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Running title: Sociality, structure and virus spread in vampires 
 
 
 
 
Word count: 7,572 (excluding references) 
 
 
 
 
Abstract 

 
Social systems are major drivers of population structure and gene flow, with important effects 

on dynamics and dispersal of associated populations of parasites. Among bats, the common 

vampire bat (Desmodus rotundus) has likely one of the most complex social structure. Using 

autosomal and mitochondrial markers on vampires from Mexico, French Guiana and North 

Brazil, from both roosting and foraging areas, we observed an isolation by distance at the 

wider scale and lower but significant differentiation between closer populations (<50 km). All 

populations had a low level of relatedness and showed deviations from Hardy-Weinberg 

equilibrium and a low but significant inbreeding coefficient. The associated heterozygote 

deficiency was likely related to a Wahlund effect and to cryptic structures, reflecting social 

groups living in syntopy, both in roosting and foraging areas, with only limited admixture. 

Discrepancy  between  mitochondrial  and  nuclear  markers  suggests  female  philopatry  and 

higher dispersal rates in males, associated with peripheral positions in the groups. Vampires 

are also the main neotropical reservoir for rabies virus, one of the main lethal pathogens for humans. 

Female social behaviors and trophallaxis may favor a rapid spread of virus to related and  

unrelated offspring and females. The high dispersal capacity of males may explain the 

wider   circulation   of   viruses   and  the  inefficacy   of  bat  population   controls.   In  such 

opportunistic species, gene connectivity should be considered for decision making. Strategies 

such as culling could induce immigration  of bats from neighboring  colonies to fill vacant 

roosts and feeding areas, associated with the dispersal of viral strains. 
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INTRODUCTION 
 
 
 
 
Bats (Chiroptera)  are widely distributed across the world and are very diverse in their 

morphology, biology and ecology (Fenton, 1997). They are ranked the second largest species- 

rich mammalian order, accounting for 20% of all mammal species in the world. With their 

roles of seed dispersers, pollinators and regulators of arthropod populations, they have major 

ecological functions and contribute to ecosystem services (Kunz et al., 2011). Because of 

difficult direct observation related to their nocturnality, small size and cryptic behavior, many 

aspects of bat biology have been investigated with molecular approaches, namely population 

genetics, which has been widely used and has shown interspecific structuring variations in 

relation to bat behavior, mating, social systems and movements (Moussy et al., 2013; Miller- 

Butterworth et al., 2014; Rossiter et al., 2012). 

 

 
 
Bats are also a frequent source of pathogen spillover to humans and livestock, and a reservoir 

for emerging  infectious  diseases  (Escobar  et al.,  2015).  The  ability  of bats  to effectively 

ensure virus amplification  and dispersion is related to their resistance  to and/or control of 

many infections (O'Shea et al.,  2014). Neotropical  bats are, notably, the main reservoir of 

rabies virus. Serological and molecular surveys of this virus have shown a high diversity of 

positive bat species, suggesting a wide distribution and circulation of the virus in Amazonia 

(de Almeida et al., 2011; de Thoisy et al., 2016; Salmon-Mulanovich  et al., 2007; Sodré et 

al., 2010; Torres et al., 2005) with a major role played by the common vampire bat Desmodus 

rotundus (Phyllostomidae). 

 

 
 
Distributed from northern Mexico to northern Chile and the Amazon basin (Greenhall et al., 

 
1983), the common vampire bat transmits the rabies virus throughout Latin America, causing 
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lethal human cases and thousands of livestock deaths every year (Blackwood et al., 2013). 

Despite their major contribution to virus maintenance and dispersal, most studies carried out 

on D. rotundus relate to their physiological characteristics (Reddrop et al., 2005), their 

reproductive cycle (Wimsatt & Trapido, 2005), the choice of host (Voigt & Kelm, 2006) as 

well  as  their  behavior  and  social  structure  (Wilkinson,  1985a,  b;  Trajano,  1996).  Adult 

females  show a strong  philopatry  to their natal  group,  although  adult males  disperse  and 

defend  a  roost  where  females  roost  (Wilkinson,  1985a,  1985b).  Besides  being 

hematophagous,  vampire  bats have the particularity  of practicing  blood regurgitations  and 

other social behaviors that strengthen social ties. According to Wilkinson (1984), exchanges 

are based on reciprocal altruism (Axelrod & Hamilton, 1981; Trivers, 1971), which affects the 

social structure of the population. Molecular approaches can never the less be reliable tools to 

decipher uncovered aspects of population dynamics. Several studies have been conducted on 

the genetic structure of vampire bat populations (Martins et al., 2009; Romero-Nava et al., 

2014; Streicker et al., 2016). 
 
 
 
 
Host social systems also have major effects on parasite population dynamics, structure and 

dispersal (Streicker et al., 2016; van Schaik & Kerth, 2016). Therefore, information on the 

vampire bat social system, spatial organization and population connectivity is required for a 

better understanding of rabies virus dynamics (Streicker et al., 2016). Trophallaxis and social 

grooming contribute greatly to virus transmission due to direct saliva contact with broken skin 

and mucosa between individuals  (Kobayashi  et al.,  2005; Velasco-Villa  et al.,  2006). The 

wide and high prevalence of rabies-neutralizing antibodies found in D. rotundus in French 

Guiana  populations  (de Thoisy  et al.,  2016) can be related  to male  dispersal  (Wilkinson, 

1985b),  favoring  virus  dispersal.  Alternatively,  the philopatry  of females  and population's 

 
social organization (Wilkinson, 1984) might be the cause of population structuring, limiting 



57 
58 
59 
60 

 

 

 

 Page 6 of 56 
 
 
1 
2 
3 1 
4 

5 2 
6 
7 3 
8 
9 

10 4 
11 

12 5 
13 
14 6 
15 
16 7 
17 
18 

8 
19 
20 

21 9 
22 
23 10 
24 
25 11 
26 
27 12 
28 
29 

30 13 
31 

32 14 
33 

34 15 
35 
36 16 
37 
38 

17 
39 
40 

41 18 
42 
43 19 
44 
45 20 
46 
47 21 
48 
49 

50 22 
51 

52 23 
53 
54 24 
55 
56 25 

 

 
inter-population interactions and therefore the role of females in virus dispersal (Streicker et 

al. 2016). 

 

 
 
In this study, seven microsatellites and the mitochondrial DNA Control Region were used to 

investigate  the genetic  structure  of D. rotundus  at two spatial scales. Microsatellites  were 

chosen  because  these  are  reference  markers  for  many  population  genetics  studies  and 

molecular ecology (Huth-Schwarz et al., 2011; McCulloch, 2012; Pearse et al., 2006; Zeng et 

al.,  2012).  They  are  especially  used  for  the  analysis  of  demographic  history,  population 

structure at a fine geographic scale and social structure (Lecompte et al., 2017; Selkoe, 2006; 

Trinca et al., 2013). The aim of this study was to improve our knowledge on vampire bat 

populations, seeking to investigate how the genetic structure is impacted by social behavior at the 

intra- and inter-population scales. Those results are discussed about three main issues, 

phylogeographic structuring, drivers of social organization, and potential to influence virus 

transmission. 

 

 
 
MATERIALS AND METHODS 
 
 
 
 
Ethical and legal statements 

 
Animals were captured, handled, sampled and, whenever necessary, euthanized in accordance 

with ASM guidelines (Sikes et al., 2011), and in French Guiana under the supervision of 

researchers in possession of the national "animal experimentation level 1" degree. Bats are not 

protected by law in French Guiana, but the project was presented to the Conseil Scientifique 

Régional pour le Patrimoine Naturel de la Guyane, and approved by this council. Captures 

that  occurred  within  protected  areas  (nature  reserves)  received  approval  of  the  Conseil 

Scientifique Régional du Patrimoine Naturel on 26 January 2010 and ad-hoc authorizations 
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(no. 2011–35 from the 05/30/2011, no. 35 and 59 obtained 03/21/2013 and 04/17/2013, 

respectively, and delivered by the Préfecture de la Guyane). All samples are kept in Cayenne, 

French Guiana, in the JAGUARS tissue collection (CITES FR973A). 

 

 
 
Bat collection in Amapá (North Brazil) followed the Brazilian legislation and was authorized 

for IBAMA / Sisbio19140/2008, SEMA 1/2008 licenses. Samples of vampire bats were 

deposited in the tissue collection in Collection Scientific Amapá Fauna (CCFA) located at the 

Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá. 

 

 
 
In  Mexico,  traditional  rabies  control  is  based  on  reduction  of  species  populations.  The 

samples used in this study were collected as part of the activities of Paralytic Rabies Control 

Campaigns of the States. Vampire bats were captured with mist nets complying with Mexican 

regulations (Norma Oficial Mexicana NOM-067-ZOO-2007 “Campaña Nacional para la 

prevención y control de la rabia en bovinos y especies ganaderas”) in corrals and roosts. 

 

 
 
Sample collection and study areas 

 
A total of 218 individuals were captured at five localities in French Guiana between 2009 and 

 
2013 (Figure 1). The two first localities  were breeding  caves located  in pristine  primary 

lowland forests. The third and fourth localities were feeding areas located in pristine primary 

lowland forests, and the fifth was a feeding area located in edge habitat in a disturbed 

environment.  The bats sampled in the first locality formed population 1 (below, POP1), the 

bats sampled in the second locality formed population 2 (POP2). The bats sampled in the third 

and  fourth  localities  were  pooled  and  formed  population  3  (POP3)  because  exploratory 

analysis  showed  no  genetic  differentiation  between  them  (Fst  =0.003;  p>0.3).  The  bats 

sampled in the fifth locality formed population 4 (POP4). 



57 
58 
59 
60 

 

 

 Page 8 of 56 
 
 
1 
2 
3 1 
4 

5 2 
6 
7 3 
8 
9 

10 4 
11 

12 5 
13 
14 6 
15 
16 7 
17 
18 

8 
19 
20 

21 9 
22 
23 10 
24 
25 11 
26 
27 12 
28 
29 

30 13 
31 

32 14 
33 

34 15 
35 
36 16 
37 
38 

17 
39 
40 

41 18 
42 
43 19 
44 
45 20 
46 
47 21 
48 
49 

50 22 
51 

52 23 
53 
54 24 
55 
56 25 

 
 
 
 
 
The DNA samples of 39 individuals from Amapá State, northern Brazil, formed population 5 

(POP5) and were sampled  in three localities  in the northeast  of Amapá: Horto São Bento, 

Rebio Lago Piratuba and Rebio Parazinho. The DNA samples of 82 individuals from Mexico 

formed population 6 (POP6) and were sampled in four localities: Morelos, Puebla, Veracruz 

and Hidalgo. 

 

 
 
In French Guiana, captures were made at night using Japanese mist nets (Ecotone ®, Gdynia, 

Poland) as implemented in the region (Borisenko et al., 2008). Captures in breeding caves 

were performed inside with nets erected during the day time to localize the colony at rest and 

target captures on vampire bats only, to avoid disturbing other species. To prevent repeated 

disturbance of the colonies, captures were implemented by three persons only and lasted no 

more than 30 min. Whenever possible, females with their offspring were not captured and 

were  directly  released  if they fell into the nets,  so no young  were  sampled.  All animals 

captured   were  kept  in  individual   bags,  blood-sampled   (for  detection   of  rabies   virus 

neutralizing antibodies, for example; de Thoisy et al., 2016) and measured at the mouth of the 

cave  in order to limit disturbance  inside.  A wing tissue sample  was taken using a 3-mm 

biopsy punch and stored in 95% ethanol at −20°C until DNA extraction. Bats were released 

directly after the procedure. In the caves, several capture/recapture sampling sessions were 

implemented, so that the animals could be marked (Passive Integer Transponder BackHome, 

Virbac, France, injected subcutaneously between the shoulders). 

 

 
 
DNA extraction, microsatellite and D-loop control region genotyping 

Biopsy  punches  were  pre-lysed  within  the  EasyMAG  lysis  buffer  (BioMérieux,  Marcy 

l’Etoile, France) at 4°C overnight, then in Tris-SDS buffer and proteinase K at 56°C before 
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grinding. DNA was isolated using NucliSENS EasyMAG® bio-robot (BioMérieux, Marcy 

l’Etoile, France) following standard protocols for tissue. The DNA pellet extracted was 

resuspended in H2O PPI and stored at −20°C until use. 

 

 
 
Samples were genotyped  using a panel of seven microsatellite  markers (Bardeleben  et al., 

 
2007; Ortega et al., 2002; Piaggio et al., 2008) as described in supplemental data (supp  data, 

Table  s1). PCR was carried out in 12 µL with 1.5µL of each primer (5mM), 1.5µL of buffer, 

1.2µL of dNTP (5mM), 0.1µL of BIOTAQ™, 0.4–0.6 µL of MgCL2 (50mM) (supp  data, 

Table  s2), and 2µL of diluted DNA (1/10). PCR reactions consisted of initial denaturation at 

94°C for 5 min, followed by 40–45 cycles depending on the locus at 94°C for 30 s, 30 s at the 

annealing temperature (supp  data,  Table  s2), 72°C for 45 s, and final elongation at 72°C for 

10 min. PCR products were mixed with Genome Lab SLS and GenomeLab DNA 400 size 

standard   and   run   on   a   GENOMELAB  GEXP   genetic   analysis   (Beckman   Coulter   ®). 

Microsatellite alleles were sized using GENOMELAB SYSTEM software (Beckman Coulter ®). 

 

 
 
The primers F(mt) and P(mt) (Wilkinson and Chapman, 1991) were used to amplify the 

hypervariable  domain  HVI  of the  mitochondrial  DNA  (mtDNA)  control  region  (D-loop). 

PCRs  were  performed  using  a standard  procedure  with the BIOTAQ™  DNA Polymerase 

PCR kit (BioLine Reagents Limited, London, UK). PCR was carried out in a 50-µL PCR 

containing 10 ng of genomic DNA, 5 µL 10x buffer, 1.5 mM MgCl2, 0.5 mM of each dNTP, 

0.6 mM of each primer and 0.5 U BIOTAQ™ DNA Polymerase (BioLine, London, UK). The 

 
cycling conditions included an initial denaturation step at 95°C for 5 min followed by 35 

denaturation cycles at 95°C for 45s, annealing for 45s at 55°C, and elongation at 72°C for 1 

min.  A  final  7-min  extension  step  at  72°C  followed  the  last  cycle.  Beckman  Coulter 

Genomics carried out sequencing (Beckman Coulter Genomics, Takeley, UK). 
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Microsatellite analysis 

 
The   presence   of   null   alleles,   large   allele   dropout   and   stuttering   were   tested   using 

MICROCHECKER 2.2.3 (van  Oosterhout  et al.,  2004).  Tests  for departure  from  HWE  were 

performed  for  each  population  in  GENEPOP3.4  (Raymond  &  Rousset,  1995)  under  the 

hypothesis of heterozygote deficit. Linkage disequilibrium was tested using GENEPOP; genetic 

diversity indices and Fst averaged over loci (Weir & Cockerham, 1984) were obtained for and 

between populations and between females and males from ARLEQUIN 3.5 (Excoffier et al., 

1992) with 20,000 permutations and GENETIX 4.0.5.2 (Belkhir et al., 2004) with the fixation 

index F of Wright (1969), according to Weir & Cockerham (1984).  For  all  pairwise 

comparisons,  all  significance  levels  were  adjusted  using  sequential  Bonferroni  correction 

(Rice, 1989). 

For each population sample and for each locus, the BOTTLENECK 1.2.02 program (Cornuet & 

Luikart, 1996) computes the distribution of the heterozygosity expected from the observed 

number allele k, given the sample size n under the assumption of mutation-drift equilibrium. 

The distribution was obtained under the two-phase mutation model (TPM) recommended for 

microsatellite loci because it is a better fit to observe allele frequency data than the infinite 

alleles model (IAM) and the single-step model (SSM) (Di Rienzo et al., 1994). If a population 

has a normal  L-shaped  distribution,  it is likely that this population  has not experienced  a 

recent reduction of their effective population size. 

 

 
 
Relatedness 

 
Relatedness (r) between individuals of unknown ancestry was estimated by ML-RELATE 1.0 

(Kalinowski et al., 2006), based on maximum likelihood estimates of relatedness, expected to 

be  the  most  accurate  method  for  such  purposes  (Milligan,  2003).  ML-RELATE can  adjust 

relatedness calculations to accommodate null alleles using a HWE test to detect a deficiency 
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of heterozygosity (U-statistic of Rousset & Raymond, 1995). ML-RELATE uses the downhill 

simplex routine to find the maximum likelihood estimate of (r). Experience has shown that 

likelihood surfaces for (r) can have multiple peaks (Kalinowski et al., 2006). Therefore, the 

downhill simplex routine is started from the default values of 11 sets of points, one of which 

is {Unrelated, Full Sibs, Parent/Offspring}. The other ten are random values. The relatedness 

coefficient (r)was estimated for each pair of individuals in each population by the software 

and the average (r)for each population was then calculated. 

 

 
 
Gene flow 

 
The number of migrants per generation by pairwise population where Nm= (1-Fst)/4. Fst 

(estimates of gene flow according to Wright, 1969) was calculated with the GENETIX4.0.5.2 

program (Belkhir et al., 2004). 

 

 
 
Population structuring 

 
Overall  population  structuring  was  inferred  by  the  dapc  function  without  any  a  priori 

information on the origin of individuals (discriminant analysis of principal components) of the 

ADEGENET package  (Jombart,  2011) in the R 3.2.3 program  (R Development  Core Team, 

2008). ADEGENET uses a multivariate analysis that does not rely on the assumption of HWE, 

the absence of linkage disequilibrium or specific models of molecular evolution to identify 

clusters within genetic data (Jombart, 2008). The dapc function infers the number of clusters 

of  genetically  related  individuals:  data  are first  transformed  using  a  principal  component 

analysis (PCA) and subsequently clusters are identified using discriminant analysis (DA). A- 

score  optimization  and  cross-validation  were  used  to  determine  the  optimal  number  of 

principal components (PCs) to maximize power of discrimination while also minimizing the 

risk  of overfitting  (nine  and fourteen  were  used,  respectively).  The  Bayesian  information 
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criterion (BIC) was used to determine the most appropriate value of K and individuals were 

assigned to clusters using DAPC. The assign.per.pop slot was generated and indicated the 

proportions of successful reassignment (based on the discriminant functions) of individuals to 

their  original  clusters.  High  values  indicate  clear-cut  clusters,  while  low  values  suggest 

admixed groups. 

 

 
 
Hidden structure 

 
Cryptic subpopulations within each population were investigated using BAPS 5.4 (Corander et 

al., 2004), identifying a hidden population structure through a Bayesian analysis and detecting 

a possible Wahlund effect. The program was run 50 times for each population to obtain the 

right number of k subpopulations on the basis of the estimated "log probability of data" The k with 

the highest posterior probability ("marginal likelihood") was considered the most likely 

number  of  subpopulations  identified  by  BAPS.  In  accordance  with  De  Meeûs  guidelines 

(2012), Fis was recalculated in the best distribution identified by BAPS for each population 

with GENETIX 4.0.5.2 and noted FisClus. Then the FisClus was compared with the initial Fis 

using a unilateral Wilcoxon signed-rank test for paired data (with the R 3.2.3 program) in 

order  to  identify  geographical  microstructure  or  social  structure.  For  POP1 and  POP2, Fst 

averaged over loci were obtained with ARLEQUIN 3.5 for each subpopulation whose number of 

individuals was greater than three (six subpopulations for POP1 and four for POP2) and the 

relatedness coefficients were estimated with ML-RELATE 1.0 (Kalinowski et al., 2006) for each 

subpopulation whose number of individuals was greater than one (12 subpopulations for POP1 

and 10 subpopulations for POP2, see below). 

As BAPS may overestimate  K due to the inference of a few small spurious subpopulations 

(Latch et al., 2006), the results of the BAPS analysiss were verified with STRUCTURE 2.3.4 

(Pritchard et al., 2000) using admixture model (burnin: 100,000, chains after burnin: 500,00) 
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in accordance with guidelines described in Pritchard et al. (2010). The most likely K number 

of populations was defined both on the basis of the estimated "log probability of data", and 

with the Evanno's  ∆K statistic  based on the rate of change  in the log probability  of data 

between   successive   K   values   (Evanno   et   al.,   2005),   implemented   with   STRUCTURE 

HARVESTER (Earl, 2012). For both algorithms (STRUCTURE and BAPS), all inferred subpopulations 

were assumed to be panmictic and cryptic sub-structures were identified by minimizing Hardy-

Weinberg and linkage disequilibrium within each of k clusters (Corander et al., 2004; De Meeûs, 

2012; Pritchard et al., 2000. Although STRUCTURE and BAPS use different methods to search for the 

most likely number of subpopulations, both performed well, even at low levels of population 

differentiation (Latch et al., 2006). Nevertheless, BAPS is more specifically used to identify the 

Wahlund effect and estimate the population substructure (Dharmarajan et al., 2011; Ravel et al., 

2007). 

 

 
 
MtDNA D-loop sequence analysis 

 
DNA  sequences  were  edited  and  aligned  with  MEGA  6.06  (Tamura  et  al.,  2013).  Gene 

diversity (Hs), nucleotide  diversity (π) and genetic differentiation  (Fst averaged  over loci) 

(Weir & Cockerham, 1984) were obtained for each population from ARLEQUIN 3.5 (Excoffier 

et al., 1992) with 99,999 permutations. Haplotype distribution was established using DNASP 

5.10.1 (Rozas, 2009; Rozas & Rozas, 1995) and haplotype networks were constructed using 

 
the median joining network algorithm implemented in NETWORK 5.0 (Bandelt et al., 1999). 
 
 
 
 
RESULTS 
 
 
 
 
Microsatellites 
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Genetic diversity and basic statistics 

 
A  total  of  158  alleles  were  detected  for  the  seven  microsatellite  loci.  All  loci  were 

polymorphic  (range,  13–30  alleles  per  locus)  for  all  populations.  In  some  populations, 

markers showed low levels of estimated null allele frequency (supp  data,  Table  s3), which 

nevertheless  assumes  that  populations  are  at  HWE.  However,  all  vampire  populations 

deviated from HWE (see below); therefore, estimation was biased and significant null allele 

rates are likely the cause of those deviations towards a heterozygote deficit (Dabrowski et al., 

2014). Two markers showed likelihood of stuttering, but these markers were checked with at 

least two readings and were regarded as having no scoring errors; consequently, they were 

retained in the analysis. 

 

 
 
Observed and expected heterozygosity, allelic richness and gene diversity were moderate to 

high and consistent across all populations (Table  1). POP4 had the greatest genetic diversity 

(0.730±0.406) followed by POP5 and POP1, while POP3 had the lowest genetic diversity 

(0.595±0.330) followed by POP6 and POP2. 

 

 
 
All populations presented deviations from HWE and the low significant inbreeding coefficient 

was  explained  by  heterozygote  deficiency  (Table   1),  but  no  linkage  disequilibrium  was 

detected. A recent bottleneck was detected in POP6 with a significant Wilcoxon signed rank 

test (p<0.05) and a normal-shift distribution. In POP4 a recent bottleneck was also detected 

with a shift in distribution of allele frequencies, but no significant test. Other populations had 

both a non-significant Wilcoxon signed rank test (p>0.05) and a normal-shift distribution. 



53 
54 
55 
56 
57 
58 
59 
60 

24 

25 

 

 

Page 15 of 56  
 
 
1 
2 
3 1 
4 

5 2 
6 
7 3 
8 
9 

10 4 
11 

12 5 
13 
14 6 
15 
16 7 
17 
18 

8 
19 
20 

21 9 
22 
23 10 
24 
25 11 
26 
27 12 
28 
29 

30 13 
31 

32 14 
33 

34 15 
35 
36 16 
37 
38 

17 
39 
40 

41 18 
42 
43 19 
44 
45 20 
46 
47 21 
48 
49 

50 22 
51 

52 23 

 

 
The  relatedness  coefficient  (r)  was  very  low  for  overall  populations  (rmean   = 0.07).  POP1 

showed the strongest(r)  value with 8% of related followed by POP6, while POP4 showed the 

lowest with 5% of related (Table 1). 

 

 
 
Gene flow 

 
Between  populations,  estimated  Fst  averaged  over  loci  were  low  to  high  (Fstmean=0.084; 

p<0.01) and showed significant genetic structure between populations (Table  2). The genetic 

structure of the French Guiana populations (POP1 to POP4) appeared to be the lowest 

(Fstmean=0.031; p<0.01), while genetic differentiation between the Mexican population (POP6) 

and  the  Guianese  populations  seemed  to  be  the  strongest  (Fstmean=0.183;  p<0.01).  The 

Brazilian population (POP5) showed moderate Fst with the Guianese populations and a strong 

genetic structure with the Mexican population, although lower than between the Mexican and 

Guianese  populations.  Nm  per  generation  varied  greatly  between  population  pairs  and 

followed a similar pattern to Fst values. POP2 and POP3 shared the highest Nm (Nm=20.26) 

per generation and the lowest Fst-values (0.009; p<0.01), followed by POP1 and POP4 

(Nm=11.94; Fst=0.023; p<0.01). Structuration discrepancies were evidenced in females and 

males.  Considering  females  only,  a  significant  but  low  genetic  structure  was  observed 

between the four Guianese populations (Fstmean=0.046; p<0.05), POP3 showing moderate and 

the strongest Fst with POP4 (Fst=0.081; p<0.05) and POP2 showing the lowest with POP3 

(Fst=0.026;  p<0.05).  When  focusing  on  males  only,  a  lower  and  nonsignificant  genetic 

structure was observed (Fstmean=0.019; p>0.1) except between POP1 and POP2 (Fst=0.045, 

p<0.05) and between POP1 and POP3 (Fst=0.034, p<0.05). 
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Population structuring 

 
The dapc analysis segregated the individuals into six genetic clusters (CLUS-A, B, C, D, E & F) 

(Figure 2). The “find.clusters” function of ADEGENET showed a clear BIC decrease until k = 

six clusters after which BIC increased. Those six clusters were highly differentiated (slot 

asign.per.pop;  p<0.05). The subdivision observed is associated with the geographic origin of 

the  populations.  CLUS-B and  CLUS-D were  mostly  represented  by  the  Mexican  population 

(100%  and  97%,  respectively).  CLUS-E  was  present  in  the  Brazilian  population  and  the 

Guianese populations sampled in the north (POP1, POP2 and POP4; Figure 1). CLUS-A, CLUS-C 

and  CLUS-F  were  shared  by  all  the  Guianese  and  Brazilian  populations  These  three  last 

clusters overlapped despite a significant differentiation between them (Figure 3). 

 

 
 
POP1 and POP5 showed the same trend, mostly represented by CLUS-C (41% and 49%, 

respectively) and CLUS-E (27% and 32%, respectively) and poorly represented by CLUS-A (7% 

and 2%). POP4 showed a close pattern and was mostly represented  by CLUS-E and CLUS-F 

(28% and 38%, respectively). POP2 and POP3 showed a similar pattern and were mostly 

represented by CLUS-A (32% and 33%, respectively) and CLUS-C (30% and 34%) and poorly or 

not represented by CLUS-E (11% and 0%, respectively) (Figure 3). 

 
 
 
 
 
Hidden structure 

 
The analysis  of POP4 was not relevant  with both  programs  probably  because  of its small 

sample size (n=14). With BAPS, five individuals of 14 were single in their subpopulation and 

the largest cluster contained 4 individuals.  STRUCTURE failed to detect a stable number of 
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For the other five populations,  the clustering algorithm  used by BAPS identified a variable 

number  of  subpopulations  (mean:  11.6;  range:  8–14)  in  every  populations  examined;  in 

overall populations, more than 75% of individuals in average were grouped into 3 to 6 main 

subpopulations. 

FisClus of the combined populations was significantly lower than Fis (Wilcoxon signed rank; 

p<0.05)  (Table  3); it is likely  that each  population  was composed  of several  genetically 

distinct  entities.  The genetic  differentiation  between  the subpopulations  of POP1 was high 

(Fstmean  =0.131±0.043; p<0.01) while the genetic structure between subpopulations  of POP2 

was lower but significant (Fstmean  =0.058 ±0.018; p<0.01) (Table  4). The average related 

coefficients (r) of POP1 subpopulations (r mean=0.031±0.042) and POP2 subpopulations (r 

mean=0.025±0.032) were weak and lower than the average r of all populations (r 

mean=0.075±0.010), just like POP1 r (r=0.080±0.129) and POP2 r (r=0.075±0.124). 

 

 
 
In contrast to the results of BAPS, analysis with STRUCTURE revealed no evidence of cryptic 

genetic structure in three to five populations. Exceptions to this pattern was POP1 and POP2, 

wherein STRUCTURE identified the presence of two subpopulations. 

 

 
 
MtDNA D-loop 
 
 
 
 
Sequence characterization and allelic diversity 

 
The first hypervariable  segment (HVI) of the mitochondrial  DNA (mtDNA) control region 

(D-loop) was amplified for 61 bats. Sequence alignment spanning359 bp revealed 12 mtDNA 

D-loop haplotypes. POP6 showed the highest gene diversity (Hs=0.8636 ±0.0786) followed by 

POP5 and POP2. Nucleotide  diversity was low for the overall population,  POP2 showed the 
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Structuring 

 
Strong and significant genetic differentiation was found within the overall population 

(Fstmean=0.859, p<0.05) except between POP1 and POP4, and POP2 and POP3 (Table  6). The 

haplotype network revealed two main groups of haplotypes (supp  data,  Figure s1). The first 

includes seven haplotypes composed of all individuals from the Mexican population (POP6; 

H4–H10) with a maximum of two mutations between haplotypes. The second comprises two 

smaller groups, one with three haplotypes composed of all individuals from the Guianese 

populations (H1: POP2 and POP3; H2: POP1 and POP4; H3: POP2 and POP3), and the other with 

two haplotypes composed of all individuals from the Brazilian populations (POP5; H11 and 

H12) (Table  5). The highest number of mutations was found between the Mexican haplotype 

group and the Guianese/Brazilian  groups with 48 mutations. Low sequence divergence was 

found  between  haplotypes  from  the  same  country  (ɸSTmean  FG=  0.011±0.0073;  ɸSTmeanBRZ= 

0.008±0.004;  ɸSTmean MEX= 0.007±0.003)  and was much higher between countries (ɸSTmean FG- 

 
BRZ= 0.0372±0.008; ɸSTmean FG-MEX= 0.095±0.004; ɸSTmean BRz-MEX= 0.095±0.005). 
 
 
 
 
 

 
DISCUSSION 
 
 
 
 
In this study, the population  structure and dynamics  of D. rotundus  was estimated  at two 

spatial scales in Latin America from bi-parentally inherited nuclear microsatellites and 

maternally  inherited  mtDNA  haplotypes.  These  data  provide  information  on  population 

history, dynamics and social structure, and are relevant to better assessing the role played by 

vampire bats as virus dispersers. 
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Phylogeographic structure 
 
 
 
 
Nuclear and mitochondrial markers showed a significant population genetic structure at the 

larger scale (French Guiana vs Mexico; North Brazil vs Mexico) and a lower structure at the 

regional scale (between French Guianese populations; French Guiana vs North Brazil). This 

trend was confirmed by structure analysis that showed an ancient isolation where Mexican 

populations were represented in only two clusters (CLUS-B and D), which were not shared by 

the Guianese or Brazilian populations. In contrast, the distance between the Brazilian and 

Guianese populations was substantial but five times shorter and allowed gene sharing. Only 

low sequence divergence (ɸSTmean 0.009±0.002) between haplotypes at the regional scale was 

also noted, both suggesting that the vampire bat seems to be a highly mobile species able to 

 
maintain  gene  flows  ove quite  large  distances.  Divergence  at the larger  scale  was higher 

(ɸSTmean 0.076±0.033), but it is not unusual for haplotypes to be geographically isolated 

(McCracken et al., 1994). Moreover, nuclear markers indicated a low differentiation at the 

regional scale, showing the maintenance of recent gene flow. Additionally, the four ancestral 

clusters (CLUS-A, -C, -E and -F) shared by populations from French Guiana and North Brazil 

suggest   long-term   past   exchanges   between   those   populations,   likely   supporting   the 

connectivity of favorable habitat. 

On  the  other  hand,  the  genetic  structure  identified  could  be  driven  by  both:  (1)  social 

behaviors as shown by structuring discrepancy  of nuDNA between females, for which the 

four Guianese populations were significantly structured (Fstmean=0.046; p<0.05), and males, 

for which the Fst coefficients were very low and nonsignificant (Fstmean=0.019; p>0.1), except 

between POP1 and POP2 (Fst=0.045, p<0.05) like POP1 and POP3 (Fst=0.034, p<0.05) and (2) 

landscape  history,  which  induced  demography  and  gene  flow  changes.  For  instance,  the 
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areas during the last glaciation cycles would have created allopatry between populations of 

the same forest-dwelling species, leading to intra specific differentiation, as has been shown 

in birds, reptiles, amphibians and mammals (Fouquet et al., 2012; Martins et al., 2009; Weir 

2006; Wuster et al. 2005). Expansion of savannas in the Guiana Shield (Pennington  et al., 

 
2000) during the Pleistocene  could explain why Guianese  populations,  although near each 

other,  may be composed of distinct ancestral stocks.  Impacts  of  these  past  forest  cover 

changes may have been either direct, limiting dispersal  since the species is susceptible  to 

forest  fragmentation  (Martins  et  al.,  2009),  or  indirect,  since  vegetation  changes  also 

influenced distribution and abundance of prey. 

 

 
 
Social genetic structure 

 
Many factors related to history (e.g., dispersal ability and colonization processes, isolation in 

geographical refugia) and the biology of species (e.g. mating system, social structure) may act 

on genetic structure and differently affect the variability of biparental and maternal inherited 

genes (Chesser & Baker, 1996). The very low structure between POP1 (breeding) and POP4 

(feeding) just as POP2 (breeding) and POP3 (feeding), and even not significant for mtDNA, 

suggests  that the population  structure  identified  in caves  (i.e.,  in roosts)  is maintained  in 

foraging areas, although those areas are close to each other and ecologically connected. This 

structuring between the two roosts is supported by individual marking: 68 females and 52 

males were identified in breeding cave 1, and 133 females and 33 males in breeding cave 2. 

After  seven  years  of  monitoring  and  nine  capture  sessions,  no  exchange  was  observed 

between the caves. This raises the question of a sort of territoriality of vampire bat with the 

use  of  exclusive   foraging   areas   (Wilkinson   1985a,   1986).   In  other   cases,   the  high 

differentiation detected in mtDNA differed strongly from the nuclear structure detected. This 
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2015; Castella et al., 2001; Kerth, 2000; Naidoo et al., 2016), suggesting female philopatry 

and male-mediated  gene flow. Individual marking and recapture also support this result: in 

cave 1, 87% of recaptures (n=26) were females, 71% of recaptures (n=21) were females in 

cave 2. 

 

 
 
All the populations examined in this study showed deviations from HWE and a low but 

significant inbreeding coefficient due to a heterozygote deficiency. Null allele, gene flow but 

also  genetic  drift  may  affect  allele  frequencies,  as  in  some  mammals,  reptiles  and  birds 

(Durrant et al., 2009; Plot et al., 2012; Spurgin et al., 2014) Considering these last factors 

vampire  bats’ social  behaviors  (Wilkinson  1984,  1985a,  1985b),  and the fact that cryptic 

social structure may lead to deviations from HWE (Sugg et al., 1996), it seems that present 

deviations were likely caused by a Wahlund effect. The Wahlund effect (Wahlund, 1928) is 

produced by a lack of consideration of substructure due to sampling or kin structure as shown 

in mammals (Svoboda et al., 1985) and arthropods (Ravel et al., 2007 ;Dharmarajan et al., 

2011; Kempf et al., 2010). 
 
 
 
 
In this study, the Wahlund effect was probably due to a hidden social structure for POP1 and 

POP2 given that sampled individuals came from single breeding caves, contrary to four other 

populations  where  individuals  were  sampled  in  multiple  foraging  areas.  Some  mammal 

species living in social groups may have genetic and demographic consequences (Kerth & van 

Schaik, 2012), often leading to low genetic diversity, which decreases long-term viability 

(Hildner et al., 2003). Nevertheless, genetic diversity may be maintained despite sociality 

(O'Donnell  et  al.,  2016;  Stiebens,  2013)  as  shown  by  present  genetic  diversity  results 

(Hsmean=0.688±0.047), which are congruent with the analyses of Romero-Nava et al. (2014). 
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Considering this hidden structure characterized by several genetically distinct entities in each 

population (8–14 subpopulations), no inbreeding depression was detected in any population, 

consistent with Wilkinson (1985b), who observed that females avert some males to avoid 

inbreeding depression, showing random mating. Moreover, the genetic structure detected 

within populations (between POP1 subpopulations and between POP2 subpopulations) was 

significant, but this did not lead to high average levels of relatedness. The estimated mean 

relatedness in POP1 and POP2 subpopulations was very low and comparable to the mean 

relatedness calculated for the POP1 and POP2 populations. These results were also consistent with 

Wilkinson’s estimates (1985b) whereby the low average degree of relatedness may be due to small 

litter size, high infant mortality, low adult mortality and possible transfer of females from one 

subpopulation to another. The presence of subpopulations with no inbreeding and low relatedness could 

be explained by vampire bat’s social structure. The social structure is characterized by several 

groups of females, which may or may not be related, maintain a long-term association 

(Wilkinson, 

1985a), notably due to their longlife span (Delpietro et al., 2017; Lord et al., 1976) and share a 

common set of diurnal roosts. Those associations may influence the mating system, as well as the 

genetic structure, and would appear sufficient to produce some genetic heterogeneity within 

populations (Wilkinson,1985a) In this context, the question is what characterized these genetic entities 

detected if it was not only the kin structure. 

 

 
 
A common theoretical condition for social living implies that the overall benefits of group living  

outweigh the costs in terms of evolutionary fitness (Hamilton, 1964). In many mammals, 

relatedness was commonly used to estimate indirect fitness benefits, but despite a 

low level of relatedness, benefits may be still substantial (Kerth, 2002) and association 
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Briga et al., 2012). In D. rotundus social interactions such as allogrooming (Wilkinson, 1986) and 

food sharing (Wilkinson, 1984) occur between adult females, related and unrelated, as between 

females and young. Regurgitations of blood, likely based on reciprocal altruism (Carter & 

Wilkinson, 2013, 2015; Wilkinson et al., 2016), are essential for the survival of the vampire bat, 

which has to consume blood daily (McNab, 1973). To maximize inclusive fitness, reciprocal 

food sharing should occur among close kin; however, sharing with non-kin promotes reciprocal 

assistance by strengthening long-term social bonds (Carter & Wilkinson, 

2015; Carter et al.,2017). However, food sharing cannot be explained solely by kin selection or 

harassment (Carter & Wilkinson, 2013). The theory of group selection claimed that the natural 

selection does not act only at the level of the individual but also at the level of the group and is based 

on the idea that the behavior of animals could affect their survival and reproduction and therefore 

their fitness (Darwin, 1871; Wynne-Edwards 1962; Maynard- Smith, 1964;). This question has 

been debated (Wade et  al., 2010; Marshall, 2011; Van Veelen et al., 2012; Simon et al.,  2012) 

although some evidence was provided, especially about effects of group phenotype on group 

fitness (Pruitt & Goodnight, 2014; Pruitt et al., 

2017). Considering the present results on the significant substructures in POP1 and POP2 and their low 

level of relatedness, like Wilkinson & Carter’s observations and experiments mentioned 

above, the group selection hypothesis, added to kin selection, seems to be relevant to explain the 

distinct genetically entities (i.e., subpopulations) detected in this study. 

 

 
 
Virus spread 

 
The population dynamics of parasites are influenced by both abiotic and biotic factors, and are 

highly dependent on the host’s history and host spatiotemporal dynamics (Barrett et al., 2008; 

van Schaik & Kerk, 2016). In mammals, males typically distribute themselves according to 
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the  importance  of  sociality  (Arnaud  et  al,  2012;  Clutton-Brock,  1989;  Wilkinson  1985a, 

 
1985b, 1988). In polygynous taxa, males tend to disperse more to avoid inbreeding and/or 

competition,   while   females   are   more   philopatric   (Greenwood,   1980;   McCracken   & 

Wilkinson, 2000). Those drivers of host dynamics have important impacts for virus dispersal 

(Delpietro et al., 2017).  D. rotundus is the most important reservoir of rabies virus in Latin 

America (Schneider et  al., 2009), and lessons from the genetic structure and population 

dynamics described above have potential implications for virus dispersal. 

 

 
 
Our data suggested the gene flow would be sufficient to maintain virus circulation over a long 

distance at the regional scale. This high capability of males to disperse may explain the wide 

circulation of the lineage II of rabies virus detected in French Guiana (Lavergne et al., 2016) 

and circulating in northern Amazonia, without evidence of strong geographic structure signal 

(Condori-Condori et al., 2013). In foraging areas often visited by females, males could 

potentially spread rabies virus at a more local scale, in spite of gene flow restriction by natal 

philopatry, and female social behaviors may favor the rapid spread of the virus within social 

groups to related and unrelated offspring and adult females (Kobayashi et al., 2005; Velasco- 

Villa  et  al.,  2006).  In  other  social  species,  for  example  the  Mandrillus  sphinx  monkey, 

maternal kinship was also identified as a driver of simian immunodeficiency viruses (Fouchet 

et al., 2012). In the case of rabies dispersal, sociality and trophallaxis should favor quick 

dispersal  of the  virus  within  subpopulations  once  introduced  in the  roosts.  This  behavior 

explains the equally distributed anti-rabies serologies observed within subpopulations as well 

as in adults and offspring (de Thoisy et al., 2016; unpub. data). This role of both genders in 

virus  circulation  is highlighted  by  comparable  seropositivity  in  adult  males  and  females, 

although social interactions in large roosts such as caves may favor virus transmission (37% 
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and 55% of animals were seropositive in cave 1 and cave 2, respectively, vs 23% at feeding 

sites). 

 

 
 
Last,  transmission  of rabies  virus  is also favored  by nonsocial  factors.  High  vampire  bat 

density and this bat’s concentration around cattle may favor increased interactions between 

animals  (de  Thoisy  et al.,  2016).  However,  studies  have  shown  an effect  of livestock  in 

favoring population expansion (Lima Ulbierta et al., 2017), reducing depredation on human 

beings  (Gilbert  et al.,  2012;  Streicker  et al.,  2016),  contrary  to extirpation  of wildlife  by 

hunting or deforestation, which could increase feeding on humans (Schneider et al., 2009; 

Stoner-Duncan et al., 2014). 

 

 
 
Conclusions 
 
 
 
 
 
This study investigated how fine-scale genetic signatures are influenced by the sociality of 

one of the most complex social systems reported in any bat species, which also acts as the 

main reservoir of one of the deadliest viruses. We infer that the social structure of the vampire 

bat   affected   the   intra-   and   inter-population   genetic   structure   and   potentially   virus 

transmission. At large scale, restricted gene flow was evidenced, but further work with better sample 

coverage, including the Guiana Shield and/or the southern region, is required to estimate the 

dispersal potential of D. rotundus and of viruses they host. At regional scale, a contrasted  

pattern  between  nuclear-inherited  genes and mtDNA-inherited  genes suggests  a male-

mediated gene flow and female philopatry. Physiologic demand such as blood feeding is 

probably  the cause  of  social  behavior  and  of the  long-term  association  between  females, 

which  have  contributed  to  spreading  the  rabies  virus  within  the  group  and  population. 
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depression, high genetic diversity and a low degree of relatedness, which corroborates 

observations  of Wilkinson  (1985) and suggest that both kin and group selection shape the social 

structure of vampires.  The possibility of gene connectivity should be considered for 

decision-making on vampire-bat-transmitted rabies control because some strategies such as 

culling could induce the immigration of bats from neighboring colonies to fill vacant roost 

space (Streicker et al., 2012, 2016). These artificially induced dynamics may be associated 

with  the  dispersal  of  the  virus,  including  possible  (re)introduction  of  strains.  Therefore, 

controls should probably be geographically coordinated (Blackwood et al., 2013), unless they 

fail to achieve the outcomes required by the principles for ethical wildlife control (Dubois et 

al., 2017). 
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1 
2 
3 Populations  Ho  He  Hs(±σ)  HW  Fis  r  N 

4 
1  0.673  0.771  0.704 (0.382)  0.000  0.128*  0.080  60 

5 
2  0.647  0.735  0.696 (0.377)  0.000  0.120*  0.075  89 

6 

7 3  0.662  0.716  0.595 (0.330)  0.002  0.076*  0.074  55 

8 4  0.648  0.747  0.730 (0.406)  0.004  0.136*  0.052  14 

9 5  0.720  0.826  0.708 (0.386)  0.000  0.130*  0.059  39 

10 6  0.621  0.727  0.694 (0.376)  0.000  0.147*  0.077  82 

11 Table   1.   Descriptive   statistics   for   each   population   including   observed   heterozygosity   (Ho),   expected 
12 

heterozygosity  (He),  average  genetic  diversity  (Hs),  p-value  of  test  of  Hardy-Weinberg  equilibrium  (HW), 
13 

inbreeding  obtained  by ARLEQUIN, coefficient  (Fis)  obtained  by GENETIX, average  relatedness  coefficient  (r) 
14 

15 
obtained by ML-RELATE and sample size (N).
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1  

2 
3  POP1 POP2 POP3 POP4 POP5 POP6 

4 Pop1  6.90 7.86 11.94 8.47 1.15 
5 Pop2 0.036*  20.26 6.46 6.37 1.02 

6 Pop3 0.036* 0.009*  6.41 6.37 1.07 

7 Pop4 0.023* 0.039* 0.042*  6.56 1.07 

8 Pop5 0.031* 0.039* 0.044* 0.045*  1.47 

9 Pop6 0.181* 0.199* 0.193* 0.194* 0.146*  
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10 Table  2.  Values  below  diagonal  are  Fst-values,  values  marked  with  an  asterix  (*)  are  significant  (p<0.05) 

11 obtained by ARLEQUIN with the method of pairwise genetic distances. Values above the diagonal are Nm values 

12 obtained by GENETIX . 
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1 
2 
3 Populations  K  Mean (±σ)  Fis  FisClus 

4 
1  14*  4.286 (3.534)  0.128*  -0.040* 

5 
2  13*  6.923 (7.550)  0.120*  0.018* 

6 

7 3  10*  5.500 (5.162)  0.076*  -0.027* 

8 4  8*  1.750 (1.090)  0.136*  -0.027* 

9 5  13*  3.000 (2.746)  0.130*  -0.013* 

10 6  8*  10.250 (12.111)  0.147*  0.079* 

11 Table 3. For hidden structure (BAPS analyses) reported number of clusters identified (K) with the higher for 
12 each population, mean (±standard deviation) of kin group sizes, Fis and FisClus for each population 
13 

(recalculated after BAPS estimation) obtained by GENETIX 4.0.5.2. K-values are marked with an asterix (*) when 
14 

FisCLus is significantly lower than Fis (Wilcoxon signed-rank; p<0.05). 
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Pop 1-a 

Pop 1-b 

Pop 1-c 

Pop 1-d 

Pop 1-e 

Pop 1-f 

 
0.170*  
0.103*  0.122*  
0.083*  0.126*  0.115*  
0.087*  0.105*  0.074*  0.109*  
0.165*  0.185*  0.196*  0.113*  0.208*  

 
Pop 2-a 

Pop 2-b 

Pop 2-c 

Pop 2-d 

  
0.031*  
0.070*  0.041*  
0.072*  0.057*  0.076*  

 

 Page 50 of 56 
 
 
1 
2 
3 POP 1-A  POP 1-B  POP 1-C  POP 1-D  POP 1-E  POP 1-F 

4 
5 
6 
7 
8 
9 
10 POP 2-A  POP 2-B  POP 2-C  POP 2-D 

11 
12 
13 
14 

15 Table 4.   Fst-values  between subpopulations  of POP1 & POP2 whose numbers of individuals  were greater than 

16 three obtained by ARLEQUIN 3.5 with the method of pairwise genetic distances. Values marked with an asterix 
17 (*) are significant (p<0.01) 
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1 
2 
3 
4 
5 Populations  N  Hs(±σ)  π(±σ)  H 

6 1  6  0.000 (0.000)  0.000 (0.000)  H2 
7 

2  10  0.533 (0.095)  0.007 (0.005)  H1/H3 
8 

9 
3  12  0.409 (0.133)  0.006 (0.004)  H1/H3 

10 4  12  0.000 (0.000)  0.000 (0.000)  H2 

11 5  10  0.556 (0.074)  0.005 (0.003)  H11/H12 

12 6  12  0.864 (0.079)  0.006 (0.004)  H4 to H10 

13 Table 5. MtDNA  Dloop descriptive  statistics  for each population  including  sample  size (N), average  genetic 

14 diversity (Hs), average nucleotide diversity (π) obtained by ARLEQUIN and haplotype distribution (H) obtained 

15 by DNASP. 
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Pop1 

Pop2 

Pop3 

Pop4 

Pop5 

Pop6 

 
0.600*  
0.721*  -0.045  
0.000  0.691*  0.785*  

0.927*  0.827*  0.841*  0.948*  
0.971*  0.953*  0.958*  0.979*  0.963*  
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1 
2 
3 POP1  POP2  POP3  POP4  POP5  POP6 

4 
5 
6 
7 
8 
9 
10 Table 6.  MtDNA Dloop Fst-values between populations obtained by ARLEQUIN 3.5 with the method of pairwise 

11 genetic distances. Values marked with an asterix (*) are significant (p<0.01). 
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23 
Figure s1. Haplotype networks of the mitochondrial DNA (mtDNA) control region (D-loop) at the nucleotide 

24 
25 level for D. rotundus. Nodes are proportional to the frequency of bat carrying each haplotype, colored by the 

26 
geographical location in which the bat was trapped. Hatch marks represent mutations. Interruptions in lines 

27 
28 indicate the presence of more than ten mutations. 
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1 Loci Primer sequence (5’-3’) Repeat motif Size Source 

2 
DERO3  

C12F 

3 B02R 

4 DERO4  
B10F

 

5 
DERO5  

D12F 

6 D12R 

7 DERO9  
C11F

 

8 
DERO11  

C07F 

9 A02R 

10 CARO3  
AAGG-117F 
AAGG-117R 

11 
CARO6  

AjA74F 
12 AjA74R 

GCTGGGTCACCTAAGTATGG 

CAAATCAGATATACAAAGAAGCAAG 
(CA)17  100-200 pb Piaggo et al., 2008

 

GAAGTTGGGGTGTCTATGG 

GGAGTTCTTTTAGCCTGTGC 
(GA)20  200-300 pb Piaggo et al., 2008

 

ACATGCAAATCCATCTTGAT 

CCCAAATCCAAAACCTCAT 
(CA)11(AC)8  100-200 pb Piaggo et al., 2008

 

GTTAATAAGCCTTCAGGAAAAGC 

TCCTTCTGCACTCAAGAATTTTA 
(AG)9  100-200 pb Piaggo et al., 2008

 

CCTAGGGCAAGAATGAGTATCC 

ACAGTATGGCACACAAACACG 
(TG)9  100-200 pb Piaggo et al., 2008

 

GACTAAGATAGATAAATTGATGGATAA 

CAAAATGCTTTAGTTTCCTGAAT 
(AAGG)16  100-200 pb Bardeleben et al., 2007

 

GGCAAAGGCTTTTACAAGTATG 

GCAGTGGAGGAGAAAGCTAGAC 
(GT)7… (GT)4  100-200 pb Ortega et al., 2002

 

13 Table s1. Characteristics of the 7 microsatellite loci that were used in this study. 
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1 
2 
3 Loci MgCl2 (µl) PCR conditions Cycles 

4 DERO3  0.5 94°C/5min ; 94°C/30sec ; 52°C 30sec ; 72°C/45sec ; 72°C/10min 45 

5 
DERO4  0.5 94°C/5min ; 94°C/30sec ; 60°C 30sec ; 72°C/45sec ; 72°C/10min 45 

6 
DERO5  0.4 94°C/5min ; 94°C/30sec ; 53°C 30sec ; 72°C/45sec ; 72°C/10min 40 

7 
DERO9  0.4 94°C/5min ; 94°C/30sec ; 52°C 30sec ; 72°C/45sec ; 72°C/10min 40 

8 
DERO11  0.5 94°C/5min ; 94°C/30sec ; 58,5°C 30sec ; 72°C/45sec ; 72°C/10min 40 

9 
CARO3  0.6 94°C/5min ; 94°C/30sec ; 55°C 30sec ; 72°C/45sec ; 72°C/10min 45 

10 
CARO6  0.6 94°C/5min ; 94°C/30sec ; 60°C 30sec ; 72°C/45sec ; 72°C/10min 40 

11 

12 
Table s2. PCR condition were used for the 7 microsatellite loci in this study
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1 
2 
3 Loci POP 1 POP 2 POP 3 POP 4 POP 5 POP 6 

4 DERO3  0,063* -0,006 0,033 0,037 0,038 0,035 
DERO4  0,024 0,110* 0,034 -0,072 0,052 0,089* 

DERO5  0,042 0,039 0,045 -0,073 0,076* 0,019 

6 DERO9  0,108* 0,030 0,028 0,067 0,038 0,120* 

7 DERO11  0,065* 0,025 0,021 0,140* 0,010 0,082* 

8 CARO3  -0,020 0,022 0,018 0,064 -0,000 -0,010 
CARO6  0,086* 0,144* -0,000 0,123* 0,168* 0,079* 

9 
Table s3. Null allele frequencis by locus and by population obtained MICROCHECKER 2.2.3 (Van Oosterhout and 

10 

11 
al., 2004) using method by Brookfield (1996). Null allele frequencis marked with an asterix (*) are significant.
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