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Abstract: Networks used in biological applications at different scales (molecule, cell and population)
are of different types: neuronal, genetic, and social, but they share the same dynamical concepts,
in their continuous differential versions (e.g., non-linear Wilson-Cowan system) as well as in their
discrete Boolean versions (e.g., non-linear Hopfield system); in both cases, the notion of interaction
graph G(J) associated to its Jacobian matrix J, and also the concepts of frustrated nodes, positive or
negative circuits of G(J), kinetic energy, entropy, attractors, structural stability, etc., are relevant and
useful for studying the dynamics and the robustness of these systems. We will give some general
results available for both continuous and discrete biological networks, and then study some specific
applications of three new notions of entropy: (i) attractor entropy, (ii) isochronal entropy and (iii)
entropy centrality; in three domains: a neural network involved in the memory evocation, a genetic
network responsible of the iron control and a social network accounting for the obesity spread in
high school environment.

Keywords: biological networks; dynamic entropy; isochronal entropy; attractor entropy; entropy
centrality; robustness

1. Introduction

Biological networks are currently widely used to represent the mechanisms of reciprocal
interaction between different biological entities and at different scales [1–3]. For example, if the
entities are molecular, the networks can concern the genes and the control of their expression, or the
enzymes and the regulation of the metabolism in living systems that possess them. At the other end of
the life spectrum, at the population level, biological networks are used to model interactions between
individuals, for example during the spread of contagious diseases, whether social or infectious [4,5].
Between these two molecular and population levels, the cellular level is also concerned by biological
networks: for example, in the same neural tissue, cells such as neurons work together to give
rise to emergent properties, such as those of the central nervous system related to memory [6] or
motion control [7].
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Among the tools used for quantifying the complexity of a biological network, the network
entropies are ones of the most easy to calculate. They can be related to the network dynamics,
i.e., calculated from the Kolmogorov-Sinaï formula when the dynamics is Markovian, or they can
represent the richness of the network attractors or confinors [8], based on the relative weight of their
attraction or confinement basins in the network state space. A final way to calculate the entropy of
a random network is to use the invariant measure of its dynamics, giving birth to probability measures
related to the characteristics of its nodes like centrality, connectivity, strong connected components size,
etc. The literature on network entropies is abundant and from reference to recent papers it is possible
to find definitions and calculation algorithms in [9–22].

Dynamical systems, discrete or continuous, share common mathematical notions like initial
conditions and attraction basin, final conditions and attractor, Jacobian graph, stability and robustness.
Moreover, in an energetic view, there are in both cases, two extreme systems, i.e., on one hand,
conservative systems with an energy constant along trajectories (e.g., Hamiltonian systems) and, on the
other hand, dissipative systems with an energy decreasing along trajectories (e.g., potential systems).
For both Hamiltonian and potential systems, it is possible to define at each point x of their state space
E, a Jacobian matrix J(x) made of the partial derivatives of the flow of the network dynamics, whose
associated graph having J(x) as incidence matrix, is called the interaction graph G(x). The description
of the dynamics in terms of energy conservation or dissipation is identical whether the system is time
discrete or continuous.

Common definitions of the concepts of attraction basin and attractor will be recalled in Section 2
Material and Methods, in which we give also some examples of Hamiltonian and potential systems
by making explicit the energy functions underlying their dynamics, allowing for interpreting these
functions in the precise context of different applications. For example, the energy functions can be
related to the notions of frustration in statistical mechanics [23] or of kinetic energy, which can be
calculated in discrete systems by using an analogue of the continuous velocity [24]. In Section 3,
we present the Results through applications in three domains, neural (memory evocation based
on the synchronization of neural networks), genetic (regulation of the iron metabolism) and social
(dynamics of the obesity spread in a college environment). We define the thermodynamical notions of
attractor entropy, dynamic (or evolutionary) entropy and entropy centrality for interpreting the results,
and we relate the dynamic entropy to the robustness (or structural stability) of the dynamical systems
presented. After, in Section 4, the Discussion presents the interest of a thermodynamic approach in
social networks in order to simulate and evaluate the efficiency of public health policies, and eventually,
the Section 5 gives the Conclusion and Perspectives of the paper.

2. Material and Methods

2.1. The Dynamical Tools

Several definitions of attractor and stability have been proposed since 50 years. Here we use that
of Cosnard and Demongeot [25,26], which covers both continuous and discrete cases. More specific
approaches of the notion of attractors especially for network dynamics can be found in [3,27–29].

2.1.1. Definition of the Notion of Attractor

Let consider a trajectory { f (a, t)}t∈T starting at the point a of the state space E ⊂ Rn provided
with a dynamic flow f and a distance d. L(a), called the limit set of the trajectory starting in a, is the
set of accumulation points of the trajectory { f (a, t)}t∈T as time t goes to infinity in the time set T
(either discrete or continuous) such as:

L(a) = {y ∈ E; ∀ε > 0, ∀t ∈ T, ∃s(ε, t) > t/d( f (a, s(ε, t)), y) < ε}

where s(ε, t) is one time greater than t for which the trajectory passes into a ball of radius ε centred in y.
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If the initial state a lies in a set A, L(A) is the union of all limit sets L(a), for a belonging to A:

L(A) = ∪a∈AL(a)

Conversely, B(A) is the set of all initial conditions a, whose limit set L(a) is included in A
(Figure 1). B(A) = {y ∈ E; L(y) ⊂ A} is called the attraction basin of A.

(i) A = LoB(A), where the composed operator LoB is obtained by applying the basin operator B
and then the limit operator L to the set A

(ii) There is no set A’ containing strictly A, shadow-connected to A and verifying (i)
(iii) There is no set A” strictly contained in A verifying (i) and (ii)

The definition of the “shadow-connectivity” connecting in E the subsets F1 and F2, lies on the fact
that there exists a “shadow-trajectory” between F1 and F2 (Figure 1 Top right, where F1 = {x} and
F2 = {y}). The notion of “shadow-trajectory” has been defined first in [30]:

Figure 1. Top left : Attractor A is invariant for the composed operator LoB. Top right: Shadow trajectory
between x and y. Bottom: State of the attractor A returning to A after a perturbation in the attraction
basin B(A).

x in F1 and y in F2 belong to the same shadow-trajectory between F1 and F2if, for any ε > 0,
there is an integer n(ε) and n(ε) times t(1, ε), . . . , t(n(ε), ε) and states y(1, ε), . . . , y(n(ε), ε), such as all
Hausdorff distances between the successive parts of the shadow-trajectory are less than ε:

d( f (x, t(1, ε)), y(1, ε)) ≤ ε, ..., d( f (y(k− 1, ε), t(k− 1, ε)), y(k, ε)) ≤ ε, ..., d( f (y(n(ε), ε), t(n(ε), ε)), y) ≤ ε

The above definition of attractor is available for all known dynamical systems, in agreement with
the common sense and is meaningful for both discrete or continuous time sets T, if the dynamical
system is autonomous with respect to time, contrary to other definitions proposed since 1970 such as
in [31–34], all less general.

2.1.2. Potential Dynamics

A dynamical system is potential (or gradient) if its velocity is equal to the gradient of a scalar
potential P defined on the state space E: ∂x(t)/∂t = −gradP = −∂P/∂x where gradient vector
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equals ∂P/∂x = (∂P/∂x1, ..., ∂P/∂xn) and state at time t is f (x(0), t) = x(t) = (x1(t), ..., xn(t)) [35].
The system is dissipative, because P decreases along trajectories until its attractors located on
its minima.

2.1.3. Hamiltonian Dynamics

A dynamical system is Hamiltonian if its velocity is tangent to the projection on E of the
contour lines of the surface representative of an energy function H on E: ∂x(t)/∂t = tangH(x(t)),
where tangH(x(t)) is the vector tangent at x(t) to the projection on E of the equi-altitude set of altitude
H(x(t)). If the dimension of the system is two, then tangH is equal to (∂H/∂x2,−∂H/∂x1) [36].
The system is said conservative, because the energy function H is constant along trajectories.
An example of conservative system will be given in Section 4.2 (Equation (16)).

2.1.4. Potential-Hamiltonian Dynamics

A dynamical system is potential-Hamiltonian if its velocity can be decomposed into two parts,
one potential and one Hamiltonian: ∂x(t)/∂t = −gradP + tangH [37]. If the set of minima of P is
a contour line of the surface H on E, then its strong shadow-connected components (i.e., the sets in
which any pair of states is shadow-connected in both senses) are the attractors of the system.

2.2. Examples of Dissipative Energy

In a gradient system, the potential energy is dissipative, because it decreases along the trajectories
and, more, its gradient is exactly equal to the system velocity. The existence of a morphogenetic
dissipative energy has been speculated by the Waddington’s school of embryology [38] as an ontology
rule governing the development of living systems and we give in Section 2.2.2 an example of such
a dissipative energy.

2.2.1. Discretization of the Continuous Potential System with Block-Parallel Updating

Let us consider a discrete Hopfield dynamics where xi(t) = 1, if the gene i is expressing its protein,
else xi(t) = 0. The probability that xi(t) = 1, knowing the states in an interaction neighbourhood Vi of
i is given by:

P
(
{xi(t) = 1} |

{
xj(t− 1), j ∈ Vi

})
= exp

((
∑
j∈Vi

wijxi(t− 1)− θ

)
/T

)
(1)

where wij is a parameter which represents the influence (inhibitory, if wij < 0; activatory, if wij > 0
and null, if wij = 0) the gene j from the interaction neighbourhood Vi is exerting on the gene i, and θ is
a threshold corresponding to the external field in statistical mechanics and here to a minimal value
of activation for the interaction potential ∑j∈Vi

wijxi. T is a temperature allowing for introducing a
certain degree of indeterminism in the rule of the change of state. In particular, if T = 0, the rule is
practically deterministic and, if H denotes the Heaviside function, we have:

xi(t) = 1, if ∑j∈Vi
wijxi(t− 1) > θ

xi(t) = 0, if ∑j∈Vi
wijxi(t− 1) < θ

}
xi(t) = H( ∑

j∈Vi

wijxi(t− 1)− θ) (2)

P({xi(t) = 1} |
{

xj(t− 1), j∈Vi
}
) = 1/2, if ∑

j∈Vi

wijxi(t− 1) = θ

Once this rule defined, three graphs and their associated incidence matrices are important for
making more precise the network dynamics. These incidence matrices are:
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• interaction matrix W: wij represents the action of the gene j on gene i. W plays the role of a discrete
Jacobian matrix. We can consider the associated signed matrix S, with sij = 1, if wij > 0, sij = −1,
if wij < 0 and sij = 0, if wij = 0,

• updating matrix U: uij = 1, if j is updated before or with i, else uij = 0,
• trajectory matrix F: fbc = 1, where b and c are two states of E, if and only if b = f (c, 1), else fbc = 0.

These matrices can be constant or can depend on time t:

• in the case of W, the most frequent dependence is called the Hebbian dynamics: if the vectors
{xi(s)}s<t and

{
xj(s)

}
s<t have a correlation coefficient ρij(t), then wij(t + 1) = wij(t) + hρij(t),

with h > 0, corresponding to a reinforcement of the absolute value of the interactions wij having
succeeded in inhibiting or activating their target gene i: in case where, for s < t, xj(s) remained
equal to one, that leads to increase the xi(s)’s, if the wij(s)’s were positive, and conversely to
decrease the xi(s)’s , if the wij(s)’s were negative,

• in the case of U, we can have an autonomous (in time) clock based on the behaviour of r chromatin
clock genes having indices 1, . . . , r, with three possible behaviours:

1. if y(t) = ∏i=1,...,r xi(t) = 1, then the rule (1) is available
2. if y(t) = 0 and ∑s=t,. . . ,t−c y(s) > 0, x(t + 1) = x(s∗), where s∗ is the last time between t− c and

t, where y(s∗) = 1
3. if y(t) = 0 and ∑s=t,. . . ,t−c y(s) = 0, then x(t + 1) = 0 (by exhaustion of the pool of expressed genes).

This dynamical system ruling the evolution of U remains autonomous, but the updating is state
dependent. If all uij equal one, the updating is called parallel; if there is a sequence i1, . . . , in such as
ukk+1 = 1 for any k such as 1 ≤ k ≤ n− 1, the other uij being equal to zero, then the updating is called
sequential. There exist cases other than these extreme cases called block-sequential (the updating is
parallel in a block and the blocks are updated sequentially). A case of updating which is more realistic
in genetics is called block parallel: there are blocks made of genes sequentially updated, and these
blocks are updated in parallel. Interactions between these blocks can exist (i.e., there are wij 6= 0,
with i and j belonging to two different blocks), and because the block sizes are different, the time at
which the stationary state is reached in a block is not necessarily synchronized with the corresponding
times in other blocks: the synchronization depends on the intra-block as well as on the inter-block
interactions. All the genes of a block can reach their stationary state long before the genes of another
block. This behaviour explains in particular that the state of the genes of the block corresponding for
example to the chromatin clock is highly depending on the state of the genes in other blocks connected
to them (and for example acting as transcription factors of the clock genes), and reciprocally.

An example of such a block-parallel dynamics is given by a short block made of the nodes 4 and
5 on Figure 2 Top middle of chromatin clock genes reaching rapidly its limit-cycle and entraining
other blocks of metabolic (nuclear or mitochondrial) genes. The second block of genes is made of the
morphogens responsible of the apex growth of a plant and of the auxin gene inhibiting the morphogens
(node 1) [39,40]. When the first block reaches its limit-cycle (possibly entrained by external “Zeitgebers”
related to an exogenous seasonal rhythm), it blocks the dynamics of the second block, liberating the
first and after, the second axillary bud morphogens (nodes 2 and 3) only when the apex morphogens
passed a sufficient time in state 1, corresponding to a sufficient growth of apex for limiting the diffusion
of auxin, then cancelling its inhibitory power. We can easily iterate this dynamical behaviour for other
successive blocks related to the inferior buds.

More precisely, we can implement the dynamics of the morphogenesis network in the following
way; let us suppose that:

(i) there are two chromatin clock genes involved in a regulon, i.e., the minimal network having only
one negative circuit and one positive circuit reduced to an autocatalytic loop
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(ii) there are three morphogens corresponding to the apex and to axillary buds involved as nodes
of a 3-switch network fully connected, with all interactions negative except three autocatalytic
loops at each vertex

(iii) there are three inhibitory interactions from the auto-catalysed node of the regulon on the nodes
of the 3-switch, as indicated on Figure 2 Top left.

The Figure 2 Top shows the three graphs defining the morphogenesis network dynamics,
i.e., the interaction (left), updating (middle) and trajectory (right) ones. The dynamics is supposed
ruled by a deterministic Hopfield network, with temperature and threshold equal to zero and
interaction weights wij equal to one (if positive), −1 (if negative) or zero. An attractor limit-cycle
of this dynamics is shown on Figure 2 Top right, showing two intricate rhythms, one of period four
corresponding to the chromatin clock dynamics, embedded in a rhythm of period 12 corresponding
to the successive expression of the apex and axillary buds morphogens. The Figure 2 Bottom shows
other updating graphs, less realistic than the block-parallel for representing the action of the chromatin
clock regulon.

Figure 2. Top left: interaction graph of a network made of a 3-switch (system made of three genes
fully inhibited except the auto-activations) representing morphogens linked to a regulon representing
chromatin clock genes. Top middle: the updating graph corresponding to a block-parallel dynamics
ruling the network. Top right: a part of the trajectory graph exhibiting a limit-cycle of period 12 having
internally a cycle of period four for the chromatin clock genes. Bottom: updating graphs corresponding
successively (from the left to the right) to the parallel, sequential and block-sequential dynamics.

2.2.2. Discrete Lyapunov Function (Neural Network)

A logic neural network has local transition rules of type ⊕, ∨ and ∧ (Figure 3). Applying these
local rules ∧ (“and”), ∨ (inclusive “or”) et ⊕ (exclusive “or”), we can define on each configuration x(t)
of the logic neural network of the Figure 3, a Lyapunov function L from the global frustration of order
four D4, decreasing along trajectories and vanishing on the attractors of the network dynamics:

L(x(t)) = [D4(x(t + 1)) + D4(x(t)] /64



Entropy 2018, 20, 36 7 of 21

with D4(x(t)) = ∑i=1,...,n D4,i(x(t)), where D4,i is the local frustration of order four, also equal to the
discrete kinetic energy E4,i(x(t)) between xi(t) et xi(t + 4) multiplied by 32:

D4,i(x(t))/32 = (xi(t + 4)− xi(t))2/2(t + 4− t)2 = E4,i(x(t))

In this example of a discrete neural network ruled by logic Boolean functions applied for each
node to its entries (proposed in [41,42] as a genetic network), the dynamical behaviour is guided by
an energy function deriving from the discrete kinetic energy, built with the discrete equivalent of the
velocity [24]. We can indeed write the Lyapunov function of the trajectory L(x(t)) as the mean global
discrete kinetic energy calculated between times t and t + 5:

L(x(t)) = [D4(x(t + 1)) + D4(x(t)] /64 = [E4(x(t + 1)) + E4(x(t))]/2

Figure 3. Top: Logic neural network with local transition rules ⊕, ∨ and ∧. Bottom: Discrete trajectory
graph in the state space E = {0.1}5 with indication of the values of 64L, where L is the Lyapunov
function (in red).

3. Results

3.1. Attractor Entropy and Neural Networks

The attractor entropy Eattractor measures the heterogeneity of the attractor landscape on the state
space E of a dynamical system. It can be evaluated by the quantity:

Eattractor = − ∑
k=1,. . . ,m

RABS(Ak)Log [RABS(Ak)] (3)
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where RABS(Ak) is equal to the attraction basin size of the kth attractor Ak among the m attractors
of the network dynamics, divided by 2n, n being the number of genes of the network. We will give
an example of use of this notion in the case of a continuous neural network, the Wilson-Cowan
oscillator, which describes the biophysical interactions between two populations of neurons:

dx/dt = −x/τx + tanh(λx− θ)–tanh(λy− θ), dy/dt = −y/τy + tanh(λx− θ) + tanh(λy− θ) (4)

The variables x and y represent the global electrical activity of the two populations, respectively
excitatory and inhibitory, whose interaction is described through a sigmoid function parametrized by λ,
which controls its stiffness, accounting for the synaptic response to an input signal, which is non-linear
when λ is large (>>1), depending on the value of the input, greater or less than a potential barrier
(here θ/λ), and is an affine function of the input signal when λ and θ are small (<<1). The parameters
τx and τy refer to the membrane potential characteristics of the neuronal populations having respective
activity x and y. If θ = 0 and τx = τy = τ, the Wilson-Cowan oscillator presents a Hopf bifurcation
when λτ crosses the value one [43], moving from a dynamics involving only an attracting fixed
point to a dynamics comprising a repulsor at the origin of E, surrounded by an attractor limit-cycle
C. If T denotes the period of the limit-cycle C, let us consider the point h = f (O, h) of C reached
after a time (or phase) h on the trajectory f starting on C at a reference point called the origin
O = f (O, 0). In Figure 4 Top, T = 2π and this trajectory on C defines a one-to-one map F between
the interval [0, T] and C. We introduce now the notion of isochron Ih of phase h in the attraction basin
B(C) as the set of points x of B(C) such as d( f (x, t), f (h, t)) tends to zero, when t tends to infinity.
Ih extends the map F to all the points of B(C). If we consider as new state space Ih, a new time space
Th = {t ∈ T; t = h + kT, k ∈ N} and the restriction of the flow f on Ih, such as: ∀x ∈ Ih, f (x, t) ∈ Ih,
h = limt∈Th ;t→∞ f (x, t), we have: B(C) = ∪h∈C Ih.

Then, h can be considered as an attractor for f , whose basin is Ih. Let us decompose now the
interval [0, T] in n equidistant sub-intervals {[kT/n, (k + 1)T/n]}k=0,...,n−1. If we consider now the
time space [kT/n, (k + 1)T/n], the subset of C denoted Ak = F([kT/n, (k + 1)T/n]) is an attractor
with an attraction basin equal to Bk = ∪h∈([kT/n,(k+1)T/n]) Ih, for the flow restrained to Bk, and we
have: B(C) = ∪k=0,. . . ,n−1Bk. Eventually, we can define the entropy related to these attractors in E,
called isochronal entropy of degree n, which is just the attractor entropy calculated for the dynamics
having as flow fh:

En
attractor = − ∑

k=1,. . . ,n
RABS(Ak)Log[RABS(Ak)] (5)

If all the isochron basins have same size, then En
attractor = Logn. If not, the quantity En

attractor
reflects a spatial heterogeneity of the dynamics: certain Bk can be wide (where the flow f is rapid
inside) and other thin (where the flow f is slow inside). In the example of the Wilson-Cowan oscillator,
when τx = τy = 1, θ = 0 and λ is growing from zero to infinity, the isochronal entropy is diminishing
from Logn to Log4.

It is possible to change the value of the period T of the Wilson-Cowan oscillator by tuning the
parameters τx and τy (Figure 4 Bottom right). Consider now values of the parameters, τx = τy = τ = 1
and λ = 1.1, close to the bifurcation in the parameter space (λτ) and superimpose the isochron
landscape on a map in false color giving the asymptotic phase shift ||h′ − h|| between a trajectory
starting at a point x on the isochron Ih and a trajectory starting, after an instantaneous perturbation e,
at the point x+e belonging to the isochron Ih′ (Figure 4 Bottom left). The maximum phase shift of the
Wilson-Cowan oscillator is inversely proportional to the intensity of this instantaneous perturbation,
which means that a population of oscillators can then be synchronized by a sufficiently intense
perturbation. Indeed, isochrons are spirals, which diverge from one to another by moving away from
the attractor limit-cycle. The phenomenon of memory evocation after a sensory stimulation relies
on the synchronizability of a population of identical (but dephased) oscillators whose successive
states of their limit cycle store an information [44,45]. This evocation is the more effective since all
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oscillators have the same phase after stimulation, which is the case if the corresponding perturbation
done at different phases ϕ1 and ϕ2 on the limit-cycle leads the oscillator between two successive
isochrons (Figure 4 Bottom left). By using either the discrete version of the Wilson-Cowan system,
namely the Kauffman-Thomas cellular automaton (the deterministic version of the Hopfield model),
or its continuous version (Figure 4), it is easy to see that the potential part of the system is responsible
for the spacing between isochrons away from the limit-cycle, causing the decrease of the isochronal
entropy, and that the Hamiltonian part is responsible for their spiralization (Figure 4 Top).

Figure 4. Top: asymptotic phase shift between two close isochrons in false colors from 0 to 2π,
when an instantaneous perturbation is made on the Wilson-Cowan oscillator. Bottom left: perturbations
of same intensity made at two different phases ϕ1and ϕ2 on the limit-cycle of the Wilson-Cowan
oscillator. Bottom right: value of the period of the limit-cycle in false colors depending on the values of
the parameters τx and τy from 3.5 to 7.

By playing with the potential-Hamiltonian distribution [46], it is therefore possible, if the system
is instantly perturbed, to increase the efficiency of the post-perturbation synchronization (due to
the potential return to the limit-cycle) or to allow for desynchronizing (due to the Hamiltonian
spiralization), which is necessary to avoid the perseveration in a synchronized state (observed in many
neuro-degenerative pathologies).
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3.2. Dynamic Entropy and Genetic Networks

We define first the functions energy U, frustration F and dynamic entropy E of a genetic network
N with n genes in interaction [47–59].

∀x ∈ Ω, U(x) = ∑
i,j∈{1,n}

αijxixj = Q+(N)− F(x), (6)

where x is a configuration of gene expression (xi = 1, if the gene i is expressed and xi = 0, if not),
Ω denotes the set of all configurations of gene expression (i.e., the hypercube {0, 1}n) and αij is the sign
of the interaction weight quantifying the influence the gene j exerts on the gene i: αij = +1 (resp. −1),
if j is an activator (resp. inhibitor) of the expression of i, and αij = 0, if there is no influence of j on i.
Q+(N) is the number of positive edges of the interaction graph G of the network N, whose incidence
matrix is given by A = (αij)i,j∈{1,n}. F(x) denotes the global frustration of x, i.e., the number of pairs
of genes (i, j) for which the values of xi and xj are contradictory with αij, the sign of the interaction of
j on i:

F(x) = ∑
i,j∈{1,n}

Fij(x),

where Fij is the local frustration of the pair (i, j) equal to:{
1, if αij = 1, with xj = 1− xi, or αij = −1, with xj = xi

0, elsewhere

The dynamics of the network can be defined by a deterministic transition operator like the
following threshold Boolean automaton with a majority rule, we will call in the following deterministic
Hopfield transition:

xi(t) = H( ∑
j∈Ni

wijxj(t)− θi), (7)

where H is the Heaviside step function defined by: H(y) = 1, if y > 0 ; H(y) = 0, if y ≤ 0, wij is
the interaction weight of j on i, θi an activation threshold (whose exponential is called tolerance h:
θ = logh) and Ni is the set of genes j such as wij 6= 0. The Table 1 shows the parallel simulation of such
a Boolean automaton, with |wij| = 1 and θi = 0. This deterministic dynamics is just a particular case of
the random dynamics defined by the transition analogue to the Equation (7):

mij = P ({xi(t) = 1} | {x(t− 1) = y}) = exp

 ∑
j∈{1,n}

wijyj/T

 = P{i/yi=1}
i,1 , (8)

when threshold and temperature equal to zero.
mij is the probability of expression of the gene i at time t, knowing the configuration at time

t− 1 is equal to y and from the
{

mij
}

i,j∈{1,n} we can easily calculate the Markov transition matrix of
the dynamics (8) supposed to be sequential [48,60], i.e., with a sequential updating of the genes in
a predefined order.

Let M = (Mxy) denote the Markov matrix giving the transition probabilities, defined by the rule
(8) and an updating mode, between the configurations x and y of Ω, and µ = (µx) = (µ({x})x∈Ω be
its stationary distribution on Ω. The dynamic entropy E can be calculated as:

E = − ∑
x,y∈Ω

µx MxylogMxy.
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In the sequential updating mode, where the updating order of the nodes is the integer ranking 1, . . . , n,
we have, by denoting I = {1, . . . , i− 1}, N \ I = {i, . . . , n} and identifying x with the set of the indices
i such that xi = 1:

Mxy = ∏
i=1,..,n

[
P[x∩(N\I)]∪[y∩I]

i,1 I{i∈y} + P[x∩(N\I)]∪[y∩I]
i,0 I{i/∈y}

]
and µ is classically the Gibbs measure [48,60] defined by:

∀x ∈ Ω, µx = exp(( ∑
i∈x,j∈Ni

wijxixj − θi)/T)/Z,

where Z = ∑y∈Ω exp((∑j∈y,k∈Nj
wjkyjyk − θj)/T). When T = 0, µ is concentrated on the m(≤ 2n)

attractors of the deterministic dynamics, then, its entropy is defined by:

Eµ = Eattractor = − ∑
k=1,...,m

RABS(Ak)logRABS(Ak), (9)

where m is the number of the final classes of the Markov transition matrix related to the dynamics (8).
When T = +∞, µ is scattered uniformly over Ω and E = nlog2. An example of calculation of Relative
Attraction Basin Sizes is given in the Table 1. We will estimate E between T = 0 and T = +∞ from the
attractor entropy Eattractor [51] by using the following approximate equality:

E ≈ log2n − Eattractor (10)

E serves as robustness parameter, being related to the capacity the genetic network has to return to
the equilibrium after endogenous or exogenous perturbations [53,59]. We can more generally prove that
the robustness of the network, supposed to be sequentially updated, decreases when the variance of
the frustration F of the network increases, because of the formula: ∂E/∂Log(|w|) = −VarF, where |w|
is the absolute value supposed to be the same for all the non zero interaction weights between the
genes of the network [51].

The regulatory network controlling the iron (Fe) metabolism is given in Figure 5. The central proteins
controlling the iron metabolism are iron regulatory proteins IRP1 and IRP2 represented in Figure 5 by
a unique entity called IRP, which can be active or inactive, active form only having a regulatory role.
In absence of iron, IRP shows a mRNA-binding activity on a specific RNA motif called IRE, and when
iron concentration is sufficiently high, it looses its mRNA-binding activity on IRE motif. The iron node
(Fe) in Figure 5 represents the cellular iron available for various cellular processes and the node ferritin
(Ft) represents a protein capable of internalize thousands of iron ions in a given Ft protein.

The complex mechanism of iron loading into, and release from, ferritin is taken into account
here in a very simplified way: ferritin mRNA contains two IRE motifs in its 5’-UTR regions, and IRP
consequently inhibits its translation. These IRE motifs are also inhibited by micro-RNAs like miR485,
itself inhibited by the cyclic ARN ciRs7. IRP is also directly inhibited by ciRs7-antisense and activated
by GATA-3, itself controlled by the positive circuit Notch/c-Myc The transferrin receptor (TfR1)
located at the cellular surface allows iron uptake. TfR1 mRNA contains five IRE motifs in its 3’-UTR
region, hence, the density of TfR1 receptors at the cell surface is correlated with the IRP activity.
Eventually, ferroportin (FPN1a) is an iron exporter located at the cellular surface and contains one IRE
motif in its 5’-UTR mRNA region, thus its translation is inhibited by IRP.

By studying the dynamics of the iron regulatory network (supposed to be Boolean, that is with
only two states 1 and 0 for each entity, the state 1 corresponding to the proportion of its active form over
a certain threshold), it is possible to calculate its asymptotic states (i.e., observed when the time goes
to infinity) obtained for any initial condition in attraction basins (Table 1). From this dynamics study,
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we can then easily calculate Eattractor = 2.59412, hence E = 4− 2.59412 = 1.40588, which corresponds
to a relatively low robustness, the maximum being equal to four.

Figure 5. The interaction graph of the iron regulatory network, whose interactions can be activatory (+)
or inhibitory (−), such as those of microRNAs, like miR-485.

Table 1. Recapitulation of the attractors of the iron regulatory network of Figure 5, for the parallel
updating mode, with the list of expressed (in state 1) and not expressed (in state 0) genes and their
relative attraction basin sizes, obtained by simulating in parallel updating mode a threshold Boolean
network having a constant absolute value of non zero weights equal to one and a threshold equal to
zero, from all the possible initial configurations.

Order Gene Fixed Point Fixed Point 2 Limit-Cycle 1 Limit-Cycle 2

1 TfR1 0 0 0 0 1 1 0
2 FPN1a 0 0 0 0 0 0 0
3 C-Myc 0 1 0 0 0 0 0
4 Notch 0 0 1 1 1 1 1
5 GATA-3 0 0 1 1 1 1 1
6 IRP 0 0 0 1 0 0 1
7 Ft 0 0 0 0 0 0 0
8 Fe 0 0 0 0 1 0 1
9 MiR-485 0 0 0 0 0 0 0
10 CiRs-7 anti-sense 0 0 0 0 0 0 0

Relative Attraction Basin Size 512/1024 256/1024 216/1024 40/1024

The notion of robustness is related to the capacity to diminish the consequences, on the entropy
E, of endogenous or exogenous variations affecting the common absolute value |w| of the non zero
interaction weights of the genetic network. This notion of robustness is closed to that of structural
stability in dynamical systems. If the variability of the global frustration F of the network is important,
then its robustness diminishes. It is for example the case if a gene belonging to a positive circuit [61,62].
of a strong connected component of the interaction graph of the network is randomly inhibited. In this
case, the inhibited gene behaves as a sink (i.e., without outing interaction) of state 0, which can enter in
contradiction with that predicted by the states and interactions of its neighbors, increasing the variance
of F and consequently diminishing the dynamic entropy E.
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3.3. Centrality of Nodes and Social Networks

There are four classical types of centrality in a graph (Figure 7). The first is the betweenness
centrality [63]. It is be defined for a node k in the interaction graph G as follows:

CB(k) = ∑
i 6=j 6=k∈G

βij(k)
βij

, (11)

where βij(k) is the total number of shortest paths from node i to node j that pass through node k,
and βij = ∑i 6=j∈G βij(k).

Let consider now a social network with a threshold Boolean dynamics following the Equation (7),
containing overweight or obese (state 1) and normal (state 0) individuals as nodes. By concentrating the
pedagogic efforts on the betweenness central nodes overweight or obese with tolerance 1, which are
“hubs” of the social network, it results a rapid decrease of the number of overweight or obese,
more important if the educative effort has been done on individuals with tolerance 1 than with
tolerance 0 (Figure 6 Bottom right), as well as a decrease of their mean weight (Figure 6 Bottom left).
The second corresponds to the degree centrality, which can be defined from the notions of out-, in- or
total degree of a node i, corresponding to the number of arrows of the interaction graph, respectively
outing, entering, or both, connected to i. For example, the in-degree centrality is defined by:

Cindeg
i = ∑

j=1,...,n;j 6=I
aij/(n− 1), (12)

where the general coefficient of the adjacency matrix A of the graph, denoted aij, equals one if there is
a link between j and i, and else zero.

The third type of centrality is the closeness centrality. The closeness is the reciprocal of the average
fairness, which is defined by averaging over all nodes j of the network else than i a distance between i
and j, equal to ∑j=1,...,n;j 6=i d(i, j)/(n− 1), then:

Cclo
i = (n− 1)/[ ∑

j=1,...,n;j 6=i
d(i, j)] (13)

where the chosen distance is the length of the closest path between i and j. The last type of classical
centrality is the spectral centrality or eigen-centrality, which takes into account that the neighbors of
a node i can be also highly connected to the rest of the graph (connections to highly connected nodes
contribute more than those of the weakly connected nodes). Hence, the eigen-centrality measures
more the global influence of i on the network and verifies:

Ceigen
i = ∑

j=1,...,n;j 6=i
Ceigen

j /λ (14)

where λ is the greatest eigenvalue of the adjacency matrix A of the graph.
The four centralities above have each their intrinsic interest: (i) the betweenness centrality of

a node is related to its global connectivity with all the nodes of the network, (ii) the degree centralities
indicate the level of local connectivity (in-, out- or total) of a node with only its nearest nodes,
(iii) the closeness centrality measures the relative proximity a node has with the other nodes of the
network for a given distance on the interaction graph of the network, and (iv) the eigen-centrality
corresponds to the ability for a node to be connected to possibly a few number of nodes, but having
secondarily a high connectivity, which indicates for example an important relay for the dissemination
of news in social networks, the social networks being also used to model the spread of rumors, political
opinions and social diseases, such as obesity and its most important consequence, type II diabetes.

For example, for curing a social disease, an Hospitaller Order of Saint Anthony has been founded
in 1095 at La Motte (presently Saint Antoine near Grenoble in France) by Gaston du Dauphiné,
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whose son suffered from a fungal disease, known in the Middle Ages as Saint Anthony’s fire or
ergotism, caused by a transformation of grain like rye into a drug (the ergotamine) in flour provoking
convulsions often leading to death. The members of the Saint Anthony Order were specialized in
curing patients suffering from ergotism and they spread with about 370 hospitals over the whole
Western Europe in the fourteenth century, able to treat about 4000 patients. They observed that the
disease propagation was due to social habits like eating same type of bread, then ergotism is considered
as the first social disease whose contagion process depends on alimentation behaviour.

Figure 6. Top left: social graphs related to the friendship relationships between pupils (overweight or
obese in red, not obese in blue) of a French high school in 5th and 4th classes, corresponding to ages
from 11 to 13 years. Top right: analogue graph for corresponding classes in a Tunisian high school
in Tunis. Middle: histograms of the number of friends for pupils from French (left) and Tunisian
(right) high schools. Bottom left: mean weight (in black, surrounded by the 95%-confidence interval in
green) of pupils coming back to an acceptable “normality”, due to a preventive education of 10% of the
betweenness central nodes obese, calculated for two sub-populations of tolerance h = 1 (top) and h = 0
(bottom). Bottom right: percentage of obese in these two sub-populations.
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Now obesity is considered as the most characteristic social “contagious” disease, and has been
defined as a pandemic (i.e., an epidemic having a world wide prevalence) by the WHO . Both nutrition
mimicking and social stigmatization explain the dissemination of obesity into a social network [64,65].
Obesity consists in an excessive accumulation of fat in adipose tissue favoring chronic diabetic and
cardiovascular diseases. In UK for example, 36% of men and 33% of women are predicted to be
obese in 2030 for only 26% of both sexes in 2010 [66–69] showing the critical character of the present
explosion of obesity, especially in young people. For assessing the prevalence of the disease in young
population, we have observed social graphs based on the existence or not of friendship between pupils
in the 5th and 4h classes of two high schools (corresponding to ages from 11 to 13 years), one in
France at Jœuf already published in [5], and a new one in Tunisia at Tunis. The corresponding graphs
(Figure 6 Top) and the histograms of the number F of friends of the pupils, show in both cases that the
distribution of F is uni-modal for normal weight pupils and bimodal for overweight or obese ones
(Figure 6 Middle), because of a double phenomenon in obese pupils: a part of them attracts with
a friendship link due to their open personality, and another part repulses. Then, we have done the
simulation of a preventive education of central obese nodes following WHO recommendations [70]
during the dynamics of obesity spread following the Equation (7), in which we give the tolerance h = 0
(resp. h = 1) to the obese of the first (resp. second) mode. This education has been given in Figure 6
to the obese central nodes for betweenness in the social graph G. The result is the best between the
four centralities defined above, but it remains an irreducible percentage of obese in the population of
tolerance zero (Figure 6 Bottom right). For that reason, we need to introduce a new notion of centrality
based on the notion of entropy.

4. Discussion

4.1. The Notion of Entropy Centrality

Indeed, despite the interesting properties of the various classical centralities (Figures 6–8),
the therapeutic education targeting the most central nodes leaves in general a not-neglectible
percentage of obese after education, then we will discuss now the introduction of a new notion
of centrality, called the entropy centrality, taking into account the heterogeneity of the vector having as
components the state and the tolerance, into the neighbor set of the node i, and not only the connectivity
of the graph:

Centropy
i = − ∑

k=1,. . . ,s
νkLogνk, (15)

where νk denotes the kth frequency among s of the histogram of the values of the vector (state, tolerance)
observed in the neighborhood Vi, set of the nodes linked to the node i.

This new notion of centrality is more useful than the others to detect the good candidates to
be educated in order to transform their state to the normal state 0, because they can influence more
efficiently a heterogeneous environment to recover the normality. An illustration of this fact is done in
the example of the Section 3.3.

By comparing the results obtained thanks to a preventive and therapeutic education leading the
overweight or obese nodes to the normal weight, we observe that with only the 21 individuals the
most entropic central educated (Figure 8 Bottom right), all the population of pupils is going to the
normal weight state, but we need 68 individuals with the total degree, and 85 individuals with the
in-degree and eigenvector centralities (Figure 8 Top and Bottom left). Then, the best public health
policy against the obesity pandemics consists in using the notion of entropy centrality to select the
targets of the therapeutic education [5].
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Figure 7. Comparison between two classical types of centrality in the graph of the Tunisian high school
between eigenvector (left) and total degree (right) centralities (node size is proportional to its centrality).

Figure 8. Top: representation of the whole graph of the French high school. The size of the nodes
corresponds to their centrality in-degree (left), eigenvector (middle) and total degree (right). Bottom:
threshold for a therapeutic education leading back to the normal weight state the N obese individuals
having the entropic centrality maximum: after stabilization of the social network dynamics, we get all
individuals overweight or obese in red (left) if N = 20 and all individuals normal in green (right) if
N = 21, this number constituting the success threshold of the education.

4.2. The Mathematical Problem of Robustness and the Notion of Global Frustration

Each of the examples presented in Section 3 have used the dynamics governed by the
deterministic Hopfield transition of the Equation (7) [71]. We have exhibited complex multi-attractor
asymptotic behaviors and the central problem to discuss now is the conservation of the attractor
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organization (namely the number of attractors, the size of their attraction basins, and their nature,
i.e., fixed configurations or limit-cycles corresponding to oscillatory states).

This problem of robustness of the attractor landscape is related to the architecture of the interaction
graph G(J) linked to the (discrete or continuous) Jacobian matrix J. The problem of robustness has
been often considered since 50 years [41,72] under different names (bifurcation, structural stability,
resilience, etc.) and it is still pertinent [73,74].

If we consider the Hopfield rule with a constant absolute value w > 0 for its non-zero interaction
weights, we can study the robustness of the network with respect to the variations of w, by using the
two following propositions [51,52]:

Proposition 1. Let us consider a deterministic Hopfield Boolean network which is a circuit sequentially or
synchronously updated with constant absolute value w for its non-zero interaction weights. Then, its dynamics
is conservative, keeping constant on the trajectories the Hamiltonian function G defined by:

G(x(t)) = ∑
i=1,. . . ,n

(xi(t)− xi(t− 1))2/2 = ∑
i=1,. . . ,n

(g(wi(i−1)modnxi−1(t− 1))− xi(t− 1))2/2, (16)

where g is the Heaviside function. G(x(t)) is equal to the total discrete kinetic energy, and to the half of the
global dynamic frustration F(x(t)) = ∑i=1,. . . ,n Fi,(i−1)modn(x(t)), where Fi,(i−1)modn is the local dynamic
frustration related to the interaction between the nodes (i − 1) and i: Fi,(i−1) = 1, if sign (wi(i−1))=1 and
xi(t) 6= xi−1(t− 1) or sign (wi(i−1)) = −1 and xi(t) = xi−1(t− 1), else Fi,(i−1) = 0.

The result of the Proposition 1 holds if the network is a circuit for which transition functions are
Boolean identity or negation [75] on which we can easily calculate the global frustration F and show
that it characterizes the trajectories and remains constant on them (Figure 9). Then, consider now the
dynamic entropy E of a Hopfield network [53,76] as a robustness parameter quantifying the capacity
the network has to return to its equilibrium measure µ on the configuration space Ω = {0, 1}n after
a perturbation. We can calculate E by using the following equality:

E = Eµ − Eattractor,

where Eµ = −∑x∈Ω µxlogµx, µx = µ({x}) being the value of the invariant measure µ at the
configuration x, and Eattractor = −∑k=1,m≤2n µ(Ck)logµ(Ck), m being the number of the network
attractors and Ck the attraction basin of the attractor Ak.

Figure 9. Description of the attractors of circuits of length 8 for which Boolean local transition functions
are either identity or negation.



Entropy 2018, 20, 36 18 of 21

∂E/∂w, which denotes the derivative of the dynamic entropy E with respect to the absolute
value of the weight w, can be considered as a new robustness parameter. We have: ∂E/∂w =

∂Eµ/∂w− ∂Eattracteur/∂w and we can prove the following result [8,51]:

Proposition 2. In the parallel updating mode of a Hopfield network, we have:

∂Eµ/∂w = −wVarµ(F),

where Varµ is taken for the invariant Gibbs measure µ defined by: µx = exp(∑i∈x,j∈y wijxiyj)/Z,
with Z = ∑x∈Ω,y∈Ω exp(∑i∈x,j∈y wijxiyj).

The Proposition 2 indicates that there is a close relationship between the robustness (or structural
stability) with respect to the parameter w and the global dynamic frustration F. This global dynamic
frustration F is in general easy to calculate. For the configuration x of the genetic network controlling
the flowering of Arabidopsis thaliana [77], there is only two frustrated pairs, hence F(x) = 2 (Figure 10).

More generally, all the energy functions introduced in the examples are theoretically calculable
and could serve as in physics for quantifying the structural stability. When the number of states in
a discrete state space E is too large, or when the integrals on a continuous state space E are difficult to
evaluate, then Monte Carlo procedures can provide a good estimation of functions like the dynamic
entropy or the variance of the global frustration.

Figure 10. Frustrated pairs of nodes belonging to positive circuits of length 2 in the genetic network
controlling the flowering of Arabidopsis thaliana. The network evolves by diminishing the global
frustration until the attractor (here a fixed configuration, whose last changes are indicated in red) on
which the frustration remains constant.

5. Conclusions and Perspectives

We have defined some new tools based on the notion of entropy common to both continuous and
discrete dynamical systems, based on thermodynamic concepts. These notions are useful in biological
modeling to express in which way precise energy functions related to the various concentrations
or population sizes involved in the transition equation of a biological dynamical system can be
conserved or dissipated along the trajectories until their ultimate asymptotic behavior, the attractors.
Future works could be done in the framework of more general random systems [78,79] in which
the notions of entropy, invariant measure and stochastic attractors (called also confiners in [54]) are
classical to interpret the data observed in all the fields (neural, genetic and social) considered in the
present study and use the interpretations they allow in practical applications (see for example [19,80]
for some biomedical applications).



Entropy 2018, 20, 36 19 of 21

Acknowledgments: We are indebted to the Projects PHC Maghreb SCIM (Complex Systems and Medical
Engineering), ANR e-swallhome, and H3ABioNet for providing research grants and administrative support.

Author Contributions: All authors contributed equally to the research presented in the paper and the development
of the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mason, O.; Verwoerd, M. Graph theory and networks in biology. IET Syst. Biol. 2007, 1, 89–119.
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