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ABSTRACT
The classical way of defining enzyme inhibition has obscured the distinction between
inhibitory effect and the inhibitor binding constant. This article examines the relation-
ship between the simple binding curve used to define biomolecular interactions and
the standard inhibitory term (1+([I ]/Ki)). By understanding how this term relates to
binding curves which are ubiquitously used to describe biological processes, a modifier
equation which distinguishes between inhibitor binding and the inhibitory effect, is
examined. This modifier equation which can describe both activation and inhibition
is compared to standard inhibitory equations with the development of global data
fitting templates in Excel and via the global fitting of these equations to simulated and
previously published datasets. In both cases, this modifier equation was able to match
or outperform the other equations by providing superior fits to the datasets. The ability
of this single equation to outperform the other equations suggests an over-complication
of the field. This equation and the template developed in this article should prove to be
useful tools in the study of enzyme inhibition and activation.

Subjects Biochemistry, Computational Biology, Mathematical Biology, Drugs and Devices,
Pharmacology
Keywords Enzyme inhibition, Enzyme activation, Global data fitting, Model comparison, Drug
development, Inhibition constant

INTRODUCTION
The historical development of enzyme-inhibitory theory relied on the generation of
rapid equilibrium inhibitory equations akin to the derivation of the Michaelis–Menten
equation. These equations developed inhibitory theory around a single constant, termed
the inhibition constant (Ki), which when inserted into the Michaelis–Menten equation
(Eq. 1;Michaelis & Menten, 1913), in various ways, was used to describe apparent shifts in
measured values of the maximum reaction rate (Vmax) and the Michaelis constant (KM )
(McElroy, 1947).

v =
[S]

[S]+KM
Vmax. (1)

The Michaelis–Menten equation (Eq. 1) shares the same mathematical structure as the
Hill-Langmuir equation (Eq. 2) or ligand–receptor binding relationship (Eq. 3; Gesztelyi et
al., 2012). The main difference is that the Michaelis–Menten equation describes the rate of
catalytic turnover by an enzyme, where chemical bonds are broken or formed, rather than
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strictly molecular associations such as the binding between ligand and receptor (Eq. 3) or
the binding of molecules to a surface as in the case of the Hill-Langmuir equation (Eq. 2).

θ =
[L]n

[L]n+Kd
(2)

Receptor binding=
[L]

[L]+Kd
. (3)

These equations all take the same form, relating a change in response or signal (v , φ,
receptor binding), to the concentration of a substance ([S], [L]) based on a constant (KM ,
Kd) that is itself defined as a concentration of that substance. For example, in theMichaelis–
Menten equation, the fraction of the total possible enzymatic conversion of substrate to
product (v) is determined by the substrate binding affinity, the Michaelis constant (KM ).
The substrate binding affinity is the concentration at which the reaction velocity (v) is
half that of the theoretical maximum reaction rate (Vmax). This relationship can be easily
demonstrated by assuming that an enzyme with a KM value of 1 is exposed to a substrate
concentration of 1 ([S] = 1). This produces the situation where the substrate concentration
of 1 is divided by itself plus the KM value of 1, yielding the Vmax multiplied by 1

2 . This
association produces the hyperbolic relationship between compound concentration and
response ubiquitously found in equations used to describe biological interactions (Fig. 1A).
The simple relationship is derived from chemical equilibrium mass action relationships
and in general, governs most interactions at the molecular level. This relationship has even
been used to distill inhibitory theory down to its most basic form, IC50 values (Sebaugh,
2011; Eq. 4), where the inhibitory binding constant is denoted as the concentration of
inhibitor needed to reduce the target enzyme’s activity by 50%.

% Inhibition=
[I ]

[I ]+ IC50
×100 (4)

IC50 values are the most common way of characterizing inhibitors, as they provide an
easy way of comparing the inhibitory potential of compounds being developed as new drug
candidates. IC50 values however only describe changes in the enzyme’s reaction rate (v)
and are not an indication of variations in the maximal turnover (Vmax) or substrate affinity
(KM ).

Traditionally, changes in reaction velocity produced by changes in substrate affinity
and/or maximal velocity, have been defined with equations that were derived from
reaction schemes based on enzyme, substrate and inhibitor interactions. This method of
describing enzyme inhibition was highly dependent on the use of inhibition constants (Ki)
which initially made its appearance in the competitive (Eq. 5), non-competitive (Eq. 6),
uncompetitive (Eq. 7) and mixed non-competitive inhibition equations (Eq. 8) (McElroy,
1947; Cleland, 1970).

v =
[S]

[S]+KM

(
1+ [I ]

Ki

)Vmax (5)

v =
[S]

([S]+KM )
(
1+ [I ]

Ki

)Vmax (6)
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Figure 1 Enzyme-substrate-modifier interactions. (A) Enzyme-substrate binding, like any bimolecu-
lar system where ligand is in excess, can be expressed using a hyperbolic binding curve. Similarly, hyper-
bolic binding curves are also useful for describing the binding of modifiers, either inhibitors or activators,
with the enzyme. (B) A basic way of conceptualizing the rate at which an enzyme population hydrolyses its
substrate and how that rate may be affected by modifiers, is to limit the potential states the enzymes may
be found in to free enzyme, enzyme-substrate complex, enzyme-modifier complex and enzyme-substrate-
modifier complex. Catalysis is then defined by the portion of the (continued on next page. . . )

Full-size DOI: 10.7717/peerj.6082/fig-1
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Figure 1 (. . .continued)
substrate bound population affected by modifier (kcat2) or free of modifier (kcat1). (C) The hyperbolic as-
sociation of substrate (yellow boxes) and modifier (blue boxes) with the enzyme population is then able to
provide a way of determining the rate of substrate catalysis. The depicted table is very similar to a simple
multiplication table where the percent of substrate associated enzyme is displayed vertically with yellow
bars, while association of modifier is displayed horizontally with blue bars. Overlap of the two populations
is depicted as green, and along with the yellow bars represent the portion of the enzyme population which
are catalytically relevant. While the hyperbolic curves described by the binding isotherm is a continuum
between 0% and 100% association, the table is limited to 0%, 25%, 50%, 75% and 100% for simplicity.
Substrate hydrolysis is then defined by the portion o the enzyme population associated with substrate in
the presence or absence of modifier. For example, in the absence of modifier (0%), at a substrate concen-
tration equal to the KM , 50% of the enzyme population is bound by substrate and the reaction rate is half
that of the VMAX1. However, if a concentration of modifier equal to the modifier binding constant (KX ) is
added, half of the enzyme population is shifted to the new catalytic rate (kcat2) and substrate affinity (KM2).
This results in 25% of the population hydrolysing substrate free of modifier (Yellow box) and 25% shifted
to the altered state (green box). The altered state produced by the modifier may result in a very different
substrate association than that observed with the unmodified enzyme population, so it must be recognized
that the green boxes represent the portion of the population that is altered by the modifier unlike the yel-
low boxes that represent substrate association and can be directly related to the VMAX1.

v =
[S]

[S]
(
1+ [I ]

Ki

)
+KM

Vmax (7)

v =
[S]

[S]
(
1+ [I ]

αKi

)
+KM

(
1+ [I ]

Ki

)Vmax (8)

While these equations added both inhibition constants and terms for the inhibitor
concentration to the Michaelis–Menten equation, absent are terms defining the potential
catalytic activity of the enzyme-inhibitor complex. This may be due to the mechanisms
used in the derivation of these equations which do not take into account partial inhibition
and have resulted in their designation as total inhibitors (Cleland, 1970). To overcome
this limitation, other equations have been developed to describe compounds that do not
completely stop the catalytic activity of their target (Bisswanger, 2002; Cleland, 1970; Segel,
1975; Yoshino, 1987). However, these equations, known as partial inhibition equations, are
rarely utilized in the literature.

So what do the equations for total inhibition describe? An easy way of visualizing how
these equations are believed to affect the activity of an enzyme is to plot experimentally
determined values of Vmax and KM on a Cartesian coordinate graph with Vmax on the
y-axis and KM on the x-axis (Fig. 2A). If the catalytic activity of an enzyme is defined as
the coordinates KM and Vmax then inhibtion or activation of the enzyme’s activity can
be expressed as a shift to a different position on the graph. For example, the classical
competitive inhibition equation (Eq. 5) represents a decrease in substrate binding resulting
from the presence of a substrate mimic that blocks the enzymes active site. This is
characterized by a decrease in apparent substrate affinity producing an increase in the
apparent KM value from its initial value to infinity in a linear fashion (Fig. 2B). While,
the non-competitive inhibition equation (Eq. 6), represents a hyperbolic decrease in
Vmax from its initial value to zero (Fig. 2C). The uncompetitive equation (Eq. 7) causes
an apparent reduction in the KM value implying a higher substrate affinity, while also
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Figure 2 Cartesian coordinate plots. Cartesian coordinate plots of (A) the maximum velocity (Vmax) and
substrate affinity constants (KM ) used to define the Michaelis–Menten (B) the effect of competitive inhi-
bition (C) non-competitive inhibition and (D) mixed non-competitive inhibition. (E) A representation of
the full range of effects which may occur using Eq. (13) and (F) A plot of a theoretical compound which
activates the catalytic rate while decreasing substrate affinity emphasizing the hyperbolic relationship that
should govern a transition between any of the points on the Cartesian plot.

Full-size DOI: 10.7717/peerj.6082/fig-2

decreasing the apparent value of the Vmax (Fig. 2D). The mixed non-competitive inhibition
equation (Eq. 8) produces a reduction in the Vmax while either increasing or decreasing
the KM based on the ratio between Ki and Kiα (Fig. 2E). The changes in enzymatic activity
described by these equations leave many other undefined inhibitory and stimulatory
possibilities (Fig. 2F). As previously stated, while these equations are the most common
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forms of inhibition reported in the literature, aside from IC50s, their primary disadvantage
is their inability to describe the activity of an enzyme-inhibitor complex. This has been
addressed with the derivation of separate sets of equations to cover what is referred to
as the partial forms of inhibition associated with each of the classical inhibition types,
i.e., partial competitive, partial non-competitive, partial uncompetitive and partial mixed
non-competitive (Bisswanger, 2002; Cleland, 1970; Segel, 1975; Yoshino, 1987). To simplify
and standardize the field Fontes, Ribeiro & Sillero (2000) and more recently Baici (2015)
have attempted to redefine all the possible interactions inhibitors and activators may have
with an enzyme. However, as the complexity of the proposed equations has continued to
increase, their application has trailed off, with many journals now accepting or having a
preference for IC50 values (Brandt, Laux & Yates, 1987; Lazareno & Birdsall, 1993).

In my opinion, overcomplication of the enzyme modifier kinetics is contributing to
the demise of the field and this overcomplication is related to the treatment of Ki in the
total inhibitor equations (Eqs. 5–8). In the total inhibitor equations, the Ki is equated to
the effect of the inhibitor on the enzymatic activity rather than an equilibrium binding
constant marking the concentration where half the enzyme population is bound by the
inhibitor.

The arrangement of the Ki in the total inhibition equations is unusual, in that, while the
general term (Eq. 9) appears to be the same in all of the equations (Eqs. 5–8), it functions
as a factor of the denominator in the non-competitive equation (Eq. 6) and as a factor of
individual terms in the denominator with the other equations (Eqs. 5–(8)). Additionally,
this general term (Eq. 9) that is supposed to describe the binding of the inhibitor to the
enzyme does not share the same format as other equations used to describe biological
interactions (Eqs. 1–4). However, a rearrangement of the non-competitive equation
(Eq. 10) demonstrates that this notation is actually the reciprocal form of the hyperbolic
equation used to describe biological interactions (Eq. 11;Walsh, 2012).(

1+
[I ]
Ki

)
(9)

v =
[S]

([S]+KM )
(
1+ [I ]

Ki

)Vmax=
[S]

[S]+KM

(
Vmax−Vmax

[I ]
[I ]+Ki

)
(10)

1(
1+ [I ]

Ki

) =(1− [I ]
[I ]+Ki

)
. (11)

This rearrangement (Eq. 10), directly relates the non-competitive equation’s hyperbolic
decrease in Vmax, to the binding of the inhibitor with the enzyme population. This
rearrangement also explains why the non-competitive inhibition equation is limited to
situations where the inhibitor completely stops the catalytic activity of the enzyme, as
the Vmax is reduced by itself, as the inhibitor binds the enzyme population (Eq. 10). This
alternate form of the inhibitory term also suggests a rationale for the odd pattern of the
classic competitive inhibition equation. In the competitive equation (Eq. 5), the KM is
multiplied by the inhibitory term (Eq. 9) resulting in the KM getting divided by the fraction
of the enzyme population not bound by the inhibitor (Eq. 12). This produces the linear
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trend of increasing KM driving its value to infinity rather than generating a hyperbolic shift
from one substrate affinity to another. A one to one association of inhibitor with enzyme
would mean that each enzyme bound by inhibitor expresses the new apparent KM value
induced by the inhibitor. As the enzyme population is converted from an inhibitor-free
group to an inhibitor bound group, the observed KM would shift from the initial KM to the
inhibitor-induced apparent KM in a hyperbolic manner. Therefore, the competitive model
cannot describe changes in KM resulting from a one to one association of the inhibitor
with the enzyme.

v =
[S]

[S]+KM

(
1+ [I ]

Ki

)Vmax=
[S]

[S]+ KM(
1− [I ]

[I ]+Ki

) Vmax. (12)

While many inhibitors that only change substrate affinity are classified as competitive,
it is not hard to envision situations where changes in enzyme-substrate binding could be
caused by interactions not related to blockage of the enzyme’s active site by an inhibitor
which mimics the substrate. For example changes in the conformation of the active site
could reduce the ability of the substrate to bind without reducing the catalytic rate of the
enzyme. This could occur through alosteric interactions or even through partial blockade of
the active site when the enzyme is associated with the inhibitor. For example, the peptidase
kallikrein was believed to be competitively inhibited by benzamidine (Sousa et al., 2001).
However, the crystal structure of benzamidine binding to kallikrein demonstrated that it
does not block the catalytic site of the enzyme but instead binds to a portion of the protease
that deals with substrate specificity. Known as the side chain binding pocket, benzamidine
binds to a portion of the enzyme which recognizes the side chain of phenylalanine (Bernett
et al., 2002). This results in a hyperbolic decrease in substrate affinity based on the portion
of the kallikrein population bound to benzamidine. While each kallikrein enzyme bound
by the benzamidine has less affinity for its substrate it still hydrolyses the substrate at the
same rate. This is supported by a better fit of the experimental data to a hyperbolic rather
than linear change in KM (Walsh, Martin & Darvesh, 2011a).

While inhibitor interactions that conform to the traditional competitive equation
cannot be ruled out, the evidence for classifing an inhibitor as competitive must be closely
scrutinized before the inhibition can be attributed to the standard competitive equation
(Eq. 12).

Assuming that enzyme-inhibitor interactions are dependent on the same relationship
which defines other molecular systems (Eqs. 1–4), the Michaelis–Menten equation can be
modified to accommodate both positive and negative changes in KM and Vmax by adding
terms which relate binding of the inhibitor with the enzyme population directly to change
in enzymatic activity (Walsh, Martin & Darvesh, 2007; Eq. 13).

v =
[S]

[S]+KM1−(KM1−KM2)
[X]

[X]+kx

Vmax−(Vmax−Vmax)
[X]

[X]+kx
(13)

In this equation, the changes from the initial KM and Vmax values are directly related to
the binding of modifier (X) with the enzyme (Figs. 1B, 1C). The change from inhibitor to
modifier notation refers to the ability of this equation to describe activators of enzymatic
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activity as well as inhibitors. The numrical subscripts associated with the Vmax and KM

are used to represent the distinct states of the enzyme. For example in the absence of
modifier the Vmax and KM are denoted as V12ptmax1 and KM1 while V12ptmax2 and KM2

represent Vmax and KM values produced by the modifier. By clearly defining V12ptmax2
and KM2, this equation can be used to model either negative or positive changes in the Vmax

and KM (Fig. 2F) provided the shifts are hyperbolic. As previously stated the designation
of a V12ptmax2 stems from a simple rearrangement of the non-competitive inhibition
equation (Eq. 10), while the term describing changes to the KM can be derived the same
way the other classical equations have been derived, using the rate equation, conservation
of mass and equilibrium relationships (Supplemental Information 1). Indeed, the main
failing of this equation may be that it is unable to produce the linear increase in KM which
characterizes the standard competitive inhibition equation (Fig. 2B). However, whether
previously observed linear changes in KM are in fact linear or just represent the linear
portion of a hyperbolic curve, (as it could be argued was the case with benzamidines’
inhibition of kallikrein) deserves more attention (Walsh, Martin & Darvesh, 2011a).

MATERIALS & METHODS
Templates for comparing inhibitor and activator equations were developed using Excel. All
enzyme kinetic data analyzed in this study was collected from previously published results
or simulated using the equations described. The ability of the equations to model the data
was evaluated using non-linear regression with the solver add-in of Excel to globally fit the
data (Kemmer & Keller, 2010).

RESULTS & DISCUSSION
To truly assess the fitting of an equation to experimental data the equation should be
globally fit to the data. To this end, a template which can compare the capacity of the
classical inhibition equations (Eqs. 5–8) and the modifier equation (Eq. 13), to globally
fit experimental data was developed (Supplemental Information 2). To illustrate the
functionality of the template, data was acquired from Biotek’s application note on basic
enzyme kinetic determinations (Held, 2007), where the inhibition of β-galactosidase by β-
D-thiogalactopyranoside was examined. The structural similarity between the inhibitor and
the substrate, combined with the pattern observed using a double reciprocal plot lead to the
conclusion that β-galactosidase was competitively inhibited by β-D-thiogalactopyranoside
(Held, 2007). However, this analysis was based on standard pattern recognition where
regression lines for each inhibitor concentration were overlaid and convergence of the
lines close to the y-axis was interpreted as competitive inhibition. This sort of analysis
does not determine whether the pattern produced by the regression lines conforms to
a global fitting of the competitive inhibition equation (Eq. 12) to the experimental data.
Indeed, this reliance on pattern recognition is amajor hindrance for proper identification of
inhibitionmode. To address this issue, the template has been designed to facilitate the quick
comparison of the non-competitive, competitive, uncompetitive, mixed non-competitive
and modifier equation (Eqs 5–8 & 13, Fig. 3, Supplemental Information 2, Please refer to
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Figure 3 Enzymemodifier template. The enzyme modifier kinetic template (A) provides fifteen rows for substrate concentrations as well as six-
teen columns for varying concentrations of enzyme modifiers, either activators or inhibitors. (B) Below the raw data, a modified direct linear plot
uses the data in the no inhibitor column to generate estimates of the KM and Vmax while the first row of data is used to produce a linear estimate of
the initial Ki value. (C) The initial kinetic values are inserted into a table which contains the parameters utilized in the fitting of each equation cov-
ered by the template. The table also contains the Sum of Squared Residuals (RSS) and the Bayesian information criterion (BIC) for assessing the fit
of the model based on the provided parameters. Additionally, a box plot of the residuals is provided to offer a visual representation of the error asso-
ciated with the fitting of each equation to the data.

Full-size DOI: 10.7717/peerj.6082/fig-3
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Supplemental Information 3 for step by step pictorial instructions on the use of the fitting
template). To determine if the data fromBiotek’s application note truly does conform to the
classical competitive inhibition model the data was analyzed using the modifier template
(Fig. 3A). Inserting data into the template generates KM and Vmax values (Fig. 3B) using a
modified direct linear plot. The modified direct linear plot provides a statistically robust
way of determining apparentKM andVmax values by providingN (N−1)/2 intercept values
from which the median can be determined (Cornish-Bowden, 1995). These median values
are used as initial parameters in the fitting of the various inhibition equations. The KM and
Vmax generated by the modified direct linear plot are in close agreement with the values
reported byHeld (2007), calculated KM 0.15 mM Vmax 28.2 mOD/min versus reported KM

0.24 mM Vmax 33.4 mOD/min. Additionally, the template provides a Ki estimate based
on the decrease in observable rate associated with the top substrate concentration ([S]1)
and the assayed inhibitor concentrations ([I]1 to [I]7, Fig. 3A). The fit of the inhibition
equations using the initial kinetic parameter is displayed both tabularly and graphically
(Fig. 3C). The primary table contains the parameters employed in the fitting of each
equation and values used to assess the ability of each equation to model the data. The
columns containing values to evaluate the fit, namely the sum of squared residuals (RSS),
relative standard error (RSE) for the regression and the Bayesian information criterion
(BIC), which are color-coded such that the smallest values appear green representing the
best fit and red the worst. These parameters allow evaluation of the ability of each equation
to fit the observed data set with the Bayesian information criterion being included for
evaluation of potential overfitting as it negatively scores fittings based on the complexity
(number of parameters) of themodel being used (Burnham & Anderson, 2002). In this case,
the number of parameter for each model is listed in the table as k. Representation of the fit
of each equation is also visualized with a boxplot of the residuals, with the residuals used
to generate the boxplot appear to the right of the corresponding boxplot. Ideally, a good fit
would consist of an even distribution of the residual values around zero so for evaluation
purposes a secondary table is presented which contain values used in the generation of the
boxplot. The initial parameters produced by the template may result in fairly good fits or
extremely poor fits as is apparent in the poor distribution of the residuals with the modifier
equation (Fig. 3C).

To apply a global fit to the data the solver add-in for Excel is utilized (Kemmer & Keller,
2010), Please refer to Supplemental Information 3 for step by step instructions on using
the solver feature with the template). In fitting to the Biotek data, the solver feature was
used to minimize the RSS of the fits, initially by varying parameters for the inhibition
followed by all the parameters associated with the equation. For example, the fitting of
the non-competitive inhibition equation was performed by minimizing the RSS through
varying the Ki value, this was followed by a second minimization of the non-competitive
RSS value by varying the Vmax, KM and Ki simultaneously.

The improvement in fit between the initial parameters generated by the template
(Fig. 3C) and those present after minimizing the residuals is clear (Fig. 4, Supplemental
Information 4). Both RSS and BIC values are noticeably reduced and the boxplot
demonstrates a much evener distribution of the residuals around zero (Fig. 4A). The
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Figure 4 Inhibition of β-galactosidase by β-D-thiogalactopyranoside. Global fitting of the Biotek’s
application note data (Held, 2007) to multiple inhibitory equations. (A) In addition to producing global
minimal fitting values based on the RSS, the modifier template also produces a visualization of the fit-
ting of each inhibitory model with correlation plots of the experimental and calculated values, double
reciprocal Lineweaver-Burk plots, direct plots of the reaction rate versus the substrate and Dixon plots.
Shown are the global fits of the (B) Non-competitive (C) Competitive (D) Uncompetitive (E) Mixed Non-
competitive and (F) The modifier equation to the data.

Full-size DOI: 10.7717/peerj.6082/fig-4

presented values suggest that rather than β-D-thiogalactopyranoside conforming to the
classical competitive inhibition model a better fit can be produced using the modifier
equation which assumes a hyperbolic change in KM and Vmax. Global fitting of the data
with each equation is plotted below the boxplot (Figs. 4B–4F) For each equation, the
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data is presented as a correlation plot of the calculated versus the experimental data, an
overlay of the model with the experimentally observed rates (v vs [S]), a double reciprocal
Lineweaver-Burk plot (1/v vs 1/[S]) (Lineweaver & Burk, 1934) and a Dixon plot (1/v vs [I])
(Dixon, 1953; Butterworth, 1972). The correlation plot provides another way of visualizing
the ability of each equation to fit the data as a linear regression of the observed versus the
calculated values should produce a slope of 1 and a high R2 value if the calculated values
equal the observed values. For the Lineweaver-Burk plots, the lines represent the overlay of
the globally fit equations rather than best fit linear regressions of the individual data sets.

An examination of the competitive plots (Fig. 4C) demonstrates the deviation of
the observed data from the competitive model, where the model at higher inhibitor
concentration and lower substrate concentration suggests lower rates than those observed.
This problem is mirrored by the mixed non-competitive equation (Fig. 4E) which
approximates the linear increase in KM produced by the competitive equation as long
as the predicted αKi is significantly removed from the range of the Ki value, as is observable
in the fitting (Ki = 4.2 ×10−4 and αKi = 1.4 ×10−1, Fig. 4A). As previously stated the
modifier equation (Eq. 13) provides a better fit to the data which is apparent specifically in
the low substrate, high inhibitor region of the Lineweaver-Burk plot (LWB plot Top Line
Fig. 4F) and the high inhibitor region of the Dixon plot. Unfortunately, the Ki for the fit
produced in Biotek’s application note was not provided so a more in-depth comparison of
the templates ability to fit the data cannot be undertaken.

A more thorough evaluation of the present method can be realized by studying a
recent publication by Pintus et al. (2015) which describes the discovery of E. characias leaf
extracts with tyrosinase inhibitory activity. The inhibitory properties of these extracts were
characterized using Lineweaver-Burk plots and the data used in their analysis was made
available online. To determine if the data conformed to their reported modes of inhibition,
the data provided in their supplementary information was analyzed using the template.
The Lineweaver-Burk plot of their aqueous extract suggested that it acted as a mixed
non-competitive inhibitor. This analysis was not based on global fitting of the model to
the data but rather the accepted pattern recognition associated with the position of the
intercept produced by the individual best fit linear regression lines for the data produced
with varying inhibitor concentrations. From the best fit linear regression lines, the Ki and
αKi were reported as 0.097 and 0.33 mg/mL. Using a global fitting approach produced
slightly different values (0.099 and 0.37mg/mL) and almost halved the associated RSS value
(RSS 7×10−4 to 4×10−4 Fig. 5A, Supplemental Information 5). Global fitting agreed with
the reported inhibition model suggesting that only the mixed non-competitive (Fig. 5B)
or modifier (Fig. 5C) equations were able to adequately model the data.

The Lineweaver-Burk plot of their ethanolic extract was reported to produce the
recognizable competitive inhibition pattern where the linearly regressed best-fit lines
intercepted on the Y -axis (Pintus et al., 2015). However, when the data was examined
using global fitting, the competitive model did not demonstrate a significantly better fit
to the data when compared to the other models. When the reported Ki (23.7 µg/mL) was
fixed during the global fitting process the sum of squared residuals was further worsened
(RSS 0.0183 vs. 0.0143, Fig. 6A & Supplemental Information 6). Compared to the other
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Figure 5 Tyrosinase inhibition by E. characias aqueous extract. Global fitting of the E. characias aqueous leave extract reported as a mixed-non-
competitive inhibitor of tyrosinase (Pintus et al., 2015). (A) Fitting suggests the modifier and mixed non-competitive equations model the data sig-
nificantly better than the other equations. Shown are the global fits of the (B) Mixed Non-competitive and (C) the modifier equation to the data.

Full-size DOI: 10.7717/peerj.6082/fig-5

models, the only fit which was worse than the competitive model was the uncompetitive
form of inhibition. Even the non-competitive model which was completely unable to
model the results of the higher inhibitor concentrations was able to produce a slightly
better fit according to the sum of squared residuals (Figs. 6A–6C). This is a good example
of the limitations associated with the competitive model, as the mandatory linear increase
in KM described by the model, requires a pattern with a strict distribution of the lines in
a double reciprocal Lineweaver-Burk plot rather than simply an intercept on the Y -axis.
As is apparent, in the Lineweaver-Burk plot, global fitting of the competitive equation
produced a relatively good fit to the data in the absence of inhibitor (lowest line in LWB
plot Fig. 6C) and to the data for the enzyme in the presence of the highest concentration of
inhibitor (highest line in LWB plot Fig. 6C). However, the other lines of the plot are clearly
above the data points that they should be bisecting for a proper fit. For this situation, global
fitting suggests that the mixed non-competitive and modifier models both provide better
fits than the competitive equation (Figs. 6A, 6D, 6E).
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Figure 6 Tyrosinase inhibition by E. characias ethanolic extract. Global fitting of the E. characias ethanolic leave extract reported as a competi-
tive inhibitor of tyrosinase (Pintus et al., 2015). (A) Fitting suggests the modifier and mixed non-competitive equations model the data better than
the other equations. Shown are the global fits of the (B) Non-competitive (C) Competitive (D) Mixed Non-competitive and (E) the modifier equa-
tion to the data.

Full-size DOI: 10.7717/peerj.6082/fig-6

PARTIAL INHIBITION EQUATIONS
The limitations of the total inhibition equations have been acknowledged through the
development of partial inhibition forms for each of these equations, ie., the partial
non-competitive (Eq. 14; Segel, 1975), partial competitive (Eq. 15; Segel, 1975), partial
uncompetitive (Eq. 16; Bisswanger, 2002) and partial mixed non-competitive (Eq. 17;
Yoshino, 1987).
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While there has been limited use of these equations where the raw data is accessible,
Whiteley (1997), Whiteley (1999), Whiteley (2000) expanding on Yoshino’ (1987) work
identifying forms of partial inhibition through the examination of fractional velocity plots,
made the data in his papers available. The modifier template developed in the previous
section also has the advantage that almost any equation can be easily inserted into the
spreadsheets for global fitting analysis. This allowed the global fitting of the data presented
byWhiteley (1997),Whiteley (1999),Whiteley (2000) to be analyzedwith the total inhibition
(Supplemental Information 2) and the partial inhibition equations using a version of the
template modified to model the partial inhibition (Supplemental Information 7).

In Whiteleys’ article examining partial competitive inhibition, data for the inhibition
of glutamine synthase by alanine was presented as an example of this form of inhibition
(Whiteley, 1997). Inserting the data into the modifier template suggests that the data did
not conform to the traditional inhibitory equations, but was modeled by the modifier
equation very well (Fig. 7A, Supplemental Information 8). Fitting the data to the partial
inhibition equations did indicate that partial competitive inhibition provided an even
distribution of the residuals and a slightly better fit than the competitive inhibition model.
However, of the partial inhibition models, the partial mixed non-competitive inhibition
equation (Eq. 17) was the only model able to fit the data as well as the modifier equation
(Fig. 7B, Supplemental Information 9).

In a subsequent publication on partial and complete non-competitive inhibition,
Whiteley provides two examples of inhibition. The first example of inosine nucleosidase
inhibition by adenine is presented as a partial non-competitive form of inhibition and
the second example in which adenosine monophosphate is used to inhibit alcohol
dehydrogenase is classified as non-competitive (Whiteley, 1999).

Examining the first example suggests that none of the basic models fit the data as well
as the modifier equation (Eq. 13; Fig. 8A; Supplemental Information 10). When examined
with the partial inhibition template the partial non-competitive (Eq. 14) and partial mixed
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Figure 7 Putative partial competitive inhibition.Global fitting of the data presented in Whiteleys’ article on partial competitive inhibition (White-
ley, 1997) to (A) the modifier equation and the classical inhibitory equations, and (B) the modifier equation and the partial inhibitory equations.

Full-size DOI: 10.7717/peerj.6082/fig-7

non-competitive (Eq. 17) equations provided slightly better fits than the total inhibition
models but were unable to improve on the fit provided by the modifier equation (Fig. 8B,
Supplemental Information 11).

In the second example, rather than presenting as non-competitive the fitting suggested
that the modifier, mixed non-competitive and partial mixed non-competitive equations
all provided improved and roughly equivalent fits to the data (Figs. 8C, 8D; Supplemental
Information 12, 13).

Whiteleys’ most recent publication on identifying partial forms of inhibition,
identifies adenosine triphosphate as a partial uncompetitive inhibitor of mevalonate
diphosphate decarboxylase (Whiteley, 2000). However, when globally fit to the total and
partial inhibition equations, even the uncompetitive inhibition equation outperforms
the partial uncompetitive equation (RSS:1.69 ×10−5 vs. 1.92 ×10−2, Figs. 9A, 9B;
Supplemental Information 14, 15). Out of all the models, the partial uncompetitive
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Figure 8 Putative partial and complete non-competitive inhibition.Global fitting of the partial
non-competitive data presented in Whiteleys’ article on partial and complete non-competitive inhibition
(Whiteley, 1999) to (A) the modifier equation and the classical inhibitory equations, and (B) the modifier
equation and the partial inhibitory equations. Global fitting of the non-competitive data presented in
Whiteleys’ article to (C) the modifier equation and the classical inhibitory equations, and (D) the modifier
equation and the partial inhibitory equations.

Full-size DOI: 10.7717/peerj.6082/fig-8
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Figure 9 Putative partial uncompetitive inhibition.Global fitting of the data presented in Whiteleys’ article on partial uncompetitive inhibition
(Whiteley, 2000) to (A) the modifier equation and the classical inhibitory equations, and (B) the modifier equation and the partial inhibitory equa-
tions.

Full-size DOI: 10.7717/peerj.6082/fig-9

fared the worst while the modifier equation and the partial mixed non-competitive
equation modeled the data the best (Fig. 9B).

Overall equation fitness
A comparison of the ability of the equations to fit the examined experimental datasets
suggests that the modifier equation (Eq. 13) can fit each example just as well if not
better than all the other equations (Table 1, Supplemental Information 16–18). Indeed,
only the partial mixed non-competitive equation (Eq. 17) was comparable to the modifier
equation in its ability to fit the experimental datasets. The ability of themodifier equation to
outperform the other equations was further supported with simulated data (Table 2). Using
simulated data for the non-competitive (Eq. 6, Supplemental Information 19, Supplemental
Information 20), competitive (Eq. 5, Supplemental Information 21, 22), uncompetitive
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Table 1 Comparison of experimental data fitting between equations. RSS values related to the global fitting of the literature datasets (Supplemental Information 4–6,
8–18) with the equations in the templates (Eqs. (5)–(8), (13)–(17)). For each literature dataset, the reported mode of inhibition is listed in the left-hand column and is cir-
cled in the table. The ability of each model to fit the datasets have been color-coded such that superior fits appear in green with the text of minimum RSS values appearing
in red.

Non-
competitive

Competitive Uncompetitive Mixed
non-
competitive

Modifier
equation

Partial
non-
competitive

Partial
competitive

Partial
uncompetitive

Partial
mixed
non-
competitive

Competitive
(Held, 2007)

3.10E+02 3.15E+01 4.30E+02 3.07E+01 2.28E+01 2.65E+02 5.85E+01 2.42E+03 2.28E+01

Mixed non-
competitive
(Pintus et al.,
2015)

3.90E−03 6.90E−03 2.02E−02 4.36E−04 3.62E−04 3.76E−03 5.00E−04 9.85E−02 3.62E−04

Competitve
(Pintus et al.,
2015)

1.39E−02 7.63E−03 1.60E−01 7.57E−03 7.57E−03 1.39E−02 7.63E−03 1.60E−01 7.57E−03

Partial
competitive
(Whiteley, 1997)

8.63E−04 3.22E−04 5.33E−03 3.22E−04 1.09E−06 5.41E−04 3.22E−04 7.46E−03 1.09E−06

Partial non-
competitive
(Whiteley, 1999)

5.54E−04 1.49E−03 1.64E−03 5.49E−04 1.55E−04 1.62E−04 5.49E−04 2.07E−02 1.62E−04

Non-
competitive
(Whiteley, 1999)

3.74E−06 1.33E−03 1.92E−03 3.13E−06 3.13E−06 3.74E−06 3.16E−06 6.59E−03 3.13E−06

Partial
uncompetitive
(Whiteley, 2000)

1.16E−04 3.18E−04 1.69E−05 1.69E−05 1.97E−06 1.01E−04 1.73E−05 1.98E−02 1.98E−06
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Table 2 Comparison of simulated data fitting between equations. RSS values related to the global fitting of the simulated datasets (Supplemental Information 19–28)
with the equations in the templates ((5)–(8), (13)–(17)). The RSS value of the equations used to generate the dataset has been omitted. The ability of each model to fit the
datasets have been color-coded such that superior fits appear in green with the text of minimum RSS values appearing in red.

Non-
competitive

Competitive Uncompetitive Mixed
non-
competitive

Modifier
equation

Partial
non-
competitive

Partial
competitive

Partial
uncompetitive

Partial
mixed
non-
competitive

Non-competitive 3.10E+02 5.84E+01 8.55E−10 2.08E−28 1.19E−28 1.54E−05 8.60E+02 4.44E−08
Competitive 9.59E+01 2.25E+02 1.91E−07 1.33E−03 9.52E+01 2.26E−06 3.27E+02 1.57E−01
Uncompetitive 2.17E+01 4.16E+02 6.14E−07 6.13E−08 2.17E+01 4.16E+02 6.82E+02 1.46E−07
Mixed
non-competitive

8.21E+01 1.24E+00 2.08E+02 7.23E−08 8.15E+01 9.78E−04 3.40E+02 2.12E−04

Modifier
equation
(activation)

6.29E+02 6.29E+02 6.29E+02 6.29E+02 6.29E+02 4.72E+04 2.88E+02 1.81E−06
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(Eq. 7, Supplemental Information 23, 24), mixed non-competitive (Eq. 8, Supplemental
Information 25, 26) equations and an example of activation generated with the modifier
equation (Eq. 13, Supplemental Information 27, 28), the ability of each of the models to
fit the simulated data was also examined. The simulated data contained many more data
points than the experimental data used in the fittings found in Table 1. This highlighted the
inability of the total inhibitor equations aside from the mixed non-competitive inhibition
equation to model the data generated with the other total inhibitor models. For example,
the competitive equation was unable to fit the data produced with the non-competitive
equation (Table 2, RSS 3100). Themodifier equation, apart from the competitive inhibition
simulated data, was able to fit the other simulated data sets as well as or better than the
other equations. Similarly, the partial mixed non-competitive equation also produced
a good fit for the datasets and was able to fit the example of activation generated with
the modifier equation (Table 2, Supplemental Information 28). This suggests the partial
mixed non-competitive equation may be almost as adaptable as the modifier equation
for describing a wide variety of modifier interactions. However, the modifier equation
outperformed the partial mixed non-competitive equation in all the simulated datasets.

CONCLUSIONS
Based on these examples, the modifier equation (Eq. 13) has been able to model each
dataset just as well if not better than the other equations based on the sum of squared
residual values. While both the inhibition of β-galactosidase by β-D-thiogalactopyranoside
(Held, 2007) and inhibition of tyrosinase with an ethanolic extract of E. characias leaves
(Pintus et al., 2015) were reported as examples of competitive inhibition, global fitting of
their data suggested they do not conform to the classical competitive inhibition equation
(Figs. 4 & 6). As none of the datasets conform to a linear change in KM , it is not surprising
that the modifier equation which directly relates fractional association of modifiers with
the enzyme population to change in activity fits all the examples very well.

The modifier equation defined here unifies inhibition and activation in a single equation
by describing changes in Vmax and KM using a single binding constant (Eq. 13), something
which was not described with the traditional equations such as the mixed non-competitive
equation (Eq. 8). The clear distinction between inhibitor binding constants and effect
on KM and Vmax also permits the modular expansion of the Michaelis–Menten equation
to accommodate multiple substrate and modifier binding interactions (Walsh, 2012).
This approach has already proven its value, providing valuable new insight into how the
compound DAPT interacts with the multiple-substrate regulated forms of γ -secretase
and the implications this has for amyloid precursor protein processing in Alzheimer’s
disease (Walsh, 2014). Additionally, it has been used to provide more information on the
effect drugs for Alzheimer’s disease have on the multiple-substrate regulated forms of
cholinesterases (Walsh, Martin & Darvesh, 2007; Walsh et al., 2011b).

New initiatives for reproducibility and openness such as the database proposed by the
Standards for Reporting Enzyme Data (STRENDA) commission which will include raw
data (Tipton et al., 2014) suggests enzyme kinetic data will becomemuchmore transparent.
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This transparency will allow easier sharing and evaluation of raw data sets, which will in
turn lead to the refitting of raw data with alternative models such as the modifier equation.
The global fitting templates presented here should be useful for both evaluating model
suitability and in assessing whether the modifier equation described here can replace
traditional approaches to inhibition and activation modeling.
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