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ARTICLE OPEN

Extracellular DNA release, quorum sensing, and PrrF1/
F2 small RNAs are key players in Pseudomonas aeruginosa
tobramycin-enhanced biofilm formation
Ali Tahrioui 1, Rachel Duchesne1, Emeline Bouffartigues1, Sophie Rodrigues 1, Olivier Maillot1, Damien Tortuel1, Julie Hardouin2,
Laure Taupin3, Marie-Christine Groleau4, Alain Dufour3, Eric Déziel4, Gerald Brenner-Weiss5, Marc Feuilloley1, Nicole Orange1,
Olivier Lesouhaitier 1, Pierre Cornelis1 and Sylvie Chevalier1

Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to
eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is
commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside
were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive.
Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic
studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under
this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA)
release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading
to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the
PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative
abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental
evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-
enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment
strategies against P. aeruginosa biofilm establishment in CF patients’ lungs.

npj Biofilms and Microbiomes            (2019) 5:15 ; https://doi.org/10.1038/s41522-019-0088-3

INTRODUCTION
Bacterial biofilm forms a highly structured community of cells that
are attached to each other and/or a surface and are enclosed in a
complex matrix of extracellular polymeric substances (EPS).1,2

Biofilms enable bacteria to colonize different environments and
are prevalent in natural, industrial and medical environments.
Importantly, biofilms have emerged as critical in chronic
infections. The traits of bacteria within biofilms are distinct from
those of their planktonic counterparts, which include an increased
resistance to both biocide agents and antibiotics, the develop-
ment of physical and social interactions, enhanced rate of gene
exchange and selection for phenotypic variants.3,4 In many
bacterial species, biofilm formation responds to a variety of
environmental cues including nutritional availability, host-derived
signals or, in some cases, to nonlethal concentrations of
antibiotics.5–8 The process of biofilm development is coordinated
by molecular pathways involving second-messenger signaling,
cell-to-cell quorum sensing (QS) signaling, two-component
systems and small noncoding RNAs (sRNAs).6 Interestingly,
antibiotics at levels below the minimal inhibitory concentration
(referred to hereafter as sub-MIC) have the ability to trigger the

alteration of multiple physiological processes including biofilm
formation, virulence, and gene expression, which can lead to
bacterial genetic and phenotypic resistance.9–12 Sub-MICs of
antibiotics with different chemical structures and modes of action
induce biofilm formation in common clinical pathogens such as
Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and
Pseudomonas aeruginosa, among others.5,11

P. aeruginosa is a problematic Gram-negative pathogen
representing a serious threat to individuals and public health.
This opportunistic pathogen causes both acute and chronic
infections that are strongly related to its planktonic and biofilm
lifestyles, respectively. Within the lungs of cystic fibrosis (CF)
individuals, biofilms are gradually formed by P. aeruginosa cells
surrounded by a self-produced matrix of EPS such as polysacchar-
ides, proteins, extracellular DNA (eDNA), metabolites, and side-
rophores.2,13–15 As a result of their ability to form biofilms and
their high tolerance levels towards a broad spectrum of
antimicrobials, P. aeruginosa chronic lung infections are almost
impossible to eradicate.13,16,17 Tobramycin, an aminoglycoside
antibiotic, is used in the treatment of P. aeruginosa infections.18

However, exposure to sub-MIC of this aminoglycoside19–22 and of
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other antibiotics such as quinolones23 and tetracycline20,21

enhances P. aeruginosa biofilm formation. Conversely, some other
antibiotics such as polymyxin B, carbenicillin, and chlorampheni-
col, do not impact biofilm development.19

Based on microarray studies, tobramycin at the sub-MIC dose of
1 µgml−1 led to altered expression of genes that are mainly
involved in adaptation and protection processes in P. aeruginosa
grown under planktonic conditions.21 Additionally, a recent study
assessed the proteome response of planktonic cells of P.
aeruginosa exposed to 0.1, 0.5, and 1 µgml−1 sub-MIC of
tobramycin.24 The authors identified higher abundances of
multiple heat-shock proteins, proteases and proteins related to
amino acid catabolic pathway. In contrast, they observed lower
abundances of proteins associated with nucleotide metabolism,
tricarboxylic acid (TCA), carbon metabolism and energy derivation,
and electron transport activities. A small number of proteins were
common to the proteomes produced at different sub-MICs of
tobramycin while some proteins showed dose-dependent
responses. It is worth to mention that aminoglycosides at sub-
MICs can also induce other changes in P. aeruginosa physiology,
including swimming and swarming motilities and the induction of
the type VI secretion system (T6SS).20,21 Noteworthy, most of these
studies have been conducted on bacteria grown under planktonic
conditions. However, since bacteria are thought to adopt
predominantly the biofilm lifestyle in nature and in infected host,
it is crucial to perform studies on bacteria grown under sessile
conditions.

In this context, we sought to elucidate adaptive mechanisms
shaping the tobramycin-enhanced biofilm formation in P.
aeruginosa. Remarkably, our observations support a potential
adaptive mechanism in which the 4-hydroxy-2-alkylquinolines
(HAQs) molecules and PrrF sRNAs are key players in eDNA release,
presumably resulting from cell death which finally trigger changes
in the biofilm architecture.

RESULTS
Tobramycin exposure leads to changes in biofilm architecture,
biovolume and thickness
Previous studies showed enhanced P. aeruginosa biofilm forma-
tion upon exposure to tobramycin and other aminoglycosides by
using colorimetric assays based on crystal violet staining.19–21 To
observe the biofilm architectures and to quantify the biovolumes
as well as the thicknesses of the biofilms, confocal laser scanning
microscopy (CLSM) and COMSTAT image analyses were per-
formed. First, we determined that the MIC of tobramycin for the P.
aeruginosa wild-type H103 strain is 2 μgml−1. Then, we grew P.
aeruginosa H103 biofilms in glass bottom microplates under static
conditions for 24 h in the presence of 0−2 μgml−1 of tobramycin.
Under our conditions, sub-MICs of tobramycin (0.5−1 μgml−1)
increased the presence of three-dimension (3D) structures in the
biofilms (Fig. 1a). Consistently, at 0.7, 0.8, and 0.9 μgml−1

tobramycin, the biofilm biovolumes, the maximum thicknesses,
and the average thicknesses reached utmost significant increases
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Fig. 1 Effect of sub-MICs of tobramycin on biofilm formation by P. aeruginosa. a CLSM images of 24-h-old biofilms as a function of different
concentrations of tobramycin. For each concentration, a 3D view along the x, y and z axes is displayed. Images show representative data from
at least three independent biofilm assays. Scale bars= 20 µm. b COMSTAT image analyses were performed to determine maximum
thicknesses (μm), average thicknesses (μm), and total biovolumes (μm3 μm−2). The error bars represent the standard error of the means (SEMs)
and are the result of the analysis of three views of each of the three independent biological assays. Statistics were achieved by a two-tailed t
test: ★★★, P= 0.0001 to 0.001; ★★, P= 0.001 to 0.01; ★, P= 0.01 to 0.05; NS (not significant), P ≥ 0.05
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compared to that of tobramycin-free biofilms (Fig. 1b). Thus, the
concentration of 0.8 μgml−1 of tobramycin was selected as the
sub-MIC for all subsequent experiments.

Extracellular DNA release and cell biofilm death increase in
presence of tobramycin
We then asked whether eDNA, a major structural component of
the P. aeruginosa biofilm matrix,14,15,25 contributes to the observed
enhanced biofilm formation in response to tobramycin. CLSM and
COMSTAT image analyses were used to evaluate the in situ eDNA
level. The bacterial cells were labeled with the green fluorescent
nucleic acid stain SYTO 9, and DDAO, a red fluorescent probe
unable to cross the cell membranes, was used for eDNA staining.
Figure 2a shows that the red labeling is more intense in a biofilm
grown for 24 h in the presence of tobramycin than in a

tobramycin-free biofilm, revealing a higher eDNA content in the
first condition. Moreover, the red fluorescence was visible at the
periphery of 3D structures in the presence of tobramycin, showing
that eDNA might be involved, at least partly, in modifying the
biofilm architecture in response to tobramycin. In the absence of
tobramycin, a yellow coloration due to the superposition of the
green (bacteria) and red (eDNA) fluorescence was observed,
suggesting that eDNA was mostly localized within the biofilm.
COMSTAT analyses indicated a 2.1-fold relative increase in eDNA
abundance when biofilms were exposed to sub-MIC of tobramycin
(Fig. 2b). To assess the impact of eDNA on biofilm formation,
biofilms were grown with tobramycin, DNase I (100 μgml−1), or
tobramycin and DNase I simultaneously, and were compared to
untreated biofilms. The addition of DNase I at the onset of biofilm
formation decreased the biovolume of 24-h-old tobramycin-free
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Fig. 2 Sub-MIC of tobramycin leads to increased eDNA release and cell death in P. aeruginosa biofilm. a Representative CLSM 3D-top and side
views of eDNA accumulation in 24-h-old P. aeruginosa biofilms exposed to tobramycin (0.8 μgml−1) alone, DNase I (100 μgml−1) alone or
tobramycin and DNase I simultaneously, compared to untreated biofilms. Prior to image acquisition by CLSM, P. aeruginosa biofilm cells were
labeled in green with SYTO 9 and the eDNA was stained in red with DDAO. Scale bars= 20 µm. CLSM images were analyzed using the
COMSTAT software to quantify b the eDNA relative abundances relatively to biofilm biovolume values. Error bars represent standard error of
the means (n= 3) and c the biofilm biovolumes. Error bars represent standard error of the means (n= 3). d CLSM micrographs of P. aeruginosa
biofilms grown in the absence of tobramycin (left panel) and in the presence of drug (right panel) stained using the LIVE/DEAD® BacLightTM

Bacterial Viability Kit. Green fluorescent cells are viable, whereas red fluorescent cells have compromised cell membranes. Scale bars= 20 µm.
e The cell death in biofilms was determined by COMSTAT images analyses. Values of nonviable biovolumes were normalized to total
biovolumes. Error bars represent standard error of the means (n= 3). Statistics were achieved by a two-tailed t test: ★★, P= 0.001 to 0.01;
★, P= 0.01 to 0.05
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biofilms by 27% (Fig. 2c). Interestingly, when biofilms were formed
simultaneously in presence of DNase I and tobramycin, the total
biofilm biovolume was reduced by 42.4% compared to biofilm
formed under tobramycin exposure without DNase I (Fig. 2c).
Similarly, COMSTAT images analyses indicated that while the
eDNA relative abundance in biofilms of H103 grown in the
presence of DNase I was decreased by about 20.2%, it was
reduced by 33.5% in biofilms grown with both DNase I and
tobramycin compared to tobramycin-exposed biofilms without
DNase I. These results indicate that eDNA release contributes to a
certain extent to tobramycin-enhanced biofilm formation by P.
aeruginosa H103. Moreover, we attempted to assess if the eDNA
release occurs through cell lysis. To this end, cell death was
evaluated using the Live/Dead staining kit (Fig. 2d). COMSTAT
analyses of CLSM images revealed that cell death was significantly
increased from 1 to 1.25-fold (by about 25%) in P. aeruginosa H103
biofilms grown in the presence of tobramycin compared to
tobramycin-free biofilms (Fig. 2e). Altogether, these data indicate
that tobramycin at sub-MIC induced eDNA release, most likely
through cell lysis, thereby modifying the matrix composition,
which might contribute at least in part to the increased biofilm
formation.

Proteomic profiling of tobramycin-enhanced biofilm formation
suggests a complex adaptive physiology
To gain further insights into the tobramycin-enhanced biofilm
formation potential adaptive mechanisms, the whole biofilm
proteome was analyzed. The obtained results allowed the
identification of 174 proteins with at least a twofold change in
abundance in presence of sub-MIC tobramycin. Among these, 118
proteins showed increased abundances (Supplementary Table 1)
while 56 were less abundant (Supplementary Table 2). An

enrichment analysis with respect to PseudoCAP functional
classes26 was performed for the reduced and increased-
abundance proteins, respectively (Supplementary Fig. 1). The
majority of enriched PseudoCAP functions for increased-
abundance proteins belong to the categories of “secreted factors”,
“adaptation and protection”, “antibiotic resistance and suscept-
ibility”, “chaperones & heat shock proteins”, “amino acid
biosynthesis and metabolism”, and “biosynthesis of cofactors,
prosthetic groups and carriers” (Supplementary Fig. 1). By contrast,
for reduced-abundance proteins, the PseudoCAP functional
classes belong to “transcription, RNA processing, and degradation”,
“energy metabolism”, “amino acid biosynthesis and metabolism”,
and “carbon compound catabolism” (Supplementary Fig. 1). Next, a
protein−protein interaction network was determined for proteins
that were differentially produced in tobramycin-exposed biofilm.
One hundred and ninety-one functional connections were
inferred between 111 of the 174 proteins by selecting connections
over a threshold of 0.7 of confidence combined score. The
resulting string network was visualized within Cytoscape (version
3.2.1)27 (Fig. 3). The obtained results suggest a high number of
interactions between the identified proteins which might
be involved in the tobramycin-induced biofilm formation in
P. aeruginosa. Interestingly, the proteome response to sub-MIC
tobramycin treatment revealed increased levels of proteins
associated with QS signaling networks, phenazine biosynthetic
pathways and extracellular proteases (Supplementary Table 1;
Fig. 3). On the other hand, the proteome analysis showed a
decreased abundance of some proteins that are involved in central
metabolism, including proteins associated with glycolysis, TCA cycle,
and anaerobic metabolism (Supplementary Table 2; Fig. 3).
Noticeably, the proteome of tobramycin-exposed P. aeruginosa
biofilm showed reduced accumulation of ribonucleases RNase E
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(PA2976), RNase R (PA4937), and PNPase (PA4740) (Supplemen-
tary Table 2; Fig. 3), suggesting a possible reduced catabolism of
RNAs. Overall, these proteomic data revealing alterations in the
abundance of numerous proteins suggest complex adaptive
mechanisms underlying tobramycin-increased biofilm develop-
ment by P. aeruginosa.

Tobramycin-enhanced biofilm formation is associated to
production of QS molecules
Since QS signaling molecules have been reported to be involved
in eDNA release via subpopulation cell lysis,28 the ability of
tobramycin to increase the production of QS-related molecules in
colony biofilms of H103 strain was determined using LC-MS/MS
quantification. As shown in Fig. 4a, tobramycin significantly
increased the production of the two main P. aeruginosa N-acyl-
homoserine lactones (AHLs), N-(3-oxododecanoyl)-L-homoserine
lactone (3-oxo-C12-HSL), and N-butanoyl-L-homoserine lactone (C4-
HSL). Furthermore, the major molecules from the HAQs family,

namely 3,4-dihydroxy-2-heptylquinoline (termed the Pseudomo-
nas quinolone signal (PQS)), its precursor 4-hydroxy-2-
heptylquinoline (HHQ) and 4-hydroxy-2-heptylquinoline N-oxide
(HQNO) were all significantly more abundant upon tobramycin
exposure (Fig. 4b). Accordingly, the proteomic analyses revealed
an enhanced production of PqsB (PA0997), PqsC (PA0998), and
PqsD (PA0999) that are involved in HHQ biosynthesis (Supple-
mentary Table 1; Fig. 3). This was also the case for both PqsH
(PA2587), responsible for the conversion of HHQ into PQS,29,30 and
PqsL (PA4190), which is required for HQNO biosynthesis31

(Supplementary Table 1; Fig. 3). These results provide evidence
that sub-MIC of tobramycin induces the production of QS-related
molecules, especially PQS and HQNO that might be involved in
eDNA release and/or cell lysis, leading partly to the observed
tobramycin-increased biofilm formation in P. aeruginosa. To
support this hypothesis, a pqs mutant strain (ΔpqsA) was
constructed to determine the impact of HAQ molecules on
biofilm formation and eDNA release in tobramycin-exposed
biofilms (Fig. 4c). As expected, HAQs levels determined by LC/
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MS-MS were shown to be abolished in ΔpqsA biofilm exposed or
not to tobramycin compared to HAQs levels of H103 wild-type
strain (Supplementary Table 3). The ΔpqsA mutant displayed
reduced biofilm biovolume (by about 38%) compared to H103.
The presence of tobramycin in ΔpqsA biofilm cultures increased
the biovolume compared to ΔpqsA tobramycin-free biofilms as in
the case of H103 treated or not with tobramycin but in a minor
rise proportion (Fig. 4d). Noticeably, the biofilm biovolume of
ΔpqsA biofilms grown in presence of sub-MIC of tobramycin was
significantly reduced (53.6%) when compared to the biovolume of
H103 biofilms grown in the same conditions. By contrast, the
eDNA relative abundance did not increase in ΔpqsA biofilms in
presence of tobramycin compared to biofilms of the same strain
without tobramycin, on the opposite to the tobramycin-induced
eDNA increase seen in H103 biofilms (Fig. 4e). The relative eDNA
abundances were thus not significantly different in tobramycin-

free H103 biofilms and ΔpqsA biofilms with or without antibiotic,
and were only higher in H103 biofilms with tobramycin (Fig. 4e).
Taken together, these data indicate that whereas the biofilm
biovolume enhancement could still occur in response to sub-MIC
of tobramycin in ΔpqsA biofilms, at least a part of the increase of
eDNA release appears to be HAQ-dependent.

PrrF sRNAs promote tobramycin-enhanced biofilm formation
A previous study reported that biofilm formation in the prrF
mutant is not induced under sub-MIC of tobramycin.32 Thus, the
effect of tobramycin was assessed on PrrF sRNAs expression using
RT-qPCR. Interestingly, the expression of PrrF sRNAs was
significantly increased by 2.4-fold (Fig. 5a), suggesting their
involvement in the tobramycin-enhanced biofilm formation in P.
aeruginosa. To further validate this hypothesis, biofilm formation
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and eDNA release were evaluated in a ΔprrF mutant under
tobramycin exposure (Fig. 5b). As seen in Fig. 5c, no significant
difference was observed between the biofilm biovolume of P.
aeruginosa ΔprrF mutant and H103 strains in the absence of
antibiotic. Remarkably, sub-MIC of tobramycin-enhanced biofilm
biovolume in ΔprrF mutant compared to ΔprrF tobramycin-free
biofilm as in the case of the biofilm formation of H103 grown
without or with tobramycin but in a minor rise proportion (Fig. 5c).
However, tobramycin-treated biofilm of ΔprrF mutant did not
show increased relative abundance of eDNA (Fig. 5d). Interest-
ingly, HAQs quantification by LC-MS/MS showed that deletion of
PrrF sRNAs had no significant effect on the production levels of
HHQ, PQS, and HQNO when compared to H103 strain grown in
the same conditions (Fig. 5e). Moreover, the HAQs levels in the
exposed-tobramycin biofilm of ΔprrF mutant were increased to
levels at those of the H103 biofilm treated with tobramycin (Fig.
5e). Altogether, these results indicate a link between PrrF sRNAs
and eDNA release probably mediated through an HAQ-
independent mechanism in response to sub-MIC of tobramycin.

Effect of tobramycin on iron uptake systems and oxidative stress
response in biofilm
The PrrF1 and PrrF2 sRNAs are key elements of P. aeruginosa iron
homeostasis32 and previous studies demonstrated the require-
ment of iron for induction of biofilm formation in P. aeruginosa by
sub-MIC of tobramycin.33 Therefore, the effect of tobramycin was
explored on the expression of iron and heme acquisition systems.
RT-qPCR analyses indicated increased expression of pvdS encod-
ing the PvdS extracytoplasmic function sigma factor (ECFσ)34 and
the pvdH biosynthetic gene by about threefold in response to
tobramycin (Fig. 6). Similarly, expression of hasI and phuR,
encoding the HasI ECFσ for the Has-dependent heme uptake
system and heme/hemoglobin outer membrane receptor PhuR
increased in the presence of tobramycin, reflecting the activity of
the heme acquisition (Has) and the heme uptake (Phu) systems
(Fig. 6). Finally, we assayed the Feo system for the uptake of Fe2+

and showed enhanced expression of feoB encoding the inner
membrane permease FeoB (Fig. 6). The enhancement of these iron
uptake systems in response to tobramycin reveals a high demand
of iron that might lead to oxidative damages. Interestingly,
proteomic data analysis showed that the two alkyl hydroperoxide
reductases AhpF (PA0140) and AhpB (PA0848) were significantly
more abundant in tobramycin-exposed biofilm. Additionally, the
protein TrxB (PA0849), a thioredoxin reductase, which protects
protein disulfide bonds from oxidation was also induced
(Supplementary Table 1; Fig. 3). Collectively, these data suggest
a contribution of iron and oxidative stress responses into the

tobramycin-enhanced biofilm formation in P. aeruginosa that
could be mediated by the PrrF sRNAs.

DISCUSSION
Bacteria have the ability to adapt to numerous environmental
stresses by setting up different biological responses such as the
enhancement of biofilm formation, notably upon exposure to low
antibiotic concentrations.12,13 Through CLSM observations, whole
biofilm proteome analysis, gene expression RT-qPCR assays, and
phenotypic approaches, we present herein further insights into
the adaptation mechanisms leading to increased biofilm forma-
tion in P. aeruginosa in response to sub-MIC of tobramycin. The
effect of sub-MIC of tobramycin on increased biofilm development
in P. aeruginosa was corroborated19–21 and the present work
demonstrates modifications in the biofilm architecture. Remark-
ably, tobramycin exposure results in biofilm matrix modifications
by increasing eDNA abundance levels, which in turn favors the
built up of 3D structures15 leading to elevated biofilm biovolume
and thickness, as confirmed by DNase I treatment. This result
mirrors those of previous studies that have shown increased
matricial extracellular nucleic acids amounts in Enterococcus
faecalis and Staphylococcus aureus in response to sub-MICs of
ampicillin and methicillin, respectively.35,36

eDNA was previously described to play a structural role in
biofilm formation, to bind and shield biofilms from aminoglyco-
sides, and to induce antimicrobial peptide resistance mechanisms
in P. aeruginosa.37–40 The observed rise in eDNA release is
presumably a consequence of elevated cell biofilm death that
seems to be mediated by a QS-dependent mechanism. Accord-
ingly, data of the current study demonstrate increased production
levels of HAQ molecules (HHQ, PQS, and HQNO) in P. aeruginosa
H103 strain and decreased eDNA release in ΔpqsA in response to
sub-MIC of tobramycin. This finding is in agreement with a
previous study which showed that HAQs play a key role in eDNA
release, occurring as a result of biofilm subpopulations lysis.28

However, given that ΔpqsA biofilm biovolume decreased, we have
been unable to show differences in terms of eDNA release
between pqsA mutant and H103 strains in the absence of
tobramycin. This result was unexpected and suggests that an
alternative potential eDNA-independent mechanism might be
involved. Besides, HQNO is a well-known molecule that can act as
a cytochrome inhibitor of the respiratory chain,41 inducing thus
the production of reactive oxygen species (ROS), which are
involved in membrane damages resulting in cell autolysis and
eDNA release.42 We found here also that proteins related to
phenazine biosynthesis and several extracellular proteases trig-
gered through the QS system are enhanced in presence of sub-
MIC tobramycin. Previous findings demonstrated that pyocyanin
enhances the matrix stability by interacting with eDNA, thus
enabling the strength and development of the biofilm.43,44

Moreover, the current study demonstrated significant higher
production levels of the two AHL signal molecules, 3-oxo-C12-HSL
and C4-HSL, produced by the Las and Rhl QS systems, respectively,
that are involved in P. aeruginosa biofilm development.13,45 The
induction of the Las system under tobramycin exposure may
trigger the observed increased accumulation of proteins related to
HAQ biosynthesis. Altogether these data suggest a key role for the
HAQ, including in signaling, and probably also ROS in the release
of eDNA leading to increased biofilm development in response to
sub-MIC of tobramycin.
Previous studies reported that PQS triggers iron-starvation

response in P. aeruginosa by its ability to chelate ferric iron (Fe3+)
and functions as an iron trap associated with the outer
membrane.46,47 In fact, several iron acquisition systems are
overexpressed in P. aeruginosa biofilm under tobramycin expo-
sure. This study demonstrates higher expression levels of genes
involved in the biosynthesis of pyoverdine siderophore, which is

Fig. 6 Sub-MIC of tobramycin enhance iron/heme uptake strategies
in P. aeruginosa biofilm cultures. Relative pvdS, pvdH, hasI, phuR, and
feoB mRNA levels in P. aeruginosa biofilm cultures exposed to sub-
MIC of tobramycin (green bars) compared to the relative mRNA
levels in the control condition (brown bars), after 24 h of growth.
Quantifications have been obtained from at least three independent
experiments and rpoD was used as a control housekeeping gene.
Error bars represent standard error of the means (n= 3). Statistics
were achieved by a two-tailed t test: ★★★, P= 0.0001 to 0.001;
★★, P= 0.001 to 0.01; ★, P= 0.01 to 0.05
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of importance for biofilm formation.48,49 The two heme uptake
systems Has and Phu and the ferrous iron uptake Feo system are
also increased. Remarkably, phenazine-1-carboxylic acid, that can
reduce ferric iron to its ferrous oxidation state, promotes biofilm
formation through the Feo system.50 Thus, these results reveal a
contribution of iron uptake strategies in tobramycin-enhanced
biofilm formation in P. aeruginosa. These findings are in line with a
previous study that demonstrated the role of iron in the induction
of biofilm formation in P. aeruginosa by sub-MIC of tobramycin.33

While the potential of iron to stimulate oxidative stress, the
proteomic data of this study showed a rise of the AhpF, AhpB-
TrxB2 proteins responsible for an antioxidant mechanism activity51

that would help limiting some adverse effects of ROS. In addition,
the PqsR (MvfR) transcriptional regulator activated by PQS
modulates the expression of genes involved in the oxidative
stress response.51

Besides, the iron-starvation response revealed by gene expres-
sion data seems to be involved in the increased expression of
regulatory PrrF sRNAs that are known to regulate several genes
involved in protection from oxidative stress and iron storage.32,52

Remarkably, an important finding of this study was that biofilms
formed by ΔprrF in presence of tobramycin contain less eDNA
than H103 strain biofilm formed under the same condition,
therefore following a similar trend as the ΔpqsA mutant when
compared to P. aeruginosa H103 strain under tobramycin
exposure. However, while PrrF sRNAs were shown previously to
modulate HAQs production under planktonic conditions,53,54 our
study that was conducted in biofilms showed that ΔprrF mutant
produced HAQs levels similar to those of the wild-type strain
grown with or without tobramycin. These data suggest that HAQs
production modulation by PrrF sRNAs might not play an
important role in H103 strain and studied conditions and point
out to the complex regulation of HAQs production. In summary,
these data suggest that regulatory PrrF sRNAs are key players
mediating eDNA release through possibly another potential HAQ-
independent mechanism leading to tobramycin-increased biofilm
formation. Furthermore, the whole proteome data show
decreased abundances of RNases including RNaseE, RNaseR, and
PNPase in the presence of sub-MIC of tobramycin that appears to
explain the increased expression of sRNAs. Recent studies indicate
that RNases greatly affect biofilm formation by causing sRNAs
decay in microorganisms such as P. aeruginosa, Escherichia coli and
Salmonella Typhimurium.55–57

In addition, numerous metabolic pathways were affected in the
whole biofilm proteome exposed to tobramycin. Especially,
proteins related to glycolysis, TCA, and denitrification pathways
were under-produced, suggesting a metabolic adaptation under
biofilm growth in the presence of tobramycin. Interestingly, a
recent study reported the functional enrichment of proteins
related to TCA, carbon metabolism and energy derivation, and
electron transport activities, which were under-accumulated in the
presence of tobramycin under planktonic conditions.24 P. aerugi-
nosa was demonstrated to use PQS to downregulate genes
involved in denitrification in planktonic conditions,58 indicating a
link between QS and energy metabolism. Recently, AHL-mediated
QS was shown to alter TCA cycle intermediates, and fatty acid and
amino acid metabolism during stationary phase.59 Amino acid
metabolism (as carnitine and lysine) was also affected upon
tobramycin exposure in our study according to previous data
observed when P. aeruginosa was grown in planktonic condi-
tions.24 Moreover, and in line with our results, the enhanced
catabolism of the amino acids arginine, phenylalanine and
tyrosine was reported.60

Overall, we suggest herein new potential adaptive mechanisms
on how sublethal concentrations of tobramycin lead to increased
biofilm formation in P. aeruginosa. Importantly, the release of
eDNA might explain, at least in part, the enhancement of biofilm
formation and point to the fundamental role of the biofilm matrix.

HAQs and regulatory PrrF sRNAs appears to be key players in the
eDNA release since no effect of tobramycin was observed on
eDNA release in ΔpqsA and ΔprrFmutants. However, there was still
an impact of tobramycin on ΔpqsA and ΔprrF biofilm formation
suggesting that alternative mechanism(s) may possibly be
involved. In addition, it is apparent that the decreased eDNA
release observed in ΔpqsA and ΔprrF mutants occur through
distinct mechanisms and we cannot disregard the importance of
the other discussed adaptive mechanisms which deserve further
investigations.

METHODS
Bacterial strains, growth conditions and antibiotics
The P. aeruginosa H103 strain and derivatives are listed in Supplementary
Table 4. P. aeruginosa H103 biofilms were grown on membrane filters
(25mm diameter, 0.2 µm pore size, Whatman) placed over the surface of
freshly prepared LB agar plates supplemented or not with the required
concentration of tobramycin (Sigma-Aldrich). To this end, overnight
planktonic cultures grown aerobically at 37 °C in LB broth on a rotary
shaker (180 r.p.m.) were diluted to an OD at 580 nm of 1 and 100 µl spotted
on the membrane. The bacteria were incubated at 37 °C for 24 h on static
conditions. The antibiotics stock solutions used in this study were sterilized
by filtration through 0.22-µm filters, aliquoted into daily-use volumes and
kept at −20 °C.

Sensitivity of P. aeruginosa to tobramycin
ETEST® tobramycin gradient strip (0.016−256 µgml−1; Biomérieux) was
used to assess the MIC assay for P. aeruginosa strain H103 according to the
manufacturer’s instructions. An inoculum containing a concentration of
bacteria that approximates the 0.5 McFarland turbidity standard was used.
Antibiotic sensitivity was read after 24 h incubation at 37 °C.

Construction of the ΔpqsA and ΔprrF mutant strains
The pqsA and prrF mutant strains were constructed by following the
procedure described by Quénée et al.61 Briefly, the pqsA and prrF-flanking
regions were PCR amplified using the primer pairs listed in Supplementary
Table 5. PCR products pqsA- or prrF-upstream and pqsA- or prrF-
downstream were digested by SacI/XbaI or EcoRI/XbaI and XbaI/HindIII,
respectively, and cloned by a three-way ligation into the suicide vector
pEX100Tlink opened by SacI and HindIII or EcoRI and HindIII. These cloning
strategies resulted in the construction of pEX:ΔpqsA and pEX:ΔprrF
plasmids, respectively. The lox-aacC1-lox cassette encoding gentamicin
(Gm) resistance was excised from pUCGmlox61 using XbaI and was
subcloned into the unique XbaI site of pEX:ΔpqsA and pEX:ΔprrF. The
resulting pEX:ΔpqsA:Gmlox and pEX:ΔprrF:Gmlox plasmids were then
introduced into the E. coli donor/helper strain S17.1 and transferred by
conjugation into P. aeruginosa H103. Gm-resistant colonies grown on
Pseudomonas isolation agar (PIA) plates were counter-selected on 5%
sucrose LB agar plates, and the double recombinants were selected for
their Gm resistance and carbenicillin (Cb) sensitivity. Finally, the aacC1
gene conferring Gm resistance was excised by the Cre recombinase
encoded by pCM157.62 The resulting ΔpqsA and ΔprrF mutant strains were
checked by PCR using primer pairs pqsA-SacI-F/pqsA-HindIII-R and prrF-
EcoRI-F/prrF-HindIII-R, respectively (Supplementary Table 5), and the
resulting fragments were verified by DNA sequencing (Sanger sequencing
services, Genewiz).

Confocal laser scanning microscopy (CLSM)
P. aeruginosa H103, ΔpqsA, and ΔprrF biofilms were grown in LB medium
supplemented or not with the required concentration of tobramycin on a
24-well glass-bottomed microplates for 24 h at 37 °C in static conditions.
Biofilm formation in the presence of DNase I from bovine pancreas (Sigma-
Aldrich) was performed by supplementing LB medium with DNase I at
100 µgml−1.63 Prior to image acquisition, biofilm cells and eDNA matrix
component were stained with fluorescent dyes and observed by CLSM.
Biofilm cells were stained by adding 5 µM of SYTO® 9 green fluorescent
nucleic acid stain (Invitrogen, Thermo Fisher Scientific; excitation at 488 nm
and emission from 500 to 550 nm) or 5 µM of SYTO® 62 red fluorescent
nucleic acid stain (Molecular Probes, Life Technologies; excitation at
652 nm and emission at 676 nm) prepared in sterile physiological solution
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(0.9% NaCl), incubated at room temperature for 15min in the dark and
then washed twice with sterile physiological solution (0.9% NaCl).
The eDNA biofilm-component matrix was stained using 1 µM of 7-

hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO), a red fluor-
escent probe (Molecular Probes, life; excitation at 663 nm and emission at
660 nm).
The Live/Dead fluorescent staining was performed using the LIVE/DEAD®

BacLightTM Bacterial Viability Kit (Thermo Fisher Scientific). The cells were
labeled with a mixture (v/v) of component A (SYTO 9 dye, 1.67mM/
propidium iodide, 1.67mM) and component B (SYTO 9 dye, 1.67mM/
propidium iodide, 18.3 mM) according to the manufacturer’s
recommendations.
The CLSM observations were carried out with a Zeiss LSM710

microscope (Carl Zeiss Microscopy) using a ×63 oil immersion objective.
Images were taken every micrometer throughout the whole biofilm
depth. For visualization and processing of 3D images, the Zen 2.1 SP1
zen software (https://www.zeiss.com/microscopy/int/downloads/zen.html)
(Carl Zeiss Microscopy) was used. The thicknesses (μm) and biovolumes
(μm3 μm−2) of the biofilms were measured using the COMSTAT2 software
(http://www.imageanalysis.dk/).64 At least three image stacks from each of
three independent experiments were used for each analysis.

Reverse transcription-quantitative PCR analysis (RT-qPCR)
Total RNAs from three independent biofilm cultures were isolated by the
hot acid-phenol method,65 followed by treatment with Turbo DNA-freeTM

kit (Invitrogen) according to the manufacturer’s protocol. Synthesis of
cDNAs and RT-qPCR was achieved as previously described,66 using the
oligonucleotides listed in Supplementary Table 3. The mRNAs and sRNAs
levels were calculated by comparing the threshold cycles (Ct) of target
genes with those of control sample groups and the relative quantification
was measured using the 2−ΔΔCt method67 using DataAssistTM software
(Applied Biosystems).

LTQ-orbitrap analysis
The sample preparation, protein digestion, tandem mass spectrometry and
whole proteome analysis was performed as previously described.68 All
experiments were performed on an LTQ-Orbitrap Elite (Thermo Scientific)
coupled to an Easy nLC II system (Thermo Scientific). One microliter of
sample was injected onto an enrichment column (C18 PepMap100,
Thermo Scientific). The separation was performed with an analytical
column needle (NTCC-360/100-5-153, NikkyoTechnos, Japan). The mobile
phase consisted of H2O/0.1 % formic acid (FA) (buffer A) and CH3CN/FA 0.1
% (buffer B). Tryptic peptides were eluted at a flow rate of 300 nl/min using
a three-step linear gradient: from 2 to 40% B over 75min, from 40 to 80% B
in 4min and 11min at 80% B. The mass spectrometer was operated in
positive ionization mode with capillary voltage and source temperature set
at 1.5 kV and 275 °C, respectively. The samples were analyzed using CID
(collision induced dissociation) method. The first scan (MS spectra) was
recorded in the Orbitrap analyzer (R= 60,000) with the mass range m/z
400–1800. Then, the 20 most intense ions were selected for MS2

experiments. Singly charged species were excluded for MS2 experiments.
Dynamic exclusion of already fragmented precursor ions was applied for
30 s, with a repeat count of 1, a repeat duration of 30 s and an exclusion
mass width of ±10 ppm. Fragmentation occurred in the linear ion trap
analyzer with collision energy of 35%. All measurements in the Orbitrap
analyzer were performed with on-the-fly internal recalibration (lock mass)
at m/z 445.12002 (polydimethylcyclosiloxane). After MS analysis, raw data
were imported in Progenesis LC-MS software (Nonlinear Dynamics). For
comparison, one sample was set as a reference and the retention times of
all other samples within the experiment were aligned. After alignment and
normalization, statistical analysis was performed for one-way analysis of
variance (ANOVA) calculations. Peptide features presenting a p value and a
q value less than 0.05, and a power greater than 0.8 were retained. MS/MS
spectra from selected peptides were exported for peptide identification
with Mascot (Matrix Science) against the database restricted to P.
aeruginosa PAO1 (http://www.pseudomonas.com).26 Database searches
were performed with the following parameters: 1 missed trypsin cleavage
site allowed; variable modifications: carbamidomethylation of cysteine and
oxidation of methionine. Peptides with scores above 20 were imported
into Progenesis. For each condition, the total cumulative abundance of the
protein was calculated by summing the abundances of peptides. Proteins
identified with less than two peptides were discarded. Only the proteins
that varied by twofold in these average normalized abundances between

growth conditions were retained. Expression data for all significantly
differentially produced proteins are available in Supplementary Tables 1
and 2.

Functional enrichment of proteomic data
The enrichment factor (EF) was calculated using the following formula:
EF= (number of specific PseudoCAP classes detected/number of all
PseudoCAP classes detected)/ (number of specific PseudoCAP classes
annotated/number of all PseudoCAP classes annotated). Functional
categories displaying an EF ≥ 1.5 are defined as overrepresented in the
functional proteomic profiling of the tobramycin-exposed biofilm (Supple-
mentary Fig. 1).

P. aeruginosa whole biofilm Protein−Protein Interaction Network
(PPIN) inference
P. aeruginosa PAO1 Protein−Protein Interaction Network (PPIN) was
retrieved from the STRING database (http://string-db.org/).69 One hundred
and ninety-one functional connections were inferred between 111
proteins of the 174 proteins by selecting connections over a threshold
of 0.7 of confidence combined score. The 63 proteins without any
connection to other proteins in the network were removed. The resulting
string network was visualized within Cytoscape (version 3.2.1) (http://www.
cytoscape.org).27

Extraction and quantification of AHLs and HAQs
Colony biofilms of H103 strain and its derivative mutants exposed or not to
tobramycin were resuspended in 0.9% NaCl (three-colony biofilms per
10ml of 0.9% NaCl). Biofilm suspensions were vortexed for 2 min and the
AHL and HAQ molecules were extracted following the technique described
in a previous study.70 AHLs and HAQs were quantified by liquid
chromatography coupled to mass spectrometry (LC-MS/MS).29,71 The
obtained data were normalized to OD of biofilm suspensions. AHL
standards were obtained from Sigma [N-butanoyl-L-homoserine lactone
(C4-HSL) and N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL)].

Statistical analysis
Statistical significance was evaluated using Prism GraphPad online tool
(https://www.graphpad.com/quickcalcs/ttest1/). The data were statistically
analyzed using unpaired (two sample) two-tailed t test to calculate p
values. The mean with standard error of the mean (SEM) were calculated
and plotted.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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