], and Madagascar where an admixture of Duffy-positive and Duffy-negative

people coexists [22].

Results

Duffy genotyping

Duffy genotyping data were available for 174 samples and all samples were genotyped as

Duffy-positive (T-33C substitution: Cambodia, N = 119, 100% T/T and Madagascar, N = 55,

44% T/T and 56%T/C) (Table 1).

PvDBP gene copy number variation (CNV)

PvDBP CNV was assessed in 458 P. vivax isolates collected in Cambodia (N = 392) and Mada-

gascar (N = 66) (Table 1). PvDBP CNV ranged from 1 to 6 copies. No significant differences

were observed between P. vivax isolates from both countries in the median gene copy number

(1.31 and 1.30 for Madagascar and Cambodia, respectively, P = 0.21, Mann Whitney test) or in

the proportion of isolates carrying multiple copies PvDBP (45.5% for Madagascar and 37.5%

for Cambodia, P = 0.22, Fisher’s exact test). These data confirm that PvDBP amplification is a

common event across isolates from Cambodia and Madagascar (Fig 1).

Plasmodium vivax protein ligands

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006555 October 22, 2018 3 / 17

https://doi.org/10.1371/journal.pntd.0006555


Further analysis showed that the proportion of isolates with multiple copies of PvDBP in-

creased over time in Cambodia: from 16.7% (8/48) in 2003–2004 to 39.8% (142/357) in 2011–

2017 (P = 0.001, Fisher’s exact test). This trend was significant for samples collected from west-

ern provinces (Battambang, Pursat, Pailin, Kampot) (15.2% vs. 36.6%, P = 0.02, Fisher’s exact

test). The proportion of isolates with multiple copies of PvDBP and the median gene copy

numbers for PvDBP were similar between paired isolates collected before a standard 3-day

course of chloroquine (30 mg/kg) (D0) and at the day of recurrence (Dx) occurring during the

2-months follow up in patients relocated in a non-transmission area (D0: 38.5%, 5/13, median

PvDBP copy number = 1.4, IQR: 1.1–2.4 vs. Dx: 23.1%, 3/13, median PvDBP copy number =

1.0, IQR: 1.0–1.5, P = 0.67, Fisher’s exact test and P = 0.40, Mann Whitney test, respectively).

More surprisingly, we observed in Malagasy samples that the proportion of isolates with

PvDBP amplification or the median copy of PvDBP gene was significantly higher in homozy-

gous Duffy-positive individuals (T/T) compared to heterozygous Duffy-positive individuals

(T/C) who are supposed to express less DARC antigen on the surface of their reticulocytes: T/

T: 59.1%, 13/22, median PvDBP copy number = 2.2, IQR: 1.0–3.0 vs. T/C: 27.6%, 8/29, median

PvDBP copy number = 2.0, IQR: 0.9–1.5, P = 0.04 (Fisher’s exact test and P = 0.01, Mann

Whitney test, respectively).

PvDBP gene amplification occurs across multiple alleles

To determine whether PvDBP gene amplification was restricted to specific alleles, PvDBPII

sequences (from codon 184 to codon 468) were determined among 153 Cambodian and 92

Malagasy P. vivax isolates. As already described, PvDBP sequences were found to be highly

polymorphic and multiple alleles were observed both in Cambodia (21 alleles) and Madagascar

(15 alleles) (Fig 2 and S1 Table).

Numerous SNPs already described were observed [23–35]. Four new SNPs (one silent and

three non-synonymous) were detected (K260E, P450R, V453V and P475R). Among the 23

SNPs, some were solely observed in Madagascar (I419M, V453V and I464I) and in Cambodia

(K260E, F306L, I367T, N375D, R378R, S398T, T404R, P450R, P475A/R and Q486E).

Table 1. Number of samples from Cambodia and Madagascar collected before (D0) and after treatment in case of recurrence (Dx) with available data for PvDBP
and PvEBP (SNP and CNV) and Duffy genotyping.

No. of samples with available data for Day of collection Country Year Total

2003 2004 2011 2012 2013 2014 2015 2016 2017

SNPs PvDBP D0 Cambodia 80 18 46 9 153

Dx 0

D0 Madagascar 25 57 10 92

SNPs PvEBP D0 Cambodia 87 17 36 10 150

Dx 0

D0 Madagascar 27 39 3 69

CNVs PvDBP D0 Cambodia 2 46 51 48 73 94 41 17 20 392

Dx 14 14

D0 Madagascar 25 25 16 66

CNVs PvEBP D0 Cambodia 59 42 47 16 20 184

Dx 5 5

D0 Madagascar 23 27 16 66

Duffy genotyping D0 Cambodia 13 17 53 16 20 119

Dx Madagascar 27 24 4 55

Total number D0 Cambodia 2 46 51 48 92 106 54 18 20 437

Dx 19 19

D0 Madagascar 44 67 18 129

https://doi.org/10.1371/journal.pntd.0006555.t001
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SNPs along with the location of binding residues for DARC, identified by previous studies

[36–38], were mapped on to the 3D structure of PvDBPII. Interestingly, majority of the SNPs

were found to be distal from the DARC binding residues, and located on the opposite surface

compared to the binding residues for DARC (Fig 3, Panel A).

A total of 169 P. vivax isolates with both SNP and CNV were available for analysis. Among

them, 76 (45%) had multiple copies PvDBP. Gene amplification was observed in 9/18 alleles

(50%) in Cambodia and in 8/9 alleles (89%) in Madagascar isolates (Fig 4, Panel A). No specific

PvDBP allele was found to have in proportion more isolates than expected with PvDBP gene

amplification, indicating that PvDBP gene amplification can occur across multiple alleles.

PvEBP gene copy number variation (CNV)

PvEBP CNV was determined in 184 Cambodian and 66 Malagasy samples (Table 1). PvEBP
CNV ranged from 1 to 2 copies in Cambodian isolates and 1 to 5 copies in Malagasy samples.

The proportion of multiple copies PvEBP isolates was significantly more frequent in Madagas-

car compared to Cambodia: 56% (37/66) vs. 19% (35/184) (P<10−6, Fisher’s exact test). The

Fig 1. Distribution of PvDBP and PvEBP gene copy number in isolates from Cambodia and Madagascar (Panel A and B, left side). Number of isolates from

Cambodia and Madagascar with single or multiple copies PvDBP and PvEBP genes (Panel A and B, right side). The grey squares represent the medians and

whiskers the IQRs.

https://doi.org/10.1371/journal.pntd.0006555.g001

Plasmodium vivax protein ligands

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006555 October 22, 2018 5 / 17

https://doi.org/10.1371/journal.pntd.0006555.g001
https://doi.org/10.1371/journal.pntd.0006555


median copy number of PvEBP gene was also significantly higher in isolates from Madagascar

compared to Cambodia: 1.6 (IQR: 1.3–2.1) vs. 1.3 (IQR: 0.95–1.4) (P<10−4, Mann Whitney

test) (Fig 1, Panel B).

In Cambodia, the proportion of isolates with multiple copies of PvEBP or the median copy

number of PvEBP gene was higher in high transmission areas located in eastern provinces

(Ratanakiri, Mondulkiri and Kratie): 24% (31/127) vs. 7% (4/57) (P = 0.004, Fisher’s exact test),

respectively and 1.3 (IQR: 1.0–1.5) vs. 1.1 (IQR: 0.85–1.3) (P = 0.003, Mann Whitney test).

PvEBP CNV (proportion of isolates carrying PvEBP amplification or median copy of

PvEBP gene) were similar between paired isolates collected at time of chloroquine treatment

(D0) and on day of recurrence (Dx): D0, 60% (6/10), median PvEBP copy number = 1.6 (IQR:

1.4–1.7) vs. Dx, 50% (2/4), median PvEBP copy number = 1.7 (IQR: 1.0–2.0) (P = 1.0, Fisher’s

exact test and P = 0.83, Mann Whitney test, respectively).

In Malagasy samples, no significant differences in the proportion of isolates with PvEBP
amplification or the median copy of PvEBP gene were observed between homozygous (T/T)

and heterozygous (T/C) Duffy-positives individuals: T/T, 54% (12/22), median PvEBP copy

number = 1.5 (IQR: 1.2–2.2) vs. T/C, 41% (12/29), median PvEBP copy number = 1.4 (IQR:

1.2–1.7) (P = 0.4, Fisher’s exact test and P = 0.3, Mann Whitney test, respectively).

PvEBP gene amplification occurs across multiple limited PvEBP alleles

PvEBP sequences obtained from 150 Cambodian and 69 Malagasy isolates (Table 1) were com-

pared to the reference genome (C127) [20]. Eleven non-synonymous SNPs were observed

Fig 2. Distribution of PvDBP alleles observed in P. vivax isolates collected in Cambodia and Madagascar (Panel A). Phylogenetic tree inferred using the Neighbor-

Joining method (Panel B). Each allele was numbered 1–32 (see S1 Table). The evolutionary distances were computed using the Poisson correction method [56] and

are in the units of the number of amino acid substitutions per site. The analysis involved 33 amino acid sequences. Evolutionary analyses were conducted in MEGA7

[57].

https://doi.org/10.1371/journal.pntd.0006555.g002
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leading to twelve different alleles. Most of them (59%) were the C127-like allele (Fig 5 and S2

Table).

Four SNPs were common to both countries (N233K, D311N, E322K and I463V), three spe-

cific to Madagascar (N200K, C219S and N449K) and four to Cambodia (D268N, E306K,

T421I, S423W). More common alleles were observed between the two countries for PvEBP
compared to PvDBP: half of PvEBP alleles were shared between both countries compared to 1/

11 for PvDBP alleles (P = 0.02). Given that PvEBPII shares homology with DBL domains, the

structure of PvEBPII was modeled based on the structure of PvDBPII (Fig 3, Panel B). The rib-

bon diagrams for the structures of PvDBPII and PvEBPII were superimposed and found to

overlap (Fig 3, Panel C). SNPs were mapped to the PvEBPII structure and were found to be

distributed across the domain. Since the receptor-binding site of PvEBPII remains to be

defined, we were not able to assess whether the binding site was conserved or variable and

deduce if this protein ligand can be targeted by strain transcending inhibitory antibodies to

block receptor binding and invasion by diverse strains.

Fig 3. Mapping of SNPs on the structure of PvDBPII (Protein Data Bank code 4NUU) monomer and PvEBPII.

SNPs present specifically to Cambodian and Madagascar isolates are highlighted in red and blue respectively, whereas

SNPs present in the isolates from both the countries are highlighted in green. Putative binding residues on PvDBPII

are highlighted in orange. Molecular surface diagram of PvDBPII is shown. SNPs and putative binding residues of

PvDBPII are highlighted (Panel A). Predicted structure of PvEBPII is shown as molecular surface diagram and SNPs

are highlighted (Panel B). Helical ribbon representation of PvDBPII (in light blue) and PvEBPII (in light grey) are

superimposed. SNPs and putative binding residues are highlighted (Panel C).

https://doi.org/10.1371/journal.pntd.0006555.g003
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A total of 143 P. vivax isolates with both SNP and CNV data for PvEBP were available for

analysis. Among them, 28 (20%) were found to have PvEBP gene amplification. PvEBP gene

amplification was observed in 6/10 alleles (60%) in Cambodia and in 5/7 alleles (71%) in Mad-

agascar isolates (Fig 4, Panel B). No specific PvEBP allele was found to have in proportion

more isolates than expected with PvEBP gene amplification, indicating that PvEBP gene ampli-

fication can occur across multiple alleles.

Discussion

The work presented here was focused to explore the polymorphism and the copy number vari-

ation of two P. vivax protein ligands involved in invasion into reticulocytes [39]. Unsurpris-

ingly, we observed that SNPs detected in the receptor-binding domain of PvDBPII were

similar to those observed previously. The binding residues for DARC in PvDBPII were con-

served and majority of the SNPs observed were distal to the binding site. In fact, many SNPs

were found on the opposite face of PvDBPII compared to the binding site suggesting that this

surface is under immune pressure during natural infection. Genome sequencing of different P.

vivax isolates collected in various malaria endemic settings had previously revealed that the

PvDBP gene is frequently duplicated [17, 18]. Here, we confirm again that amplification of

Fig 4. Distribution of PvDBP gene copy number of 33 PvDBP alleles in isolates from Cambodia and Madagascar (Panel A).

Distribution of PvEBP gene copy number of 12 PvEBP alleles in isolates from Cambodia and Madagascar (Panel B).

https://doi.org/10.1371/journal.pntd.0006555.g004

Plasmodium vivax protein ligands

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006555 October 22, 2018 8 / 17

https://doi.org/10.1371/journal.pntd.0006555.g004
https://doi.org/10.1371/journal.pntd.0006555


PvDBPII is a common genomic event, which can frequently occur in isolates from areas where

Duffy-negative phenotype is virtually absent such as Cambodia. To encompass the two types

of duplication previously observed [17, 18], we designed a novel quantitative real-time PCR

with a standard curve that enables precise quantification of the number of PvDBP and PvEBP

genes up to 6 copies. Our data confirms the hypothesis that PvDBP amplification is unlikely to

play a role in invasion of Duffy- negative reticulocytes or at least that human Duffy-negative

populations do not specifically select for parasites with multiple copies of gene encoding

PvDBP.

The critical role of PvDBP protein ligand in invasion pathway into human Duffy-positive

reticulocytes is well established while alternative pathways through other parasite protein

ligands involved in the invasion of Duffy-negative reticulocytes are unknown. To date, few

biological investigations seem to support a possible role of the newly described PvEBP protein

ligand in the invasion of Duffy-negative reticulocytes [19, 21, 39]. By exploring its genetic

diversity, we discovered two interesting findings. First, a high proportion of isolates from

Madagascar (56%) where Duffy negative and positive individuals coexist had multiple copies

of PvEBP compared to Cambodia (19%) where Duffy-negative population is virtually absent.

Second, there was evidence for an excess of nonsynonymous mutations and the total absence

of synonymous mutations in PvEBP. Indeed, among the 219 P. vivax tested samples we

observed only eleven non-synonymous point mutations in PvEBP sequences and twelve differ-

ent alleles (S2 Table). SNPs found were distributed across PvEBPII but we were not able to

define whether polymorphism affects the binding site, which remains to be identified. In any

Fig 5. Distribution and number of PvEBP alleles among Malagasy and Cambodian samples (Panel A). Phylogenetic tree inferred using the Neighbor-Joining method

(Panel B). Each allele was numbered 1–11 (see S2 Table). The evolutionary distances were computed using the Poisson correction method [56] and are in the units of

the number of amino acid substitutions per site. The analysis involved 12 amino acid sequences. Evolutionary analyses were conducted in MEGA7 [57].

https://doi.org/10.1371/journal.pntd.0006555.g005
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case, the absence of synonymous mutations clearly reveals that this gene is under strong diver-

sifying selection, as has been shown previously for P. falciparum EBA-175 and PvDBP [40].

The most likely agent driving the diversification of these antigens is the human acquired

immune response. Indeed, we can speculate that novel alleles encoding parasite antigens

occuring in the population would potentially be able to avoid the human immune response

and as such give the parasite a survival advantage leading to the allele’s selection. However, it

remains unclear whether the elevated frequency of C127 allele in the population sample (~62%

and ~52% in Cambodia and Madagascar, respectively) indicates a relatively recent selective

increase of a new variant whose sequence may reflect its ability to avoid immune detection.

Due to a similar type of selection on P. falciparum EBA-175 and P. vivax EBP, our data con-

firms the importance of the newly decribed protein ligand PvEBP in invasion of human reticu-

locytes and as a target of acquired immunity. Furthermore, the role of PvEBP as a protein

ligand is supported by recent serological analysis41,42. These studies have shown that antibodies

against the region II domain of the PvEBP were commonly detected in sera from individuals

in malaria endemic settings such as in Cambodia or in Solomon Islands/Papua New Guinea.

In Cambodia, humoral immune response to PvEBP was found to be higher and longer lasting

compared to PvDBP, making this marker a better candidate to monitor P. vivax infections

[41]. Moreover, Franca et al, in Papua New Guinea identified a significant association between

reduced risk of clinical vivax malaria and levels of antibodies against PvEBP [42].

As for PvDBP, we also assessed the PvEBP gene copy number in our array of isolates and

observed that contrary to PvDBP, isolates from Madagascar, where Duffy negative and positive

individuals coexist, carry more frequently a PvEBP gene expansion. In particular, we detected

in Malagasy isolates a bimodal distribution of parasites with multiple copies of PvEBP that

includes a specific population of parasites with > 3 copies of PvEBP gene that was not found

in Cambodian isolates. Unfortunately, we could not test for association between the PvEBP
gene expansion and their capacity to invade Duffy-negative reticulocytes, as reported recently

by Gunalan et al. for PvDBP [19]. Indeed, among the few P. vivax samples collected from

Duffy-negative individuals we had, we were not able to generate reliable PCR signals, probably

because of the very small amount of DNA reflecting the usually low parasitemia found in these

individuals.

One of the limitations in this work is that the majority of patients likely carry multiple

clones of P. vivax [43, 44]. By using a qPCR approach as we did, we are aware that the PvDBP

and PvEBP estimated gene copy number reflects the major clone contained in each isolate

Next generation sequencing such as single cell DNA sequencing or even droplet PCR approach

should be able to overcome this issue and assess CNV for each clone. Similarly, the Sanger

sequencing technology used in this work to determine the sequences of PvDBP and PvEBP

does allow sequencing only the major clone, preventing us to determine whether each strain in

isolates with multiple copies of PvDBP and PvEBP had similar or different alleles.

In summary, we provide here data regarding the genetic diversity of the PvEBP gene, a

recently described and potential protein ligand involved in invasion into human reticulocytes.

Evidence for positive diversifying selection on the region II domain of the PvEBP was

observed, which is similar to the evidence for diversifying selection on PvDBP region II. These

observations clearly confirm the importance of PvEBP in the invasion process of the human

reticulocyes and/or as a target of acquired immunity. In addition, the high proportion of P.

vivax isolates with multiple copies of PvEBP gene that we found in Madagascar is intriguing

and needs additional in-depth investigations. So far, the association between invasion in

Duffy-negative individuals and P. vivax specific genomic traits (SNP or CNV) mainly relies on

epidemiological associations. Direct evidence through reticulocyte invasion assays in vitro or

in humanized mouse models with P. vivax isolates with diverse alleles and copy numbers of
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PvDBP and PvEBP and human reticulocytes with different Duffy phenotypes will be of great

value in deciphering the molecular basis of Duffy-independent invasion pathway(s) used by P.

vivax.

Materials and methods

Study sites and samples collection

One hundred twenty nine Malagasy P. vivax samples were collected in 2015–2017 through

cross-sectional surveys in the district of Maevatanana, from asymptomatic individuals during

active case detection and from symptomatic patients seeking antimalarial treatment in health

centers located in three communes (Andriba, Antanimbary and Maevatanana). P. vivax infec-

tions were detected using a malaria rapid diagnostic test (CareStart Malaria Pf/pan RDTs,

Accesbio) and, capillary blood samples were spotted into filter papers for each positive case.

In Cambodia, 453 P. vivax isolates were collected in 2003–2017 from symptomatic patients,

seeking antimalarial treatment in health centers located around the country. Malaria diagnosis

was also performed by RDT (CareStart Malaria Pf/pan RDTs, Accesbio) and microscopy.

Venous blood samples were collected from confirmed vivax malaria cases into 5 ml EDTA

tubes. We also included in our analysis, 16 P. vivax isolates collected from recurrences occur-

ring in the 2-months follow up after a standard 3-day course of chloroquine (30 mg/kg) in

patients relocated in a non-transmission area [45].

The study protocols were reviewed and approved by the Cambodian National Ethics Com-

mittee on Health Research (IRB 038NECHR) or the National Ethics Committee in Madagascar

(Ministry of Health, 141/MSANP/CE). All individuals or their parents/guardians provided

informed written consent before sample collection.

DNA extraction and PCR confirmation of vivax malaria

DNA was extracted from blood spots with Instagene Matrix reagent (BioRad, Marnes-la-

Coquette, France) or from whole blood samples using the QIAamp DNA Blood Mini Kit (Qia-

gen, Courtaboeuf, France), according to the manufacturer’s instructions. Molecular detection

and identification of Plasmodium parasites were performed by using real-time PCR targeting

the cytochrome b gene as described previously [46, 47].

SNPs analysis in PvDBP and PvEBP genes

PvDBP and PvEBP sequences were determined by nested PCR targeting the PvDBP region

II and Sanger sequencing (Macrogen, Seoul, South Korea) using the following conditions. A

first round PCR was conducted in 25 μL reactions using DNA, 0.2 μM of primers, 250 μM

each dNTP, 2 mM MgCl2, and 1.25 units Taq Solis DNA Polymerase (Solis BioDyne, Tartu,

Estonia) under the following conditions: 94˚C for 15 min, followed by 40 cycles of 94˚C for

20 s, 56˚C for 40 s, 72˚C for 90 s, and a final extension at 72˚C for 10 min. The nested PCR

was carried out in 55 μL reactions using 2 μL of the primary PCR products diluted at 1/10,

0.40 μM of primers, 250 μM each dNTP, 2.5 mM MgCl2, and 2.5 units Taq Solis DNA Poly-

merase (Solis BioDyne, Tartu, Estonia) under the following conditions: 94˚C for 15 min, fol-

lowed by 40 cycles of 94˚C for 20 s, 60˚C for 20 s, 72˚C for 60 s, and a final extension at 72˚C

for 10 min (S3 Table). Nucleotides and corresponding amino acids were analyzed using the

CEQ 2000 software (Beckman). The sequences generated were compared to PVX_110810

(Pv_Sal1_chr06:976,329–980,090 (+)) for PvDBP and to P. vivax isolate C127 nEBP gene

(KC987954.1) for PvEBP.

Plasmodium vivax protein ligands

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006555 October 22, 2018 11 / 17

https://doi.org/10.1371/journal.pntd.0006555


CNVs analysis of PvDBP and PvEBP genes

PvDBP and PvEBP genes copy numbers were measured relatively to the single copy β-tubulin

gene (housekeeping gene) using a CFX96 real-time PCR thermocycler (Biorad, Singapore).

PCR were performed in 20 μL volumes in a 96-well plate containing 1X HOT FIREPol Eva-

Green qPCR Mix Plus (Solis BioDyne, Tartu, Estonia), 0.5 μM of each forward and reverse

primer and 2 μL of template DNA. Amplifications were performed under the following condi-

tions: 95˚C for 15 min, followed by 45 cycles of 95˚C for 15 s, 60˚C for 20 s, and 72˚C for 20 s.

PvDBP and PvEBP genes copy numbers were estimated in triplicate relative to a standard

curves by using synthetic genes cloned in pEX-A2 vector (Eurofins Genomics, Greece) (β-
tubulin, PvDBP, PvEBP) mixed at different ratio from 1:1 up to 1:6 (1 copy of β-tubulin and 1

to 6 copies of PvDBP or PvEBP) (S3 Table). The ΔCT method (where CT is the cycle threshold)

was used to determine the number of copies of each sample. In addition, an isolate with one

copy of each gene was used as control. All isolates with copy number estimates of less than 0.5

were discarded. Gene copy number values were rounded up as following: 0.5–1.4 to 1 copy,

>1.5 to 2 copies, >2.5 to 3 copies, >3.5 to 4 copies and>4.5 to 5 copies (S3 Table).

Duffy genotyping

Duffy genotypes were determined by nested PCR and Sanger sequencing (Macrogen, Seoul,

South Korea) as previously described [48]. The inner PCR was conducted in 25 μL reactions

using 3 μL of template DNA, 0.4 μM of primers, 250 μM each dNTP, 2 mM MgCl2, and 1.25

units Taq Solis DNA Polymerase under the following conditions: 94˚C for 15 min, followed by

40 cycles of 94˚C for 30 s, 58˚C for 30 s, 72˚C for 90 s, and a final extension at 72˚C for 10 min.

Outer PCRs detecting mutations in the GATA box (T or C) and in the coding sequence were

carried out in 55 μL reactions using 2 μL of the primary PCR products diluted at 1/10, 0.36 μM

of each primer), 250 μM each dNTP, 2.5 mM MgCl2, and 1.25 units Taq Solis DNA Polymer-

ase under the following conditions: 94˚C for 15 min, followed by 40 cycles of 94˚C for 20 s,

58˚C for 20 s, 72˚C for 60 s, and a final extension at 72˚C for 10 min (S3 Table).

Mapping SNPs on structural models of PvDBPII & PvEBPII

Coordinates of single chain of PvDBP (PDB ID 4NUU) were obtained from Protein databank

[49, 50] and used for mapping SNPs. SNPs were mapped on the PvDBPII structure using Chi-

mera software [51]. In addition, putative binding residues of PvDBPII predicted previously

[36–38] were also mapped on the PvDBPII structure.

The selected primary PvEBPII sequence (allele C127) [20] (S1 Fig) was used for 3D model-

ing prediction (S1 Fig). 3D Model of the PvEBPII domain was determined by homology based

structure prediction online tool using Phyre2 under default mode [52]. 3D structure with max-

imum score was selected and highly flexible N- and C- terminal ends were truncated from the

structure. Refinement of predicted 3D model and minimization of local structural distortions

was performed using ModRefiner [53]. The overall quality of the predicted 3D model was eval-

uated with QMEANDisCo (Qualitative Model Energy ANalysis- Distance Constraint) score.

QMEANDisCo is a tool for assessing the agreement of pairwise residue-residue distances with

ensembles of distance constraints extracted from structures homologous to the assessed model

[54]. SNPs were mapped on the PvEBPII model using Chimera software [51].

Statistical analysis

Data were analyzed with Microsoft Excel and MedCalc version 12 (Mariakerke, Belgium).

Quantitative and qualitative data were expressed as median (IQR) or proportion (%),
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respectively. The Mann-Whitney U test was used for non-parametric comparisons. For cate-

gorical variables, proportions were examined by Chi-squared or by Fisher’s exact tests. Two-

sided p-values of<0.05 were considered statistically significant.

MUSCLE multiple alignment and evolutionary analyses were conducted in MEGA [55]

with 1000 bootstrap replicates. All positions containing gaps and missing data were eliminated.

Phylogenetic reconstructions were performed using neighbor joining (NJ).
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