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Spatial and temporal dynamics 
of malaria in Madagascar
Felana A. Ihantamalala1,2, Feno M. J. Rakotoarimanana1, Tanjona Ramiadantsoa3, 
Jean Marius Rakotondramanga1, Gwenaëlle Pennober2, Fanjasoa Rakotomanana1, Simon Cauchemez4,5,6, 
Charlotte J. E. Metcalf7,8, Vincent Herbreteau2 and Amy Wesolowski9* 

Abstract 

Background: Malaria is one of the primary health concerns in Madagascar. Based on the duration and intensity of 
transmission, Madagascar is divided into five epidemiological strata that range from low to mesoendemic transmis-
sion. In this study, the spatial and temporal dynamics of malaria within each epidemiological zone were studied.

Methods: The number of reported cases of uncomplicated malaria from 112 health districts between 2010 and 2014 
were compiled and analysed. First, a Standardized Incidence Ratio was calculated to detect districts with anomalous 
incidence compared to the stratum-level incidence. Building on this, spatial and temporal malaria clusters were iden-
tified throughout the country and their variability across zones and over time was analysed.

Results: The incidence of malaria increased from 2010 to 2014 within each stratum. A basic analysis showed that 
districts with more than 50 cases per 1000 inhabitants are mainly located in two strata: East and West. Lower inci-
dence values were found in the Highlands and Fringe zones. The standardization method revealed that the number of 
districts with a higher than expected numbers of cases increased through time and expanded into the Highlands and 
Fringe zones. The cluster analysis showed that for the endemic coastal region, clusters of districts migrated southward 
and the incidence of malaria was the highest between January and July with some variation within strata.

Conclusion: This study identified critical districts with low incidence that shifted to high incidence and district that 
were consistent clusters across each year. The current study provided a detailed description of changes in malaria 
epidemiology and can aid the national malaria programme to reduce and prevent the expansion of the disease by 
targeting the appropriate areas.
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Background
Malaria remains a key global health concern and lead-
ing cause of mortality and morbidity worldwide. Global 
control efforts have resulted in a large reduction in the 
morbidity of the disease down from 13% in 2005 to 9% in 
2015 [1]. Despite this progress, there are still an estimated 
214 million cases and 438,000 deaths in 2015, primarily 
in sub-Saharan Africa [2]. Within Madagascar, malaria 
remains a serious public health issue and a leading cause 

for seeking-care at health facilities, although incidence 
initially declined at the beginning of the century (see 
Additional file  1) [3–5]. Although four different species 
of malaria in humans have been observed within the 
country, Plasmodium falciparum remains the most com-
mon cause of illness in children [4].

Malaria control throughout the country is organ-
ized through and performed by the National Malaria 
Control Programme (NMCP). The control program has 
focused on indoor residual spraying (IRS), distribution of 
insecticide-treated nets (LLITNs), intermittent preven-
tative treatment for pregnant women (IPTp) and over-
all improved access to diagnostics and drug treatments 
[6–8] with the majority of these interventions available 
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since 2008. Coverage of these interventions varies across 
the country, for example IPTP is primarily provided in 
endemic areas. LLINs are available throughout the coun-
try with three large distribution campaigns performed 
between 2009 and 2015 with coverage estimated at 82% 
in endemic areas and 38% in low transmission areas [9]. 
IRS has focused on areas with lower transmission (High-
lands and Fringe) with spraying done in five different 
regions. Routine coverage, of which malaria diagnostic 
and treatment is a key component, is provided through a 
national system comprising of hospitals, local health clin-
ics and community health workers. Since 2007, the coun-
try has relied on a network of community health workers 
in 375 communes across the country to assist in the man-
agement of uncomplicated malaria [10–12].”

Since 2009, the number of cases and local epidem-
ics have continued to increase and this has resulted in 
changes in the spatial patterns of malaria [13, 14]. The 
political and economic crisis in 2009 resulted in a lack 
of funds and interruption in supplies to health facilities 
which caused health facilities to scale back the malaria 
control programmes efforts [6]. In conjunction with 
economic changes, natural factors including climate 
change [15], mosquito vector behaviour and resistance 

to insecticides [16], and a weakening of natural immu-
nity [17–19] are also possible causes for the change in 
incidence. This increase in the number of malaria reports 
continues to present day (see Additional file 1) [20].

Although the national trends have been documented, 
in order to optimally target control efforts, an under-
standing of the local heterogeneity in incidence is neces-
sary [21]. Currently, malaria control efforts are stratified 
according to five geographically continuous zones (East, 
West, South, Highlands, and Fringe) roughly based on 
the magnitude of malaria transmission (see Fig.  1). The 
coasts are divided into two endemic zones that vary in 
their transmission season: East (perennial transmission) 
and West (seasonal transmission). The South is charac-
terized by a dry and hot climate prone to episodic out-
breaks with little sustained transmission. The Central 
Highlands are geographically divided into two areas both 
with low, unstable transmission: however, these zones 
represent broad geographic and population areas and 
an effective control strategy will still require an under-
standing of the spatiotemporal distribution of the dis-
ease within these strata. For example, if locations within 
a stratum have highly heterogeneous malaria epidemio-
logical characteristics, a single control policy for this 

Fig. 1 The malaria stratification zones and reported incidence in Madagascar. The health districts (outlined in black) report the number of con-
firmed (by RDT) cases of malaria per month (Additional file 2). In each of the five zones (West—blue, East—red, Highlands—green, South—purple, 
and Fringe—orange), the time series of reported monthly incidence from 2010 to 2014 per strata is shown on this figure
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area based on the mean transmission may underserve 
high transmission areas. Moreover, if key transmission 
hotspot areas can be identified, these locations could be 
targeted to reduce transmission intensity that may be 
impacting other low transmission districts through the 
importation of parasites by human travel [22].

In this study the dynamics of malaria in Madagas-
car between 2010 and 2014 were analysed to derive a 
spatially refined characterization of malaria spatial dis-
tribution in Madagascar with a view to inform control 
strategies. Building off recent work by Howes et  al. this 
study analyses additional heterogeneities of malaria 
transmission within Madagascar [13]. Using reported 
cases of uncomplicated malaria from the Health Manage-
ment Information System (HMIS), first the incidence of 
malaria nationally was analysed and then a Standardized 
Incidence Ratio (SIR) was used to identify districts with 
a higher than expected number of cases based on their 
stratification zone. Next, a clustering method was used 
to identify high transmission clusters both spatially and 
temporally. In particular, how the current strata defini-
tions may or may not accurately reflect the actual spatio-
temporal dynamics of malaria throughout the country 
was investigated. This approach makes it possible to sub-
divide the large spatially homogenous malaria control 
zones into more targeted regions using the spatial and 
clustering of incidence.

Methods
Data
The HMIS provided information on uncomplicated 
malaria from 2010 to 2014 across the country (see Addi-
tional file  2). These data are recorded monthly by the 
HMIS from each primary and secondary health facility 
and aggregated to the health district (N = 112) [23]. This 
study analysed the aggregated district-level data. Only the 
completeness rates of all reports per health centres were 
available in 2010 and 2014 and were respectively 93% [24] 
and 89% [3] suggesting that the majority of health cen-
tres report regularly. Malaria cases are grouped into five 
age classes: less than 1-year-old, between 1 and 4-year-
old, between 5 and 14-year-old, between 15 and 25-year-
old, and above 25-year-old. To further put these results 
in context with current malaria case reports, the number 
of nationally reported cases in 2015 and 2016 from the 
World Malaria Report in 2017 was also used [20]. The 
National Institute of Statistic (INSTAT) further provided 
population and demographic data from 2010 to 2014 per 
district. Since the last population census in Madagascar 
dates from 1993, the INSTAT estimates yearly population 
with a fixed 2.8% national annual growth rate. These data 
are further grouped by 5-year age classes [25].

This study builds on recent work on this question by 
Howes et  al. who used modelled prevalence maps of P. 
falciparum to identify transmission regions (by contrast 
with the NMCP strata) by directly investigating how 
the spatial, temporal, and spatio-temporal dynamics 
independently would identify clusters of districts with 
similar epidemiological patterns [13]. This study further 
focused on how either spatial or temporal dimensions 
of incidence identify different clusters of districts with 
similar epidemiological characteristics. Unlike previous 
work, this study also investigated how these clusters have 
changed over time highlighting the changing nature of 
malaria epidemiology that may help refine the target area 
for malaria control and potential outbreaks.

Crude incidence analysis
First, the national annual incidence of malaria for each 
health district were analysed. For mapping purpose, the 
incidence per 1000 individuals was grouped into four cat-
egories that correspond to the NMCP elimination phase 
classifications: less than 1 (pre-elimination), 1 to less than 
10 (moderate transmission), 10 to less than 50 and 50 and 
above (high transmission) [7].

Standardized incidence analysis
Considering that young people are the most affected by 
malaria in endemic areas and that the age-structure of 
the population varies across the country, the standard-
ized incidence was calculated by taking into account age 
structure. The indirect Standardized Incidence Ratio 
(SIR) method was used which is based on the popula-
tion size and the distribution in each age class per district 
[26–28]. For this analysis, both malaria and population 
data were grouped into four overlapping age classes: 0–4, 
5–14, 15–25 years old, and above 25 years old. Stratifica-
tion-level incidence was calculated for each district i and 
each age class j using: p̂(j) =

∑

i Di

(

j
)

/
∑
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 where 
Di(j) and Ni(j) are the number of malaria cases and popu-
lation size for district i for age class j, respectively. The 
expected number of cases for age class j in a district i is 
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, and the total number of expected cases 
is D̂i =

∑

4

j=1
D̂i(j). Finally, the SIR index for a district i is 

obtained by the following equation:

Districts with anomalous SIR values relative to the 
other districts in the same stratification zone were iden-
tified. Intuitively, a SIR larger (or smaller) than 1 means 
that the observed cases are higher (or lower) than what 
would be expected given its population size and struc-
ture. The numerical value of SIR allows us to quantify 
the magnitude of the difference. The confidence interval 

SIRi =
Di

D̂i
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was calculated for each district assuming that SIR is a 
composite of Poisson and Chi squared distribution [29–
31], and thus approximated the lower (LSIR) and upper 
(USIR) limit of the 95% confidence interval of that distri-
bution by

and

SIRi is significantly larger or smaller than 1 if 
 SIRi  >  USIRi or  SIRi  <  LSIRi. For ease of interpretation, 
SIR values were classified into six categories. A district 
has a high-risk, higher-risk, or highest-risk if the number 
of cases is one to less than two times higher (1 < SIR < 2), 
two times to less than four times higher (2 ≤ SIR < 4), or 
four times higher (4 ≤ SIR) than the number of expected 
cases, respectively. Conversely, a district has a low-risk, 
lower-risk, or lowest-risk if the number of observed cases 
is half to less than one times lower (0.5 ≤ SIR < 1), quar-
ter to less than half times if (0.25 ≤  SIR  <  0.5), or less 
than a quarter times (SIR < 0.25) the number of expected 
cases, respectively.

Cluster analyses
Using the previous SIR analyses, clusters of districts that 
had a higher than expected incidence of malaria were 
identified using the magnitude of cases. For each stratum 
and year, clusters in both space, time, and space–time 
were identified using SaTScan version 9.4.4 [32, 33].

Spatial cluster analysis
A cluster is identified if the observed incidence in a 
given area exceeds the number of expected cases [34, 
35]. For each district centroid, increasing radii are cho-
sen that form a circular window centered at the district 
centroid. The minimum radius is set to zero—this would 
only include the district centroid. The maximum radius is 
chosen to include at most 50% of the district population 
at risk within each stratum. Based on the circular win-
dow, all districts that intersect the window are included 
in a cluster. A cluster is defined if the observed number 
of cases exceeds the expected number. The expected 
number of cases used as a benchmark to define a clus-
ter assumes that the incidence is the same for all districts 
with the stratum. The expected versus observed num-
ber of cases is compared using a log-likelihood ratio test 
assuming a Poisson distribution. The alternative hypoth-
esis is that the risk is higher inside than outside the 
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window. The primary cluster is the district or grouping of 
districts with the highest log-likelihood ratio, calculated 
using a Monte Carlo simulation.

Temporal cluster analysis
Next, temporal clusters were identified by which months 
districts have similarly higher than expected incidence 
values. This approach is similar to the spatial analysis, 
but instead uses time (within the same time window) 
centered at each month to identify clusters. A cluster 
is identified if the observed incidence in a given set of 
months exceeds the number of expected cases within 
that window of time (with a maximum window size of six 
months).

Space–time cluster analysis
Space–time clustering consists of scanning across space 
and time using a cylindrical window where the base is 
centered at the centroid of each district and the height 
corresponds to time aggregation of 1 month. The princi-
ple is similar to spatial clustering with at most 50% of the 
total population allowed in a single cluster. The space–
time clusters were detected if the number of observed 
cases with a time window (range 1–6 months) exceeded 
significantly that of the expected based on the values 
within the stratification zone.

Results
Crude incidence analysis
The national analysis confirmed that the crude incidence 
of malaria in Madagascar increased between 2010 and 
2016 from 14 per 1000 to 20 per 1000. The highest inci-
dence was in 2015 with a value of 32 per 1000 and the 
lowest was 12 per 1000 in 2011 (Additional file  1). The 
incidence is also spatially heterogeneous with different 
seasonal patterns across the country (Fig.  1). Overall, 
the highest incidence values were in the East, which also 
receives the largest amount of rainfall throughout the 
country [36], with minimum of 0.64 per 1000 in August 
2013 and the maximum 10 per 1000 in February 2012, 
followed by the West between 0.67 per 1000 in Decem-
ber 2011 and 5.63 per 1000 in April 2013, and the South 
with minimum of 0.23 per 1000 in October 2011 to 3.44 
per 1000 in March 2013. The Fringe varied between 0.12 
per 1000 in August 2012 to 2.71 per 1000 in March 2013 
and has intermediate incidence values. In the Highlands 
that consistently has the lowest values, the minimum 
value of incidence is 0.05 per 1000 in August 2013 and 
the maximum is 0.41 per 1000 in April 2014. Incidence in 
the East, Highlands, South, and Fringe peaked between 
January and May, with the lowest values from July to Sep-
tember. For the West and Fringe, the peak of incidence 
was in 2013 in May and in April respectively—April 2012 



Page 5 of 13Ihantamalala et al. Malar J  (2018) 17:58 

and March 2014 in the East—June 2013 and May 2014 
in the Highlands and in May 2012 and April 2013 in the 
South. The incidence per age-class is the highest in chil-
dren under 15 years old in all areas aside from the Cen-
tral Highlands (see Additional file 2). In these areas, the 
temporal trends in age-specific incidence was consistent 
with the broader regional pattern. However, in the High-
lands there was increased temporal variability amongst 
age classes.

The incidence per year in the majority of districts 
(~ 53/112 districts) ranged from 10 to 50 per 1000. The 
highest incidence districts (≥  50 per 1000) were found 
along the coasts (West and East), and the magnitude 
of incidence remained fairly consistent between years 
(Fig. 2). From 2010 to 2014, the number of high incidence 
(≥ 50 per 1000) districts increased in the West, whereas it 
remained stable in the East, although the location of high 
incidence districts varied. Consistently, the Highlands 
stratum that includes the capital city of Antananarivo 

Fig. 2 The annual incidence per 1000 of malaria from 2010 to 2014 per district. Malaria incidence was classified into four groups according to the 
malaria elimination phase: pre-elimination—green, moderate and high transmission—shades of red. There is substantial heterogeneity in incidence 
per strata (outlined in black) regarding crude incidences over the years. Yellow stars represent district with incidence above 100 per 1000. Consist-
ently, the lowest incidence of malaria was found in the Fringe and the Highlands. Most of district colored in red are in the coastal zone (East and 
West)
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(Fig.  1) had the lowest incidence districts with many of 
the districts (7/20 in 2010 and 10/20 in 2014) considered 
in the pre-elimination phase.

Standardized incidence analysis
The Standardized Incidence Ratio (SIR) was used to iden-
tify how malaria patterns changed within each stratum 
since 2010. Overall, the number of high-risk districts 
increased from 41 in 2010 to 53 in 2014 (Additional 
file  3). Within each stratum, the location of high-risk 

districts are spatially heterogeneous with an overall con-
centration in the southern area of each stratum (Fig. 3). In 
the South and Fringe, there was no clear spatial aggrega-
tion of high or higher than expected risk districts (Fig. 3). 
In the Highlands, there were consistently many low-risk 
districts and few high-risk districts. Only the capital dis-
trict of Antananarivo was classified as higher-risk in 2010 
(SIR =  3.82; 95% CI 3.76–3.87) and 2011 (SIR =  3.12; 
95% CI 3.07–3.19), three new districts joined that cat-
egory by 2014. In the West, the number of districts that 

Fig. 3 The Standardized Incidence Ratio per year. These figures show the intensity’s degree of malaria incidence per district. The value of SIR is the 
result of the ratio between the number of observed cases and the expected cases on each stratum. District with high and low incidences relative to 
the background of whole strata are shown in shades of red and blue, respectively. Malaria strata are delimited by the thick black line. Some districts 
in low incidence (SIR < 1) shifted to high incidence in the Highlands and Fringe. In the East and West, the high incidence was in the north of each 
stratum in 2010 and shifted south in 2014
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were high-risk increased from 15 in 2010 (located in the 
centre) to 23 in 2014 (located in the south) suggesting 
that behind the overall decrease in the risk at national 
level there is a dispersion of cases through the strata 
(Additional file 3). In the East, the number of highest-risk 
districts also increased where the north–south gradient 
of the distribution from high-risk to low-risk districts in 
2010 flipped and by 2014 the majority of high-risk dis-
tricts occur in the southern part of the East stratification 
(see Additional file 3).

Spatial clustering
Next, spatial clusters of districts with higher than 
expected numbers of cases were identified (Fig.  4). In 
each stratum per year, we detected between one and six 
spatial clusters which represent 10% to 71% of the dis-
tricts within a stratum across years and across strata 
(Fig. 4). A primary cluster was designated as the district 
or the groups of districts (shown in orange) with the 
highest likelihood raito value with p value < 0.05 in each 
stratum per year, and as secondary clusters the groups 

Fig. 4 The spatial clustering of malaria per year. The primary clusters (1) are shows in orange, the secondary clusters (2) are show in yellow, the third 
cluster (3) and the fourth (4) are in shades of green, the fifth (5) and sixth are in shades of blue (6). Clusters was done on SIR ratios and the cluster 
ranks is based on the value of log-likelihood ratio with p value < 0.05, the one or the group of district which have the highest value is consider the 
primary cluster
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of non-contiguous districts that also had a significantly 
higher log-likelihood ratio after the primary cluster. From 
2010 to 2014, the number of districts included in the pri-
mary cluster increased as a result of increasing patterns 
of risk.

The largest changes in the West and East strata were 
identified. In both strata, the primary cluster increased in 
size and shifted in location. Specifically, the primary clus-
ter has shifted from the northern to the middle-southern 
districts. The number of districts included in the primary 
cluster increased in the East (from 8 districts in 2010 to 
15 districts in 2014) and in the West (from 15 districts 
in 2010 to 19 districts in 2014). The number of districts 
included in the secondary clusters were usually inconsist-
ent varying from two to five and often consisted of one 
or two districts. In the South, few clusters were identi-
fied that only included a small number of districts (see 
Additional file  4) suggesting that incidence within this 
stratum is more spatially homogenous. Spatial clusters 
in the Fringe and Highlands were scattered across the 
stratum between 2010 and 2014 with a primary cluster 
observed in each year. One key exception in the Fringe 

was a cluster made of a single district (Anosibe-an’Ala) 
that was identified each year. That district had a higher 
incidence relative to the other districts in the Fringe, but 
it neighbours a higher incidence district (Antanambao 
Manampotsy) located in the East stratum suggesting that 
the stratum borders may not accurately reflect incidence 
patterns.

Temporal clustering
Next, the temporal clustering of districts per year were 
analysed to identify periods with a higher than expected 
reported number of cases. For each stratum, a tempo-
ral cluster was identified if there was the same seasonal 
pattern of high malaria incidence between districts in a 
given year. In the East, the temporal cluster decreased in 
length (January–June in 2010 to January–March in 2014) 
(Table  1). In the West, the season between years was 
more erratic with clusters identified between January and 
July, although this varied by year. For example, the tem-
poral cluster in 2011 had a long temporal range from Jan-
uary to June, however by the next year the peak season 
was much shorter (April–June) that only encompassed 

Table 1 Malaria clustering using the retrospective temporal analysis

RR relative risk, LLR log likelihood ratio

Stratum Year Time frame Observed cases Expected cases RR LLR p value

East 2010 January–June 80,029 57,009.05 2.33 9460.98 0.001

2011 January–May 89,233 65,968.38 1.80 6860.41 0.001

2012 January–April 152,613 83,303.54 3.11 39,813.28 0.001

2013 January–April 84,064 57,507.62 1.89 86,18.87 0.001

2014 January–March 128,165 75,309.53 2.21 21,888.52 0.001

West 2010 February–July 62,405 5,0907.61 1.58 2594.22 0.001

2011 January–June 30,105 2,4281.27 1.62 1396.91 0.001

2012 April–June 36,545 2,4390.73 1.79 3684.61 0.001

2013 February–June 97,494 73,479.45 1.72 6528.77 0.001

2014 February–March 15,949 12,562.15 1.34 509.90 0.001

South 2010 February–June 6970 4870.27 2.05 752.07 0.001

2011 February–June 6097 3883.56 2.61 1050.38 0.001

2012 April–June 9747 5023.40 2.82 2563.01 0.001

2013 January–May 17,980 10,078.53 3.99 5266.30 0.001

2014 January–April 8746 5041.32 2.71 1878.97 0.001

Fringe 2010 January–June 24,482 17,763.29 2.19 2577.61 0.001

2011 January-June 14,134 9089.67 3.42 2926.86 0.001

2012 January–May 9400 6168.46 2.43 1422.14 0.001

2013 January–May 27,258 15,265.07 4.01 8011.42 0.001

2014 January–May 13,222 7770.09 3.37 3229.23 0.001

Highlands 2010 January–June 16,556 13,839.81 1.48 531.55 0.001

2011 January–June 12,161 9779.45 1.64 580.18 0.001

2012 January–May 7504 4978.21 2.36 1076.06 0.001

2013 January–May 9092 5479.44 3.10 2004.89 0.001

2014 January–May 10,199 6629.93 2.48 1608.58 0.001
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half the number of months. Overall, the temporal cluster 
in the South has shifted earlier in the year from Febru-
ary–June in 2010 to January–April in 2014. In both the 
Fringe and Highlands stratum, the cluster remained con-
sistent among the years and includes the longest season 
(January–June) with small spatial and temporal variabil-
ity although it was expected.

Space–time clustering
Finally, both spatial and temporal clusters of high inci-
dence districts per zone were identified (Fig.  5, Addi-
tional file 5). In the majority of strata, the timing of the 
space–time clusters occurs during the same period of the 
year suggesting that although the spatial location of the 
cluster may vary, the season is fairly consistent within the 
stratum. The notable exception is the West stratum that 
shows distinct spatial and temporal differences between 
the identified clusters (Fig. 5). For example in 2014, there 
is no temporal overlap between the primary (located in 
the southern part of the stratum) and secondary cluster 
(located in the centre of the stratum).

In the South, the number of districts composing the 
space–time clusters, from 2010 to 2013 between Janu-
ary and July, increased from two to six. In 2014, only four 
districts were left: the primary cluster composed of three 
districts between January and May, and a secondary clus-
ter composed of one district in January. For the Fringe, 
only two clusters were detected each year. The largest 
number of clusters was found in 2013: between January 
and May with nine districts within the primary cluster, 
and between February and May with five districts within 
the secondary cluster. The primary clusters generally 
lasted between January and May. In 2013 and 2014, the 
Highlands had the largest number of space–time clusters 
compared to the other stratifications with one primary 
cluster spread out between January and May composed 
of six and five districts. Four secondary clusters were 
detected with different appearance through the year for 
these 2 years.

In the East, the appearance of primary clusters changed 
considerably with time: between January and May in 
2010 and 2011, between January and April in 2012 and 
2014, and between November and December in 2013. 
The number of districts included in those primary clus-
ters varied between 6 and 15 whereas the number of dis-
tricts in the secondary clusters varied between zero (no 
secondary cluster) and six. Evidence of space–time clus-
tering is shown by the excess of observed over expected 
cases per spatial unit and time-period. As shown in Fig. 5, 
the study has not only identified the high incidence geo-
graphic unit but has also defined their respective period 
of occurrence. Space–time cluster locations with more 
recent data available from the World Malaria Report 

were compared, and found similar smaller clusters 
observed in 2014, and had higher and similar incidence 
values in 2016 suggesting that these results could be use-
ful in understanding the current epidemiology of malaria. 
Using the combined analysis, these results underline that 
there is both spatial and timing heterogeneity for a given 
stratum. These results show that in both endemic and 
low endemic transmission strata, the number of districts 
at high risk increased between 2010–2014 and occurred 
between January and July.

Discussion
Here, the spatio-temporal variability in malaria incidence 
across epidemiological strata defined by the NMCP were 
investigated. Districts within Madagascar are separated 
into coarse malaria epidemiological stratified zones 
that inform key decisions on malaria control and policy 
within the country. However, the level of heterogeneity 
within these zones is unclear, as is the degree to which 
the constituent districts are spatially and temporally 
clustered.

First, the spatial distribution of crude incidence of 
malaria for each district from 2010 to 2014 was mapped. 
Here, zone wide incidence values reflect the broad ende-
micity and elimination categories used by the NMCP. 
The differences in incidence among districts within each 
stratum were further characterized. An age Standardized 
Incidence Ratio was calculated for each district per year 
[37]. This simple measure was used to compare districts 
within a single stratum, minimizing the bias associated 
with differential case reporting and diagnostics. Finally, 
clusters of districts within each stratum using spatial, 
temporal, and space–time analyses were detected. This 
study was only able to describe heterogeneity at the dis-
trict level, not at a finer spatial resolution. Although an 
additional level of heterogeneity may exist at finer spa-
tial scales, the health centre does not necessarily serve a 
specific population within these smaller geographic units 
and age-stratified population data are unavailable at finer 
scales [25]. Although these data may not be complete for 
every health facility within every district, they can none-
theless be considered representative since around 90% of 
health facilities reported consistently from 2010 to 2014 
[13].

High risk areas across the country within a given strata 
over a specified time range were identified using the 
Kulldorff scan statistic [33]. Clusters are collections of 
districts with a higher than expected number of cases. 
This understanding was further extended to include 
time where temporal clusters imply the mean incidence 
over the specific time frame is higher than expected. The 
stratified incidence ratio (SIR) is then able to explore the 
heterogeneity in incidence between comparable, either 
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Fig. 5 The space–time clustering of malaria per year. The primary clusters (1) are shown in orange, secondary clusters: (2) in yellow, (3) in green, (4) 
and (5) in shades of blue, as in Fig. 4. This figure represents the time of occurrence per month and the spatial distribution of each cluster per year
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geographically or temporal, units [37, 38]. Identifying 
clusters may assist the NCMP since: (a) high risk areas 
may be sources of increased clinical burden and (b) pos-
sible sources for imported infections in other lower risk 
areas of the country. Moreover, in low risk districts, the 
NMCP can utilize these locations to understand the 
effectiveness of continued control interventions in sur-
rounding areas.

Overall, there is high spatial heterogeneity in incidence 
between districts within the same stratification zone. 
This suggests that a more nuanced approach to cluster-
ing districts for operational purposes has the potential to 
significantly strengthen investments in control. In addi-
tion, noncontiguous primary spatial clusters in 2010 all 
became contiguous in 2014, and the number of encom-
passed districts rose through years. Climate change, par-
ticularly warming temperatures, may have played a role 
in the shift of the distribution of malaria, although addi-
tional analyses utilizing data over a longer time frame 
is necessary to test this hypothesis [15, 39]. Temporal 
aspects of incidence also could contribute in grouping 
districts together for malaria control. In the East, High-
lands and Fringe, temporal cluster began in January cor-
responding to the rainy season (Additional file 6).

This study shows that in the East and West strata, zones 
of high incidence of malaria were aggregated in the north 
in 2010, but by 2014 high incidence districts were firmly 
concentrated in the southern portion of these strata. The 
previously high incidence areas have since become low 
incidence areas. This change may be partially attribut-
able to the employment of community health workers 
(CHW) to recognize and manage uncomplicated malaria 
in children under five in this part of the country [11, 12] 
although the evidence remains anecdotal.

In contrast, the opposite spatial pattern is observed 
in the South: previously low incidence areas have since 
become new high incidence areas, possibly due to 
decreased usage of insecticide-treated mosquito nets in 
parts of this zone [14]. The spatial cluster analyses show 
that in the East and the West, primary clusters consisted 
of a large block of several districts for each year. This 
indicates that even if these two strata are characterized 
by endemic transmission, there are districts within the 
strata where the number of observed cases is higher than 
expected.

In the Highlands and Fringe, a few districts that were 
at a pre-elimination stage worsened into moderate trans-
mission, and the number of high-risk districts for these 
two strata increased. In the capital district Antananarivo, 
included in the Highlands, the highest reported incidence 
may result from the introduction of malaria cases from 
elsewhere in the region given the strong connectivity of 
this location to other areas of the country [40], whereas 

low mosquito survival due to unfavourable climate may 
lead to a limited local transmission [41]. Given the his-
tory of incidence in these areas, most individuals may 
have escaped previous exposure to malaria, and thus have 
a high susceptibility of being symptomatic when infected 
[42]. In the Highlands, the highest proportion of cases 
were in adults 25 years and suggesting evidence of non-
locally acquired cases. Further, in these two strata, the 
space–time clustering method and purely spatial cluster-
ing method identified different clusters. The space–time 
method identified more clusters that were concentrated 
in the southern part of the region between January and 
July.

These analyses will be biased by the ability of the rou-
tine HMIS data to accurately describe true malaria 
dynamics within the country. These routinely collected 
data are subject to reporting biases and heterogeneous 
healthcare access and coverage. In particular, the biased 
reporting nature and ability for the HMIS to collect high 
quality data is a common issue for routinely collected 
data, particularly those from low income countries [43]. 
This study focuses on the data from 2010 to 2014 to 
help mitigated some of these effects. Before 2008, RDTs 
were not available in the country and diagnosis was done 
using microscopy, which was not available at all facili-
ties. Instead, the study focused on data post the arrival of 
RDTs. These data are likely more reliable since the quality 
of malaria diagnosis was improved. However, temporal 
and spatial differences in diagnostics still exist and as a 
result the study focused on comparing incidence within 
years and within strata as opposed to between years or 
strata to help reduce some of the biases within these dif-
ferent units.

Similar to a recently published work by Howes et  al. 
[13], substantial heterogeneity within the NMCP strati-
fication zones was identified suggesting that a more 
nuanced approach to defining district groupings for 
malaria control may be necessary. This study built upon 
this work by using a simple age-adjusted incidence rate 
and spatial–temporal clustering methods to identify 
how the overall malaria epidemiology has changed from 
2010 to 2014 and the overall impact this may have on 
the understanding of transmission hotspots. The spa-
tial expansion of clusters throughout the country was 
identified and the geographic shift in high incidence 
areas towards the southern areas of the country. Retro-
spectively, clusters in each stratum were identified in 
2014. Recent data for 2015 and 2016 seem to reflect the 
increase in the number of cases at national level. This 
study highlighted the importance of identifying clusters 
to help the national programme to better guide these 
strategic choices. The “increase” in the number of cases 
within the last 2  years could indeed be related to the 
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expansion and the increased heterogeneity in distribu-
tion of malaria in Madagascar.

This retrospective analysis shows that although con-
sistent patterns of transmission are found within each 
zone, these overall trends likely reflect a smaller number 
of districts that could be targeted with additional inter-
ventions. This work highlights the utility of routinely 
collected data and insight to be gained using fairly sim-
ple clustering analyses. In particular, the detection of 
malaria clusters in areas where malaria transmission is 
designated to be in the pre-elimination phase suggests 
that overall control measures should be reevaluated and 
strengthened. This analysis also highlights the success of 
intervention efforts, as the decreasing trend of malaria in 
the northern part of the country is likely partially attrib-
utable to increasing NMCP and partner control efforts.
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