%0 Journal Article %T Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa %+ London School of Hygiene and Tropical Medicine (LSHTM) %+ Centers for Disease Control and Prevention [Atlanta] (CDC) %+ The University of Texas Medical Branch (UTMB) %+ Centre de Recherche en Sciences Naturelles [Lwiro, Congo] (CRSN) %+ Unité d'Entomologie Médicale [Antananarivo, Madagascar] (IPM) %+ Ministère de la Santé [Conakry, Guinea] %+ Institut National de Recherche Biomédicale [Kinshasa] (INRB) %+ University of Ghana %+ Malaria Consortium, London, UK %A Jeffries, Claire, L. %A Lawrence, Gena, G. %A Golovko, George %A Kristan, Mojca %A Orsborne, James %A Spence, Kirstin %A Hurn, Eliot %A Bandibabone, Janvier %A Tantely, Luciano, M %A Raharimalala, Fara, Nantenaina %A Keita, Kalil %A Camara, Denka %A Barry, Yaya %A Wat'Senga, Francis %A Manzambi, Emile, Z %A Afrane, Yaw, A %A Mohammed, Abdul, R %A Abeku, Tarekegn, A %A Hedge, Shivanand %A Khanipov, Kamil %A Pimenova, Maria %A Fofanov, Yuriy %A Boyer, Sébastien %A Irish, Seth, R %A Hughes, Grant, L %A Walker, Thomas %Z CLJ and TW were supported by a Wellcome Trust /Royal Society grant awarded to TW (101285): http://www.wellcome.ac.uk; https://royalsociety.org. GLH is supported by NIH grants (R21AI124452 and R21AI129507), a University of Texas Rising Star award, the John S. Dunn Foundation Collaborative Research Award, the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation, and the Centers for Disease Control and Prevention (CDC) (Cooperative Agreement Number U01CK000512). The papers contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Department of Health and Human Services. This work was also supported by a James W. McLaughlin postdoctoral fellowship at the University of Texas Medical Branch to SH. Field work in Uganda was funded by UK aid (through the Programme Partnership Arrangement grant to Malaria Consortium). YAA and ARM were supported by a NIH grant R01AI123074. SRI was funded by the U.S. President’s Malaria Initiative. %< avec comité de lecture %J Wellcome Open Research %I F1000Research %V 3 %P 113 %8 2018-11-27 %D 2018 %R 10.12688/wellcomeopenres.14765.2 %M 30483601 %K Anopheles %K Asaia %K Wolbachia %K endosymbionts %K malaria %K mosquitoes %Z Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyJournal articles %X Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations in West Africa. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing bacterium Asaia. Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species A, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species A. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species A but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies. %G English %2 https://riip.hal.science/pasteur-01967418/document %2 https://riip.hal.science/pasteur-01967418/file/47d2b153-7950-4e12-8743-d747dd4bc563_14765_-_thomas_walker_v2.pdf %L pasteur-01967418 %U https://riip.hal.science/pasteur-01967418 %~ RIIP %~ RIIP_MADAGASCAR