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Introduction

The interferon (IFN)-mediated innate immune response provides a robust first line of defense against invading pathogens. Pathogen-associated molecular patterns' (PAMP) recognition by pattern recognition receptors (PRRs) leads to a subsequent production of IFN, especially of types I (IFNα/β) and III (IL28A, IL28B, IL29), considered as the main antiviral IFNs [START_REF] Borden | Interferons at age 50: past, current and future impact on biomedicine[END_REF]. Newly synthesized IFN molecules up-regulate the transcription of hundreds of interferon-stimulated genes (ISGs) resulting in the production of various antiviral effectors [START_REF] Der | Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays[END_REF]. This cascade leads to a remarkable antiviral state of infected and neighboring cells and limits the spread of infectious agents. Considering the large number of ISGs activated upon IFN signaling, considerable redundancy in the system is likely. Among the molecules with important biological functions induced by IFN are the 2′5′ oligoadenylate synthetase/ribonuclease L (OAS/RNase L) system, the adenosine deaminase RNA-specific (ADAR) as well as the dsRNA-activated protein kinase (PKR), which play a critical role in the host's antiviral defense mechanism and are among the most extensively studied ISGs [START_REF] Der | Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays[END_REF][START_REF] George | Characterization of the 5'-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter[END_REF][START_REF] Levy | Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback[END_REF][START_REF] Sen | Viruses and Interferons[END_REF]. Even though the specific functions of mammalian OAS1, ADAR and PKR have yet to be clarified, their structural (architectural) domain organizations are well characterized and show a high degree of similarity among species.

The OAS gene family comprises three classes of genes in human, OAS1, OAS2 and OAS3, in addition to an "OAS-like" (OASL), which is catalytically inactive. The mouse OAS cluster, the second most well known after the human OAS cluster, contains one OAS2 and one OAS3 gene; two OASLs, of which one is a pseudogene; and eight paralogs of OAS1, Oas1a-Oas1h [START_REF] Kristiansen | The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities[END_REF]. Activation of the OAS proteins in presence of single-stranded (ss) or double-stranded (ds) RNA triggers the synthesis of 2′5′ oligoadenylates. These in turn bind to and activate the latent RNaseL, which restricts viral propagation through direct and indirect mechanisms, including i) viral genome degradation (RNA and DNA), ii) cellular mRNA degradation, including mitochondrial RNA followed by apoptosis, as well as iii) amplification of IFN signaling through the release of additional PAMPs activating cytoplasmic helicases, which in turn activate type I IFN synthesis and create a positive feedback loop [START_REF] Justesen | Gene structure and function of the 2'-5'oligoadenylate synthetase family[END_REF][START_REF] Malathi | Small self-RNA generated by RNase L amplifies antiviral innate immunity[END_REF][START_REF] Malathi | A transcriptional signaling pathway in the IFN system mediated by 2′-5′-oligoadenylate activation of RNase L[END_REF][START_REF] Silverman | Implications for RNase L in Prostate Cancer Biology[END_REF][START_REF] Xiang | Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2',5'-oligoadenylates[END_REF]. Regarding its domain organization, on its N-terminus OAS1 comprises a nucleotidyl transferase domain (NTP-transf_2) constituted of a dsRNA-binding domain flanked by two ATP-binding domains, which plays a critical role in OAS1 activation. On its C-terminus, OAS1 presents the OAS1_C domain including the region of enzymatic activity thought to activate latent RNAseL [START_REF] Sarkar | Identification of the substrate-binding sites of 2'-5'-oligoadenylate synthetase[END_REF].

ADAR belongs to a family of proteins that modulate nucleic acid integrity and play an important role in the defense against viral RNAs. All ADAR family members present doublestranded RNA-binding domains (dsRBDs) at their N-termini and a catalytic deaminase domain located at their C-termini [START_REF] Mannion | New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins[END_REF]. A unique feature of ADAR1, when compared to other members of the ADAR family, is the presence of Z-DNA-binding domains (ZBDs) at its N-terminus with a Zα and a Zβ domain [START_REF] Kim | The Interaction between Z-DNA and the Zab Domain of Double-stranded RNA Adenosine Deaminase Characterized Using Fusion Nucleases[END_REF]. In addition to the capacity of the Zα domain to bind to Z-DNA/RNA [START_REF] Herbert | A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase[END_REF], it has been reported that all proteins containing this domain are implicated in the type I IFN response pathway [START_REF] Athanasiadis | The Crystal Structure of the Zβ Domain of the RNA-editing Enzyme ADAR1 Reveals Distinct Conserved Surfaces Among Z-domains[END_REF]. Furthermore, the Zα domain is essential for the location of ADAR1 to cytoplasmic stress granules following activation. Upon binding to dsRNA, ADAR1 induces editing of adenosine to inosine, one of the most abundant modifications of mammalian RNA [START_REF] Bazak | A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes[END_REF][START_REF] Goodman | ADAR proteins: structure and catalytic mechanism[END_REF]. However, depending on the viral species, the editing event can make ADAR1 act as either a proviral or an antiviral factor. Indeed, whereas editing by ADAR1 of lymphocytic choriomeningitis virus introduces mutations in viral proteins and reduces infectivity, editing of HIV-1 rev and tat proteins leads mammals while they seem to be harmless or only rarely associated with clinical signs in bats to increased infectivity [START_REF] Doria | Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection[END_REF]. In addition, ADAR1 can also exert a proviral function through its Z-DNA and dsRBD domains by interacting with PKR, another dsRBDcontaining protein. Such interaction negatively regulates the antiviral function of PKR [START_REF] Clerzius | ADAR1 Interacts with PKR during Human Immunodeficiency Virus Infection of Lymphocytes and Contributes to Viral Replication[END_REF]. PKR (protein kinase dsRNA-dependent) is one of the four eIF-2α serine-threonine kinases that controls protein synthesis through the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2α). PKR is ubiquitously expressed and can be induced upon IFN treatment [START_REF] Meurs | Molecular cloning and characterization of the human doublestranded RNA-activated protein kinase induced by interferon[END_REF][START_REF] Meurs | Constitutive expression of human double-stranded RNAactivated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth[END_REF][START_REF] Williams | Signal Integration via PKR[END_REF]. PKR becomes activated upon binding to dsRNA, as during viral infection, or to cellular activators in response to stress [START_REF] Dabo | dsRNA-Dependent Protein Kinase PKR and its Role in Stress, Signaling and HCV Infection[END_REF]. Because of PKR's role in controlling protein synthesis, it can inhibit infection by a number of viruses. Nevertheless, other viruses, such as the hepatitis C virus, benefit from the general shut-down of protein synthesis, which promotes their own eIF-2α-independent translation [START_REF] Arnaud | Hepatitis C Virus Controls Interferon Production through PKR Activation[END_REF][START_REF] Garaigorta | Hepatitis C Virus Blocks Interferon Effector Function by Inducing PKR Phosphorylation[END_REF]. In addition, PKR modulates signaling pathways involved in inflammation independently of its enzymatic activity [START_REF] Bonnet | The N-terminus of PKR is responsible for the activation of the NF-κB signaling pathway by interacting with the IKK complex[END_REF][START_REF] García | The dsRNA protein kinase PKR: Virus and cell control[END_REF]. PKR consists of two functionally distinct domains: a Nterminal dsRNA binding regulatory domain (dsRBD) and a C-terminal kinase catalytic domain. The dsRNA-binding domain contains two dsRNA-binding motifs (dsRBMs). These motifs are rich in basic residues and confer to PKR the capability of binding to dsRNA independently of the sequence. As a member of the kinase proteins, PKR presents all the conserved catalytic kinase subdomains. In addition, the homology within subdomain VI identifies PKR as a serine/threonine kinase [START_REF] Meurs | Molecular cloning and characterization of the human doublestranded RNA-activated protein kinase induced by interferon[END_REF]. PKR also possesses an insert region C-terminal of Domain IV. This insert region and the dsRBD are key determinants of the PKR function and regulation.

Bats are known to harbor many zoonotic viruses, some of which are pathogenic to other 2.2. RNA extraction and cDNA synthesis [START_REF] Moratelli | Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses?[END_REF]. Strikingly, mechanisms that allow bats to coexist with these viruses have not yet been fully researched. It is currently acknowledged that early control of viral replication by their innate immune system might be one of the mechanisms implicated, enabling bats to coexist with viruses [START_REF] Baker | Antiviral immune responses of bats: a review[END_REF]. Following the establishment of a Desmodus rotundus cell line, FluDero, and the molecular characterization of the RIG-I-like receptor members and of type I interferons [START_REF] Sarkis | Development of molecular and cellular tools to decipher the type I IFN pathway of the common vampire bat[END_REF], we studied several ISGs from this bat species given that they are responsible for the antiviral activity of IFNs in mammals [START_REF] Der | Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays[END_REF][START_REF] He | Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses[END_REF][START_REF] Levy | Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback[END_REF][START_REF] Sen | Viruses and Interferons[END_REF][START_REF] Zhou | Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection[END_REF]. Here, we describe the molecular characterization of three ISGs, OAS1, ADAR1 and PKR, from Desmodus rotundus and report differential expression profiles for these genes upon stimulation of the FLuDero fetal lung cell line with the synthetic analog of dsRNA, the polyinosinic:polycytidylic acid, poly(I:C).

Materials and Methods

Cell line, cell culture and poly(I:C) stimulation

Establishment of the FluDero cell line has been described previously [START_REF] Sarkis | Development of molecular and cellular tools to decipher the type I IFN pathway of the common vampire bat[END_REF].

The cell line was cultured in prewarmed DMEM/Ham's Nutrient Mixture F12 (Sigma) supplemented with 10% fetal bovine serum (FBS) (Sigma), 100 units/mL penicillin and 100 μg/mL streptomycin and was maintained in a humidified incubator with 5% CO 2 at 37°C. For poly(I:C) stimulation, FLuDero cells were seeded at a density of 2.5×10 5 cells/well in 12-well plates. Cells were stimulated by transfection with 20 μg/mL of poly(I:C) (Sigma, cat #P9582) by calcium phosphate transfection (Invitrogen), 20 h after seeding. Cells were harvested in TRIzol Reagent at 0, 3, 6, 9, 12, 24, 48 and 72 h post-transfection and stored at -80°C until RNA extraction. The experiment was performed three times.

Total RNA was extracted from FLuDero cells transfected with poly(I:C) using TRIzol Reagent (Invitrogen) as recommended by the manufacturer. cDNAs were synthesized using Superscript ® III reverse transcriptase (Invitrogen) and random hexamers following the manufacturer's instructions.

Sequence identification and domain characterization of OAS1, ADAR1 and PKR

To generate the full-length coding sequences of OAS1, ADAR1 and PKR, all amplifications were performed on cDNA obtained from poly(I:C)-transfected FluDero cells.

Internal coding regions were amplified by PCR using the AmpliTaq Gold DNA polymerase kit (Thermo Fischer Scientific). Different combinations of consensus and specific degenerate primers were designed using Primer3 (v.0.4.0) based on alignments of orthologous mammal sequences, which were available in the GenBank database (Supplementary Table 1). The 5′and 3′-terminal sequences were obtained by rapid amplification of cDNA ends (RACE) using the FirstChoice ® RLM-RACE Kit (Ambion, Inc.). PCR and RACE products were cloned using the pCR TM 4-TOPO ® TA CLONING ® KIT (Invitrogen). The sequences obtained were confirmed by similarity analysis using the NCBI BLAST search tool (http://www.ncbi.nlm.nih.gov/BLAST). The structural domains of each protein were identified using SMART software (http://smart.embl-heidelberg.de/) [START_REF] Letunic | SMART: recent updates, new developments and status in 2015[END_REF].

Multi-alignment was performed with the ClustalW program (https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html) using default parameters.

Phylogenetic analysis

The complete coding sequences for ADAR1 and PKR of 18 and 17 representatives Laurasiatherian and Euarchontoglires, respectively, were downloaded from the NCBI database. Available sequences included those from the bat species Eptesicus fuscus, Miniopterus natalensis, Myotis brandtii, Myotis davidii, Myotis lucifugus, Pteropus alecto, 95°C for 15 s, 60°C for 1 min. For absolute quantification, the exact number of copies of the Pteropus vampyrus, Rhinolophus sinicus and Rousettus aegyptiacus (Supplementary Table 2). The ISG sequences of D. rotundus obtained in this study were further added to each data set. After alignment and editing, the MEGA version 6.0 software [START_REF] Tamura | MEGA6: Molecular Evolutionary Genetics Analysis version 6.0[END_REF] was used to compute pairwise comparisons in the nucleotide and amino acid using uncorrected pdistances. The best-fit amino acid evolutionary substitution model (Jones-Taylor-Thornton + G + F) was determined using MEGA version 6.0. Bayesian phylogenetic analyses were performed using MrBAYES 3. Markov Chain Monte Carlo (MCMC) simulations were run for 10,000,000 generations, with four simultaneous chains, using a sample frequency of 500 and a burn-in of 25,000. Majority rule consensus trees were obtained from the output.

Validation of the inference was assessed based on the standard deviation of split frequencies, which was less than the expected threshold value of 0.01 (calculated value of 0.002). ADAR1

and PKR trees were rooted with the rodent Mus musculus sequences. Coding sequences from 33 representative mammalian species retrieved in NCBI were used for OAS1 pairwise comparisons and phylogenetic analysis (Supplementary 

Results

Sequence characterization of D. rotundus OAS1a, OAS1b, ADAR1 and PKR genes

Primers derived from alignments of the orthologous mammalian OAS1, ADAR1 and PKR sequences were used to characterize OAS1, ADAR1 and PKR genes from mRNA extracted from the FluDero cell line. The full-length coding sequences for ADAR1 and PKR were identified. Sequence analysis revealed that their coding regions were 3444 and 1611 base pairs (bp) long, respectively, encoding proteins of 1149 and 537 amino acids (aa), respectively. In addition, we characterized two OAS1 paralog genes in D. rotundus, which we named OAS1a and OAS1b. The partial coding sequence of OAS1a was 1056 bp in length (352 aa). On the other hand, the complete coding region of OAS1b was 1101 bp long encoding a 367-aa protein. When comparing the OAS1a and OAS1b with their mammalian counterparts, OAS1a seems to lack 17aa at its C-terminal.

Pairwise comparison done on 897 nucleotides corresponding to 299 amino acid residues showed that the two OAS1 paralogs shared 81.6 and 77.3% of sequence identity at the nucleotide and amino acid levels, respectively. However, when compared to their mammalian homologs, OAS1a showed a higher level of sequence identity at the nucleotide and amino acid levels than OAS1b. For instance, OAS1a exhibited 84% and 80% identity at the nucleotide and amino acid levels, respectively, and OAS1b shared 78 and 73% identity with the OAS1 sequence of the Pteropus species. In the same way, OAS1a shared 73-80% amino acid 75% sequence identity (Supplementary Table 3). D. rotundus' ADAR1 and PKR were also subjected to pairwise comparison with their mammalian homologs. Among the four ISGs characterized, the complete amino acid sequence of ADAR1 displayed the highest level of sequence identity with its mammalian counterparts, while PKR shared the lowest. For instance, ADAR1 and PKR displayed 85.4-89.6% and 64.7-71% sequence identity at the protein level with their bat homologs, respectively (Supplementary Table 3). In addition, when comparing D. rotundus PKR with other mammalian homologs the identity at the protein level was slightly lower.

Conserved domain organization in D. rotundus ISGs

One of the hallmarks of the ISGs is their domain architecture responsible for their function. Sequence analysis of the two OAS1 paralogs identified in D. rotundus using the SMART software showed that these two proteins presented a similar structural domain rotundus PKR did not possess the repeat sequence (green) found in the catalytic region of the human PKR, a common feature observed in other bat species and mice (Figure 2b).

The D. rotundus-characterized ISGs are closely related to their mammalian counterparts

To elucidate the evolutionary relationships of OAS1a and OAS1b, ADAR1 and PKR, phylogenetic trees were constructed based on multiple amino acid alignments constructed with other published mammal sequences (Figure 3). The OAS1 phylogenetic topology obtained was in agreement with the different mammalian orders, showing that OAS1a and OAS1b from D. rotundus belonged to a single clade of chiropters. Within this clade, OAS1a

and OAS1b clustered with OAS1-like and OAS1 of microbats, respectively, and were supported with high posterior probability values (Figure 3a). On the other hand, the phylogenetic analyses of ADAR1 (Figure 3b) and PKR (Figure 3c) showed that all bat sequences belonged to a clade distinct from other mammal species, with the microbats (D.

rotundus, M. natalensis, E. fuscus and Myotis species) diverging from the megabats (Pteropus species, R. aegyptiacus, and R. sinicus).

D. rotundus OAS1, ADAR1 and PKR can be induced in response to poly(I:C) stimulation

To investigate the functionality of these ISGs in FLuDero, we studied their expression profile after poly(I:C) transfection (Figure 4). The kinetics of the expression of OAS1a, OAS1b, ADAR1 and PKR mRNA revealed a similar induction profile. The induction was observed 6 h post-transfection, reaching a peak at 24 h followed by a decline at 48 h. Among the ISGs studied, OAS1b was the most inducible gene (400-fold up-regulation at 24 h) at all time points of the kinetics. In contrast, ADAR1 and PKR were the least induced genes, showing a peak of induction at 24 h with a 15-and nine-fold induction, respectively.

Strikingly, in the absence of stimulation, transcription of the four ISGs characterized was already significant, with a strong expression of PKR mRNA (Figure 5, 0 hrs).

Discussion

Viral infection in mammals often triggers the IFN-I-mediated frontline host defense mechanism, leading to the transcription of a wide range of ISGs (Randall and Goodbourn 2008). These ISGs confer an antiviral state to the host and neighboring cells by several mechanisms, including inhibition of viral transcription, translation and replication, as well as degradation of viral nucleic acids. We previously demonstrated that FLuDero cells were competent to mount high levels of IFN-I after transfection with poly(I:C) [START_REF] Sarkis | Development of molecular and cellular tools to decipher the type I IFN pathway of the common vampire bat[END_REF].

To deepen our understanding of the D. rotundus' IFN-I antiviral response, we molecularly characterized three ISGs, OAS1, PKR and ADAR1, closely implicated in the IFN-I antiviral response and looked at their expression upon poly(I:C) stimulation of FLuDero cells.

Contrary to other mammals such as in human, which only possesses one OAS1 gene, we characterized two OAS1 paralogs (OAS1a and OAS1b) in D. rotundus, a feature shared with some bat species such as Myotis lucifigus, M. natalensis and E. fuscus, and other mammals such as the mouse, which has several OAS1 paralogs. Nevertheless, even if the mouse expresses eight OAS1 genes, only two (OAS1a and OAS1g) conserve their activities [START_REF] Elkhateeb | The role of mouse 2′,5′-oligoadenylate synthetase 1 paralogs[END_REF]. The other paralogs are non-functional due to mutations or deletions of at least one of their functional domains. Multiple sequence alignment of D. rotundus OAS1a and OAS1b with their mammalian ortholog sequences demonstrated that they have the same structural organization and are thus likely to possess similar enzymatic and antiviral activities. For instance, the P-Loop motif, which is an ATP-binding site [START_REF] Saraste | The P-loop--a common motif in ATP-and GTP-binding proteins[END_REF][START_REF] Tag-El-Din-Hassan | The chicken 2'-5' oligoadenylate synthetase A inhibits the replication of West Nile virus[END_REF], the DAD motif in D box, which is a Mg 2+ -binding site [START_REF] Sarkar | Identification of the substrate-binding sites of 2'-5'-oligoadenylate synthetase[END_REF][START_REF] Yamamoto | Effects of specific mutations in active site motifs of 2',5'-oligoadenylate synthetase on enzymatic activity[END_REF], the KR-rich region, which is an oligoadenylate and ATP-binding site [START_REF] Marié | 69-kDa and 100-kDa isoforms of interferon-induced (2'-5')oligoadenylate synthetase exhibit differential catalytic parameters[END_REF], and the CFK motif located in the C-terminal domain, required for the tetramerization of the proteins, are all conserved [START_REF] Ghosh | Enzymatic activity of 2'-5'-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein[END_REF].

In a previous study on P. alecto, Zhou and colleagues characterized a single OAS1 gene.

However, they did not exclude the possible existence of additional OAS1 paralogs given that their analysis was based on a P. alecto genome assembly not fully achieved at the time of the study [START_REF] Zhou | Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection[END_REF]. In the database, many bat OAS1 genes have been annotated as "OAS1-like" such as in M. lucifigus, P. vampyrus, M. natalensis and E. fuscus. However, these genes do not show any mutation on their functional sites, which could result in a loss of function [START_REF] Guénet | Genetics of the Mouse[END_REF]. Moreover, the OAS1 phylogenetic tree reveals that some bat OAS1 and OAS1-like sequences are intermixed within different clades (Fig. 3a). A consensus on "OAS1" naming is therefore needed. In this regard, the generation of more OAS1

sequences from other bat species should extend our understanding of their evolutionary history.

The molecular characterization and domain prediction of PKR show that the regulatory and kinase subdomains of the D. rotundus' PKR protein are remarkably conserved with respect to those of other mammals. For instance, the N-terminal domain of D. rotundus' PKR includes a repeated motif (dsRBD) that possesses dsRNA-binding activity and the C-terminal half of PKR includes the 11 conserved catalytic subdomains characteristic of kinases. Our multiple sequence alignment of mammals' PKR shows the conservation of the major residues crucial to the function of the protein such as the highly conserved lysine K 64 of the RNAbinding domain required for its RNA-binding activity, the K 296 in the catalytic subdomain II required for its kinase activity and the T 446 within the activation loop that confers to PKR its specificity as a serine/threonine kinase [START_REF] Dabo | dsRNA-Dependent Protein Kinase PKR and its Role in Stress, Signaling and HCV Infection[END_REF]. In addition, the salt bridge interaction of R 262 and D 266 at the dimer interface of PKR, which is critical to eIF2α phosphorylation and PKR activation, is also conserved [START_REF] Dey | Conserved Intermolecular Salt Bridge Required for Activation of Protein Kinases PKR, GCN2, and PERK[END_REF].

Similarly, depending on the sequence alignment, ADAR1 is also highly conserved with those of other mammals. For instance, we found that residues H 910 and E 912 of the CHAE motif, considered as a key element of the catalytic core characteristic of deaminases, are conserved. It has been shown that their mutations completely abolish A-to-I editing activity [START_REF] Lai | Mutagenic Analysis of Double-stranded RNA Adenosine Deaminase, a Candidate Enzyme for RNA Editing of Glutamate-gated Ion Channel Transcripts[END_REF][START_REF] Liu | Mechanism of interferon action: functionally distinct RNAbinding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase[END_REF]. Further, C 966 and C 1036 , which are believed to play a role in zinc coordination along with H 910 , are necessary for ADAR1 deaminase activity and are also conserved in D. rotundus [START_REF] Lai | Mutagenic Analysis of Double-stranded RNA Adenosine Deaminase, a Candidate Enzyme for RNA Editing of Glutamate-gated Ion Channel Transcripts[END_REF]. Moreover, as in other mammals, the lysine residues crucial for both RNA binding and enzymatic activity, present in the core sequence of each of the dsRBD domains (K 554 , K 665 , and K 777 ) are conserved [START_REF] Fierro-Monti | Proteins binding to duplexed RNA: one motif, multiple functions[END_REF][START_REF] Liu | Mechanism of interferon action: functionally distinct RNAbinding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase[END_REF][START_REF] Mccormack | Mechanism of Interferon Action Motif I of the Interferon-Induced, RNA-Dependent Protein Kinase (PKR) Is Sufficient to Mediate RNA-Binding Activity[END_REF].

To test the functionality of the ISG system upon viral infection in our bat model, expression of the characterized ISGs was examined following transfection of FLuDero cells with poly(I:C). The induction profile of the ISGs characterized in our bat model does not match that obtained by Zhou and colleagues [START_REF] Zhou | Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection[END_REF] on lung cells from P. alecto after poly(I:C) transfection. Although we also showed an induction of OAS1 and PKR following poly(I:C) transfection, they found higher and earlier induction of PKR as compared to OAS1.

The discrepancy between this previous study and our results is probably due to intrinsic factors specific to the bat species leading to distinct expression profiles. Indeed, it has recently been reported that the up-regulation of ISGs was not only lineage-but also species-specific when comparing the megabats and the microbats [START_REF] Shaw | Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses[END_REF]. In addition, the higher induction of OAS1a and OAS1b, as compared to ADAR1 and PKR, may be due to the presence of multiple IFN-stimulated response elements (ISREs) in the OAS1 promoter, as described in P. alecto [START_REF] Zhou | Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection[END_REF]. This can conveniently allow bats to mount a more robust expression of OAS1 rather than of ADAR1 or PKR. In fact, we previously showed an induction of expression of IFNβ in poly(I:C)-transfected FLuDero, reaching a peak at 24 h [START_REF] Sarkis | Development of molecular and cellular tools to decipher the type I IFN pathway of the common vampire bat[END_REF]. Interestingly, the expression kinetics of the three ISGs characterized was similar to that of IFNβ, suggesting that these proteins are induced in an IFNβ-dependent manner, acting on the ISREs present in their promoters. It is conceivable that the similar expression levels of ADAR and PKR observed at the RNA level are also observed at the protein level. Accordingly, given the negative regulation of PKR by ADAR, as indicated above, an active PKR might not be in sufficient quantity to exert a proper antiviral action.

Therefore, the higher induction of OAS observed, as compared to PKR and ADAR, tends to show the particular importance of the OAS proteins in the antiviral action of IFN in bats.

Another interesting observation was the differential expression of OAS1a and OAS1b in our cellular model after poly(I:C) transfection. Interestingly, this feature has already been described in mice [START_REF] Pulit-Penaloza | Activation of Oas1a gene expression by type I IFN requires both STAT1 and STAT2 while only STAT2 is required for Oas1b activation[END_REF]. It has been shown that the ISRE as well as the overlapping STAT sites are required for Oas1a promoter induction by IFN- while Oas1b expression requires only the ISRE. Furthermore, while OAS1a requires both STAT1 and STAT2 for its upregulation by IFN-, OAS1b only requires STAT2. Therefore, analyzing the promoter region of these two paralogs should clarify their differential expression in our bat species.

We found that the basal transcription level of the ISGs characterized was elevated in the FLuDero cells. This observation is consistent with previous results showing that ISGs are constitutively expressed in bats and suggests that bat cells are equipped to mount a rapid defense against viral infections [START_REF] Cruz-Rivera | The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction[END_REF][START_REF] Shaw | Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses[END_REF][START_REF] Zhou | Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats[END_REF]. In addition to their already significant levels of expression in the absence of treatment, these ISGs can be further enhanced in response to poly(I:C). Together these results tend to prove that these ISGs are functional and must play an important antiviral role in D. rotundus.

Further work is therefore necessary to elucidate their role during viral infection, explore the mechanisms underlying their unique expression profiles and determine whether or not they contribute to the unique ability of bats to manage viral infection. 

  organization to that described in their mammalian homologs. They possess the two characteristic functional domains of OAS1, i.e., the NTP-transf_2 domain on their N-termini and C-terminal OAS1_C domain. These domains are located between aa 36-121 and 162-345, respectively (all values are given relative to H. sapiens sequences) (Figure1). The D. rotundus OAS1a and OAS1b putative proteins showed conservation of the hallmark motifs crucial for OAS1 activity, i.e., the LxxxP sequence required for enzymatic activity, a P-Loop motif with a (G[G/S]xx) sequence, which precedes the first triad residue corresponding to the second signature of the nucleotidyl transferase superfamily formed by Asparagine residues (represented with an inverted triangle), a K-R rich region and a CFK motif located in the Cterminal domain (Figure1). Similarly, the D. rotundus ADAR1 protein contained all domains necessary for its function, including at its N-terminus the two Zα domains, a central dsRBD with three dsRBM, and a catalytic deaminase domain at its C-terminus. These domains and motifs are located between aa132-202, 291-360, 504-569, 615-680, 727-793 and 840- 1222, respectively (Figure2a). Finally, the deduced protein sequence of D. rotundus PKR showed the conservation of all domains relative to its function including the N-terminus dsRBD with the two dsRBM (dsRBM1 and dsRBM2) between aa 9-81 and 102-169 (yellow and light gray boxes, respectively) and all subdomains (open boxes) in the catalytic region. A variable region was also found in D. rotundus PKR between the dsRBM2 and the basic region (in dark gray) between aa 229 and 251. In addition, D. rotundus PKR presented a conserved insert region at the C-terminal of subdomain IV (blue) between aa 362 and 370. However, D.
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Figure 3 .
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 5 Figure 5. Quantitative mRNA expression of OAS1a, OAS1b, ADAR1 and PKR. Time
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	2.5. Quantitative PCR
	Quantitative PCR (qPCR) was performed on a StepOne™ Real-Time PCR System using
	the TaqMan® Universal PCR Master Mix (Applied Biosystems). Primers and TaqMan®
	probes were designed using Primer Express 3.0 (Applied Biosystems) (Supplementary

). Eight corresponded to the bat species E. fuscus (two paralogs), M. natalensis (two paralogs), M. brandtii (two paralogs), M. davidii, M. lucifugus (two paralogs), P. alecto, P. vampyrus and R. aegyptiacus. An OAS1 tree was constructed based on the alignment of amino acid residues and was rooted with OASL sequences from M. natalensis, P. alecto, P. vampyrus and R. aegyptiacus.
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 1 

. Each reaction was performed in duplicate. The cycling conditions were those recommended by the manufacturer: 55°C for 2 min, 95°C for 2 min followed by 40 cycles at identity with its equine, canine, bovine and human homologs, while OAS1b presented 69-gene of interest was calculated using a plasmid DNA standard curve. Individual expression values were normalized and compared to mRNA encoding β-actin. Values are shown graphically as fold induction compared to the mock sample (0 h transfection) for each experiment.
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