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ARTICLE

Bacterial genome-wide association study of hyper-
virulent pneumococcal serotype 1 identifies genetic
variation associated with neurotropism
Chrispin Chaguza et al.#

Hyper-virulent Streptococcus pneumoniae serotype 1 strains are endemic in Sub-Saharan Africa

and frequently cause lethal meningitis outbreaks. It remains unknown whether genetic var-

iation in serotype 1 strains modulates tropism into cerebrospinal fluid to cause central ner-

vous system (CNS) infections, particularly meningitis. Here, we address this question through

a large-scale linear mixed model genome-wide association study of 909 African pneumo-

coccal serotype 1 isolates collected from CNS and non-CNS human samples. By controlling

for host age, geography, and strain population structure, we identify genome-wide statisti-

cally significant genotype-phenotype associations in surface-exposed choline-binding (P=
5.00 × 10−08) and helicase proteins (P= 1.32 × 10−06) important for invasion, immune

evasion and pneumococcal tropism to CNS. The small effect sizes and negligible heritability

indicated that causation of CNS infection requires multiple genetic and other factors

reflecting a complex and polygenic aetiology. Our findings suggest that certain pathogen

genetic variation modulate pneumococcal survival and tropism to CNS tissue, and therefore,

virulence for meningitis.

https://doi.org/10.1038/s42003-020-01290-9 OPEN
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S treptococcus pneumoniae, commonly known as ‘the pneu-
mococcus’, is a clinically significant opportunistic Gram-
positive bacterial pathogen, which causes >320,000 annual

deaths in children less than five years old globally, especially in
resource poor settings1,2. Previous reports have reported that the
pneumococcal capsule—which determines the serotype —was a
contributing factor to the differential ability of pneumococci to
cause invasive pneumococcal diseases such as meningitis—
inflammation of the meninges3–5. Serotype 1 pneumococci have a
high invasive disease-to-carriage odds ratio (>9), highlighting
their high invasiveness in contrast with their rare detection rates
among asymptomatic individuals3,6. While other serotypes such
as 7F, 8 and 12F also exhibit relatively high invasive disease-to-
carriage odds ratios6, serotype 1 is ranked as the highest cause of
invasive pneumococcal disease in many African countries7

despite the introduction of the 13-valent pneumococcal conjugate
vaccine (PCV), which targets this serotype8,9. This feature makes
it a unique and prolific public health concern. In Sub-Saharan
Africa, serotype 1 disease is endemic7 and frequently associated
with large, rapidly spreading and lethal community meningitis
outbreaks10 with epidemic patterns similar to those seen for
Neisseria meningitidis11, both within12, and outside of the African
meningitis belt11,13,14. In contrast, small and less severe outbreaks
have been detected outside Africa mainly in overcrowded settings
such as care homes, schools, and prisons15–23.

Unlike most other serotypes that rarely cause disease, the high
invasive disease-to-carriage odds ratio of serotype 1 strains sug-
gests they resemble a proficient but deliberate invader rather than
a typical commensal3,6,24. Although serotype 1 strains may be
genetically adapted to be more prone at invading their hosts, it
remains unknown whether they possess genetic variations other
than the capsule biosynthesis genes, which modulates their tissue
tropism25,26. Such genotypic variants may have a higher ability to
migrate and survive in given tissues, such as the cerebrospinal
fluid (CSF), where they can cause central nervous system (CNS)
pathologies. Previous mutagenesis studies have identified
virulence-associated genes and demonstrated their role in colo-
nisation and invasive disease26–28. However, well-studied viru-
lence factors, such as pneumolysin, which plays a crucial role in
the increased pathogenicity of serotype 1 strains29, are present in
every pneumococcal isolate; therefore, their mere presence/
absence patterns are uninformative on the susceptibility and
disease severity risk in patients. The analysis of large collections of
isolates may reveal with high resolution the existence of pre-
viously unknown genetic variations not only in terms of presence/
absence of genes but also single-nucleotide polymorphisms
(SNPs) and insertions/deletions, which may contribute to the
pathogen virulence to causing certain invasive diseases.

Genome-wide association studies (GWAS) are increasingly
used to investigate the statistical link between genotypic variation
and bacterial phenotypes30,31. Previous studies identified genetic
variation linked with disease susceptibility32–38, nutrient synth-
esis39, carriage duration40, disease progression32, host adapta-
tion41, virulence42 and antimicrobial resistance43–47. However,
GWAS analyses of bacterial isolates sampled from different tis-
sues have yielded inconsistent findings on the contribution of
genetics on tissue tropism and disease susceptibility32–37. This is
exemplified by studies comparing carriage and disease isolates,
which have identified variants associated with invasiveness34,38,48

while studies comparing invasive isolates from different tissues,
such as blood and CSF, have yielded no differences32,33,37. These
inconsistencies reflect differences in the analytical methods, data
set sizes, geographical settings and control for confounders, such
as capsular diversity, geographical origin and strain population
structure. The latter is especially problematic in bacterial species
with highly structured populations44, but may be less severe in

highly recombinogenic species such as S. pneumoniae in which
the genetic pool is frequently shuffled49.

We have amassed a large collection of 909 invasive pneumo-
coccal serotype 1 isolates from Sub-Saharan Africa predominantly
belonging to the clonal complex (CC) 217, a dominant and
endemic hyper-virulent lineage on the continent50. The isolates
were collected between 1996 and 2016, and were sequenced within
the framework of multi-national genomic surveillance consortium
studies; the Pneumococcal African Genomics (PAGe)51 and the
Global Pneumococcal Sequencing (GPS) project52. In this
study, we conducted GWAS analysis to compare serotype 1 iso-
lates sampled from CNS and non-CNS human specimens to
determine whether presence of genetic variation is dis-
proportionately enriched in the CNS isolates, which may con-
tribute to CNS tissue neurotropism—the ability of the
pneumococci to translocate across the blood–brain barrier to
cause meningitis. We used three types of genetic variation for the
GWAS namely, presence/absence patterns of accessory genes,
unique DNA substrings of variable length (or unitigs)53, and
single-nucleotide polymorphisms (SNPs). We employed robust
linear mixed model approaches to control for important covari-
ates, including, host age, geographical origin, capsular diversity
and fine scale strain population structure. We also assessed the
phylogenetic and geographical distribution, heritability and bio-
logical relevance of the identified variants. Our study uncovers the
existence of genetic variants, which modulates the propensity of
pneumococcal strains to translocate to, survive or resist immune
clearance in the CSF, thus highlighting potential targets for
therapeutic and prophylactic interventions to prevent and control
pneumococcal diseases.

Results
Characteristics of the serotype 1 isolates. We compiled data for
909S. pneumoniae serotype 1 isolates originating from Sub-
Saharan Africa and carried out a GWAS analysis to determine
genetic differences between CNS and non-CNS isolates (Supple-
mentary Data 1). Of these isolates, 297 were isolated from CSF in
patients while 612 non-CNS isolates were isolated from the blood,
lung aspirate, joint fluid, and pleural or peritoneal fluid (Fig. 1a).
All the CSF specimens were cultured from patients with menin-
gitis or other CNS infections. The isolates were collected via
hospital-based bacterial surveillance between 1996 and 2016. Age
is an essential confounding factor associated with co-morbidities,
immaturity and senescence of the immune system, which con-
tributes to patient susceptibility to CNS invasion. We recorded
age as a continuous variable, but the number of the patients by
age groups were as follows; <2 years old (n= 158), 2–4 years
(n= 209), 5–15 years (n= 171), >15 years (n= 255) and age
unknown (n= 116) (Fig. 1b). The patients were from eleven
countries namely; Ghana (n= 2), Ivory Coast (n= 1), Malawi
(n= 197), Niger (n= 43), Nigeria (n= 6), Senegal (n= 12),
South Africa (n= 357), The Gambia (n= 181), Togo (n= 44),
Benin (n= 2) and Mozambique (n= 64) (Fig. 1c). We identified
34 sequence types (ST) inferred from whole-genome sequences
using the multilocus sequence typing (MLST)54, which belonged
to the hyper-virulent African clonal complex (CC) 217 line-
age50,51. The most common clones based on STs were ST217
(n= 524), ST3081 (n= 113), ST612 (n= 69), ST618 (n= 50),
ST303 (n= 44) and ST11745 (n= 11) (Fig. 2). All the isolates
corresponded to the GPSC2 lineage based on the Global Pneu-
mococcal Sequence Cluster (GPSC) nomenclature as the defini-
tion for international pneumococcal lineages52.

Phylogenomic and geographical diversity of the isolates. We
performed population structure analysis to understand the
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genetic diversity of the isolates (Fig. 2 and Supplementary Fig. 2).
Bayesian clustering yielded seven monophyletic clades 1–7. We
then used the Chi-squared (χ2) test to assess the phylogeographic
structuring of the isolates and found a strong association (P <
2.2 × 10−16) between the clades and country of origin consistent
with the phylogenetic patterns observed in previous studies of
African serotype 1 isolates based on STs. Based on the
Kruskal–Wallis test, there were significant heterogeneities
between the clades in genetic diversity (P < 2.2 × 10−16), geo-
graphical variability (P < 2.2 × 10−16), and Simpson diversity in
terms of country of origin (P < 2.2 × 10−16) and MLST (P < 2.2 ×
10−16) (Fig. 3a–d). Clades 3, 6 and 7 are geographically diverse
with some geographically distant isolates separated by relatively
few SNPs (10 to 50), suggesting recent geographic transmission
(Fig. 3e and Supplementary Fig. 3). This demonstrates the need
for adequate control of geographical variation and strain popu-
lation structure in the GWAS analysis.

GWAS reveals unitigs associated with CNS isolates. We applied
linear mixed model approaches (implemented in FaST-LMM55

and GEMMA56) to test for genetic associations with CNS and
non-CNS disease (Fig. 3) using three types of genomic variation
namely, SNPs, accessory gene content and unitigs53. Unitigs are
increasingly popular for bacterial GWAS analysis because they

capture SNP, and insertion and deletions (indels) simulta-
neously in both coding and non-coding regions53,57. We
identified 123,401 unitigs sequences from the assemblies of the
909 isolates. We generated a matrix showing presence/absence
patterns of each unitig in the isolates and then we filtered out
low frequency unitigs with minor allele frequency (MAF) < 1%
resulting in a reduced matrix with 20,673 unitigs for the GWAS
analysis.

With these unitigs we used a univariate linear mixed model
to test for associations between the presence and absence of a
unitig and CNS infection whilst controlling for population
structure in terms of the kinship matrix, and host age and
geographical origin as covariates. The resulting QQ-plots
confirmed adequate control of the population structure
(Supplementary Fig. 4). Capsular type diversity is effectively
removed as a potential confounder as the analysis is focused on
a single pneumococcal serotype58. We identified two genome-
wide significant unitigs using FaST-LMM whose presence/
absence were associated with CNS isolates (Fig. 4a). The first
unitig; ID 8805 (odds ratio= 0.70, P= 5.00 × 10−08), was
associated with pneumococcal surface protein C (pspC) gene,
also known as choline-binding protein A (cbpA) or spsA
(Figs. 4a and 5a, Table 1 and Supplementary Table 2 and Fig. 5).
This unitig mapped to the proline-rich surface-exposed region
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Fig. 1 Characteristics of the African S. pneumoniae serotype 1 isolates. a Study design of the pathogen genome-wide association study (GWAS) showing
the number of the central nervous system (CNS) and non-CNS isolates and three types of genetic variation namely single-nucleotide polymorphisms
(SNPs), unitigs and accessory clusters of orthologous genes (COGs) used for the analysis. b Histogram showing age distribution of patients whose CNS
and non-CNS isolates were sampled. The two histograms are coloured by isolation source whereby darker shades indicate an overlap. c Country of origin of
the isolates, their frequency and proportion of the CNS and non-CNS isolates at each location are shown as pie charts. The size of the pie charts is
proportional to the number of isolates from each country as shown by the scale represented by the concentric circles at the bottom left of the diagram. The
country names are designated by their international two letter codes as follows: South Africa (ZA), Malawi (MW), The Gambia (GM), Ghana (GH), Niger
(NE), Nigeria (NG), Togo (TG), Benin (BJ), Côte d’Ivoire or Ivory Coast (CI) and Senegal (SN). All the metadata associated with the isolates in the
phylogeny are provided in the appendix (Supplementary Table 1) while data shown in the figure is shown in Supplementary Data 2.
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of pspC, which elicits antibody-mediated protection59, which
could explain why the absence of this variant was less common
in CNS isolates. The second significant unitig ID 47853 (odds
ratio= 0.71, P= 1.32 × 10−06) was associated with the putative
DnaQ family exonuclease or DinG family helicase gene, whose
role in pneumococcal pathogenesis is unknown. GWAS analysis
using GEMMA also detected significant association with the
unitig ID 8805 (odds ratio= 0.70, P= 4.76 × 10−08) but only
FaST-LMM detected the variant in DnaQ family exonuclease as
significant while GEMMA reported it as a suggestive hit (Fig. 4
and Table 1). We also detected a further 15 unitigs in genes and
intergenic with P-values above the suggestive threshold. Some
of the genome-wide significant and suggestive unitigs showed
significant correlation patterns (Supplementary Fig. 6).

GWAS analysis of the presence/absence of accessory genes.
Sequence clustering of coding sequences from the entire data set
revealed a pan-genome comprising 5759 clusters of orthologous
genes (COG). To correct potential errors caused by skipped gene
model prediction and annotation, representative COG sequences
for each cluster were compared to the draft assemblies to refine

presence/absence patterns of the genes. After filtering out the
COGs with MAF < 1%, 1068 COGs were selected and subjected to
the GWAS analysis using the same linear mixed model approa-
ches as the ones used for the unitig-based GWAS. There were no
genome-wide significant COGs, however, the P-value estimated
by GEMMA (odds ratio: 1.10, P= 7.34 × 10−04) for a single COG
(ID: 445) was above the threshold for suggestive hits (Fig. 4b).
This suggestive COG coded for a type 1 restriction modification
system (RMS) subunit S protein, which plays several roles,
including regulation of capsule production60. Assessment of the
observed and expected P-values suggested the difference was not
due to population structure (Supplementary Fig. 4). Genomic
annotation of this COG 445 showed that it encodes a 60 amino
acid type 1 RMS protein located adjacent to the hsdM protein in
the chromosome, which collectively constitute a reversible phase
variable locus in the pneumococcus61–63. Additional genomic
analysis revealed that harbouring a truncated non-functional
version of this gene appeared to be common among non-CNS
rather than CNS isolates in some lineages although it did not
reach genome-wide but was above the suggestive threshold
(Supplementary Fig. 7).
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Fig. 2 Whole-genome phylogenetic tree showing genetic similarity of the 909 African S. pneumoniae serotype 1 isolates. A mid-point rooted whole-
genome phylogenetic tree depicting the genetic relatedness of the isolates after filtering out genomic regions with recombination. The coloured strips at
the tips of the tree indicates isolate metadata: ST, isolation source and country. The country names are designated by their international two letter codes as
follows: South Africa (ZA), Malawi (MW), The Gambia (GM), Ghana (GH), Niger (NE), Nigeria (NG), Togo (TG), Benin (BJ), Côte d’Ivoire or Ivory Coast
(CI) and Senegal (SN). All the metadata associated with the isolates in the phylogeny are provided in the appendix (Supplementary Table 1) while data
shown in the figure is shown in Supplementary Data 2.
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Fig. 3 Genetic diversity of the African S. pneumoniae serotype 1 isolates. Boxplots overlaid with dot plots showing the distribution of a the average
number of SNPs between isolates in each clade, b geographical distance between pair of isolates in each clade, c the Simpson diversity index values for the
composition of the isolates in each clade by country of origin and d Simpson diversity index values for the composition of the isolates in each clade by
sequence type (ST). e Scatter plot showing the relationship between the number of SNPs and geographical distance (in kilometres [Km]) between pair of
isolates. Both axes are shown in logarithmic scale (base 10) for clarity. The points coloured in blue in panel e represent isolates from the same country
while those coloured in red represent isolates from different countries. The density of the points on each axis of the graph are represented by the dashed
lines at the top and far right of the scatter plot. Further breakdown of the plot e is provided in the appendix (Supplementary Table 1) while data shown in
the figure is shown in Supplementary Data 2.
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Suggestive associations detected by single base nucleotide
changes. We identified 45,083 SNPs from whole-genome align-
ment of the serotype 1 isolates created via consensus sequences
after mapping the sequence reads of each genome against a high-
quality African serotype 1 reference genome. After filtering out
SNPs with MAF < 1% and missingness >5%, we were left with
2393 SNPs for the association analysis using the same tools and
controlling for the same covariates as for the COG and unitig-
based analysis. There were no SNPs with P-values below the
genome-wide statistical significance threshold (Fig. 4c and
Table 2). However, both GEMMA and FaST-LMM identified two
suggestive SNPs but none of them were identical. All the sug-
gestive SNPs were in the intergenic regions (Table 2).

Effect sizes, heritability and distribution of the significant
variants. The effect sizes for the effect/minor alleles the genome-
wide significant unitigs identified by FaST-LMM and GEMMA

were −0.075 (odds ratio: 0.699) and −0.178 (odds ratio: 0.708),
respectively. This implies that the absence of these unitigs was
associated with decreased propensity of the bacteria to cause CNS
infection (Table 1). However, the overall heritability was almost
zero, which implied that despite the presence of individual var-
iants associated with causation of CNS infections, the phenotypic
variation explained by the overall pathogen genetics was inade-
quate to explain the phenotype. Since the phylogeny of the iso-
lates showed a strong phylogeographic structure (Fig. 2), we then
assessed the distribution of the two genome-wide significant
unitigs: IDs 8805 and 47853 by clade, which were associated with
pspC and the putative DnaQ exonuclease protein respectively. We
observed 100% (79/79) frequency of unitig ID 8805 in clade 6 but
there was lower frequency of 83.3% (30/36) in non-CNS isolates.
However, the frequency was nearly identical between CNS and
non-CNS isolates compared to the other clades (Fig. 5). The
overall frequency of unitig ID 47853 across the entire data set was
lower than unitig ID 8805 but was detected in non-CNS isolates
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only. Unitig ID 47853 was found in clade 5, 6 and 7 with a
prevalence of 0.56% (1/218), 16.7% (6/36) and 1.89% (3/159),
respectively (Supplementary Fig. 8).

Discussion
Despite the rollout of 13-valent PCV in Sub-Saharan Africa8,9,
serotype 1 pneumococci remain a significant cause of life-
threatening invasive pneumococcal diseases including meningi-
tis7,12,64. By leveraging a large collection of hyper-virulent
pneumococcal serotype 1 clinical isolates, we have discerned the
contribution of pathogen genetics to the propensity of the strains
to cause CNS infections. Through a linear mixed model GWAS
analysis, we have identified genome-wide statistically significant
genetic variation differentially abundant in CNS and non-CNS
isolates in genes, which encodes a surface-exposed protein (pspC
or cbpA) and a hypothetical DnaQ/DinG exonuclease/helicase

family gene with unknown function. The PspC protein is a
multifunctional choline-binding protein, which binds to human
factor H65, complement inhibitor C4b66 and inhibits complement
C3 deposition67, which promotes immune evasion and viru-
lence67,68. Crucially, experimental studies have shown that
interactions between PspC and the C-terminus of the laminin-
integrin receptor, initiates contact with the vascular endothelium
of the blood–brain barrier, which improves pneumococcal trop-
ism to the CNS69, a mechanism also utilised by other respiratory
bacterial pathogens69, neurotropic viruses70–73 and prions74.
PspC also plays a role in pneumococcal translocation across
epithelial surfaces, which may play a crucial role during infec-
tion75. Furthermore, PspC binds the polymeric immunoglobulin
receptor (pIgR) mediating trans-cellular transport76 and it is up-
regulated upon contact with epithelial cells77 while its genetic
diversity has been linked with susceptibility to invasive diseases34,
immune evasion78 and variable invasiveness79. Therefore, the

Table 1 Summary of the genome-wide significant and suggestive unitigs associated with CNS infection identified by the GWAS
analysis.

Unitig Gene Genome accession Locus tag Risk allele MAF Odds ratio P-value Gene description

8805a pspC CP000936.1 SPH_2388 Absence 0.01 0.70 5.0 × 10−08 Surface protein PspC
47853a NC_014498.1 SP670_1521 Absence 0.07 0.71 1.3 × 10−06 DnaQ exonuclease/DinG

helicase family
41314 glmM NC_011072.1 SPG_1486 Absence 0.03 1.18 1.2 × 10−05 Phosphoglucosamine mutase
72152 AP018043.1 Intergenic region Absence 0.02 1.24 3.5 × 10−05 Intergenic region
80564 cca CP000920.1 SPP_1579 Presence 0.03 1.19 3.0 × 10−05 tRNA nucleotidyltransferase
81567 AP019192.2 ASP0581_08080 Presence 0.01 0.76 3.9 × 10−05 cysteine desulfurase
90414 glmM NC_017592.1 SPNOXC_13690 Presence 0.03 1.18 1.2 × 10−05 Putative

phosphoglucosamine mutase
102497 AKBW01000001.1 Intergenic region Absence 0.07 1.14 9.1 × 10−06 Intergenic region
102498 AP017971.1 KK0981_35330 Presence 0.07 1.14 1.1 × 10−05 Cytoplasmic protein
106507 AP017971.1 KK0981_35330 Presence 0.07 1.13 2.4 × 10−05 Cytoplasmic protein
108518 AP017971.1 KK0981_35330 Presence 0.07 1.13 2.9 × 10−05 Cytoplasmic protein
110000 NC_014498.1 SP670_1747 Presence 0.01 0.75 1.6 × 10−05 Hypothetical protein
47853 NC_014498.1 SP670_1521 Presence 0.07 0.71 1.3 × 10−06 DnaQ exonuclease/DinG

helicase family
47851 AP018043.1 KK0381_02650 Absence 0.07 0.70 3.0 × 10−06 Bifunctional ATP-dependent

DNA helicase
108605 NC_014498.1 SP670_1521 Presence 0.07 0.70 3.0 × 10−06 DnaQ exonuclease/DinG

helicase family
45790 AP019192.2 ASP0581_14110 Presence 0.47 0.78 9.4 × 10−06 N-acetyltransferase
70431 AP019192.2 ASP0581_14110 Presence 0.47 0.76 1.4 × 10−05 N-acetyltransferase
102497 AKBW01000001.1 NA Absence 0.07 1.14 2.1 × 10−05 Intergenic region

The risk genotype refers to the minor allele used as the effect/non-reference allele.
The likelihood ratio P-values shown were estimated by the method, which detected the variant as genome-wide significant or suggestive. When both GEMMA and FaST-LMM identified variants as
statistically significant, P-values from GEMMA were used.
MAF minor allele frequency.
aGenome-wide significant unitigs.

Table 2 Summary of the suggestive SNPs identified by the GWAS analysis.

SNP Genomic region Allele (risk/
safe)

MAF Odds ratio P-value Gene Gene description

rs266945 Genic A/G 0.097 1.29 4.67 × 10−05 glmS Glutamine-fructose-6-phosphate transaminase
(isomerising)

rs721084 Genic A/G 0.042 1.19 1.05 ×10−04 Membrane-fusion protein
rs1466695a Genic A/G 0.015 1.22 3.41 × 10−04 glmM Phosphoglucosamine mutase
rs1474820a Genic G/A 0.036 1.14 4.08 × 10−04 clpX ATP-dependent Clp protease, ATP-binding

subunit ClpX

The SNPs were identified and annotated using the S. pneumoniae serotype 1 reference genome strain P1031 (GenBank accession: CP000920).
The risk genotype refers to the minor allele used as the effect/risk/non-reference allele while the safe allele refers to the reference allele/genotype in the GWAS analysis.
MAF minor allele frequency.
aSNP identified by FaST-LMM.
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identified allelic variation in the proline-rich repeat region of
pspC from our GWAS analysis results in differential propensity of
the strains to translocate across the blood–brain barrier to the
CNS to cause meningitis by modulating pneumococcal interac-
tion with the laminin-integrin receptor, thus, highlighting pspC as
a novel target for clinical interventions. The absence of pspC in
Streptococcus mitis and other commensal streptococci80 and high
sequence conservation of the genomic region harbouring the
unitig in pspC (Supplementary Data 3) further enhances its
potential use in a vaccine81,82.

Since pspC is a known hotspot for homologous recombina-
tion49, it’s likely that the identified variants were generated via
genetic exchange but unstable tandem repeat regions in non-
alpha helical regions may equally contribute to its allelic diversity
as a surface-exposed protein encoding gene59. While the present
findings support PspC as a potential anti-virulence vaccine can-
didate, due to the inherent genetic variability of the gene78,
vaccines based on this protein would require targeting invariant
regions of the gene to achieve better protection83. Since the gene
encoding for the DnaQ exonuclease/DinG helicase family protein
has not yet been characterised by previous studies, its specific role
on pneumococcal disease pathogenesis remains unknown.
Therefore, this study provides a platform for further studies to
gain insights into the biological function of the identified proteins
and how their allelic variation predisposes pneumococcal strains
to cause meningitis at an increased propensity.

A recent GWAS study based on the Active Bacterial Core
surveillance (ABCs) data set of pneumococcal serotypes detected
in the USA has associated the pbp1b641C missense mutation with
pneumococcal meningitis35. However, no variants detected in our
study contained the pbp1b641C mutation, which would imply
that it is biologically favourable in the CC217 background.
Geographically, CC217 is primarily restricted to Sub-Saharan
Africa, therefore, the rarity of this clone in the USA could also
explain why none of the variants detected in this study were
detected in the ABCs collection as these may be specific to the
CC217 background50,84. Indeed, the effect of phylogeography and
lineage were also evident in our analysis reflecting the impact of
local spatial selection pressures on the susceptibility to CNS
infections51. Altogether, our study suggests that geographical
differences such as local selection pressures, e.g., driven by anti-
biotic use, may result in local emergence and circulation of
pneumococcal strains containing genetic predispositions for CNS
infections. As such, additional studies are required to assess the
presence of risk genetic variants in different geographical regions
globally.

The small effect sizes in our study for the genome-wide sig-
nificant variants; odds ratio: 0.6 to 1.8, are consistent with esti-
mates elsewhere in bacteria34,40 and complex human diseases
and traits85. This suggests that the variants have been shaped
by neutral selection unlike the variants associated with anti-
microbial resistance, which are typically under strong selection
pressure43–45,86. However, larger effect sizes (odds ratio >3) for
disease susceptibility have also been reported in bacterial GWAS
studies in variants associated with susceptibility to Staphylococcal
pyomyositis36 and clinical manifestation of pneumococcal infec-
tions87, suggesting that although uncommon, disease risk loci
may also be under selection. The pbp1b641C missense mutation
associated with pneumococcal meningitis with high effect size in
the ABCs data set in the US could be because the variant pro-
motes tolerance to penicillin, and is therefore likely to be subject
to selection35. Therefore, since invasive disease is an evolutionary
dead-end, the genetic variants associated with disease phenotype,
such as those found in this study, are unlikely to be subject to
positive selection barring additional unknown functions on car-
riage and transmission.

In contrast to previous bacterial GWAS studies assessing
niche-specific differences between isolates across the multiple
serotypes and lineages33,37, our study focused on a well-
sampled clinically relevant serotype with diverse geographical
representation from both West and Southern Africa, and from
patients with a wide range of syndromes. This removed the
effect of capsular diversity in the GWAS analysis, which has
affected similar bacterial GWAS studies37 (Table 2). With the
linear mixed model GWAS, important confounders such as
strain population structure, unbalanced sampling of CNS and
non-CNS isolates by country, host age and geographical origin
of the isolates were controlled for, which combined with ana-
lysis of multiple types of genetic variation; SNPs, accessory
genes and unitigs, makes our analysis robust and comprehen-
sive. Although some isolates were sampled after the introduc-
tion of the 13-valent PCV, we are of the view that vaccination is
unlikely to have biased our GWAS analysis as the target for the
PCVs is the polysaccharide capsule (identical in all isolates) and
not protein variants outside the capsule biosynthetic locus such
as those identified by our analysis. However, since the CNS
isolates share a common intermediate route of infection with
non-CNS isolates especially in the lung and blood, some of the
non-CNS isolates may have been captured early en route to the
CSF thereby resulting in misclassification. Although the extent
of this is not known, we speculate its effect to be minor partly
because there is typically delay in seeking and initiating treat-
ment among patients with serious bacterial infections in our
study setting in contrast to high-income settings88. This implies
that the majority of the isolates definitely en route to the CNS
may have been sampled post-translocation into the CSF rather
than in intermediate tissues such as blood. Similar sampling
issues have been encountered in studies elsewhere comparing
bacterial isolates from different tissues33,48,89. While the power
to detect genetic differences between CNS and non-CNS iso-
lates may have been partially obscured because of these issues,
the identification of genome-wide significant hits indicates that
the effort to detect such variants is not futile. The analysis of
additional sample collections might allow uncovering of addi-
tional hidden variants.

The GWAS approach used in this study negates the need for
specifying hypotheses regarding candidate genes prior to the
analysis. While our study has identified promising hits, which
individually are associated with propensity for causing CNS
infection, however, the negligible heritability suggests that the
overall pathogen genetics may be insufficient to explain the
phenotypic variability, which reflect the complexity and poly-
genic aetiology of CNS infection. Causation of CNS infections
requires an interplay of host-pathogen interactions, and the
effect of many cryptic genetic variants with small effect sizes,
low penetrance and expressivity, and possibly weak epistatic
effects. Our study has identified targets for follow-up in vitro
and in vivo phenotypic studies to validate their contribution to
the pathogenesis of pneumococcal CNS infections. Altogether
with the findings on the elicitation of protective antibody by
the identified proline-rich variants in pspC59 and modulation
of pneumococcal tropism across the blood–brain barrier to
CNS via the PspC-laminin-integrin receptor binding69, our
findings provide further evidence to inform the design of
protein-based vaccines to prevent pneumococcal CNS infec-
tions such as protein-based vaccines. Such vaccines can be used
as standalone or adjuvants in conjunction with 13-valent PCV,
whose effectiveness against pneumococcal serotype 1 seems
either inadequate or delayed8,9, hence these would be parti-
cularly effective when deployed in reactive vaccination cam-
paigns during serotype 1 meningitis outbreaks in Sub-Saharan
Africa.
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Materials and methods
Sample characteristics and preparation. Invasive S. pneumoniae samples (n=
909) were collected from the central nervous system (CNS), i.e., cerebrospinal fluid
(CSF), and non-CNS tissues from hospitalised patients of any age through hospital-
based surveillance conducted by the collaborating institutions, including the main
partner African centres; Malawi-Liverpool-Wellcome Trust Clinical Research
Programme (MLW) in Malawi, the National Institute for Communicable Diseases
(NICD) in South Africa, Medical Research Council (MRC) Unit at the London
School of Hygiene and Tropical Medicine (LSHTM) in The Gambia, Centro de
Investigação em Saúde da Manhiça in Mozambique and Centre de Recherche
Médicale et Sanitaire in Niger (Supplementary Data 1). Samples from West African
countries were collected through the WHO collaborating Centre for New Vaccines
Surveillance at MRC The Gambia at the London School of Hygiene and Tropical
Medicine, which supports Invasive Bacterial Vaccine-Preventable disease surveil-
lance (IBVPD) in the region90. Isolates associated with known meningitis out-
breaks, particularly in West Africa, and those with either unknown source of
isolation or non-specific information on sampling locations, e.g., those recorded as
sampled from either blood and CSF or broadly as invasive, were excluded to avoid
ambiguity between cases and controls in the GWAS analysis. We cultured the
isolates and extracted genomic DNA using approaches described elsewhere91,92.

DNA sequencing, assembly and isolate typing. The extracted DNA was shipped
to the Wellcome Sanger Institute, where genomic DNA libraries were prepared for
WGS using Genome Analyser II and HiSeq 4000 Sequencing Systems (Illumina,
CA, USA). The following quality control (QC) criteria was used: samples were only
included when the overall sequencing depth was >75x, percent coverage of reads of
>80% across the pneumococcal genome (GenBank accession number: FM211187),
an assembly length was between 1.9 and 2.3 Mb, and the number of assembled
contigs was <200. Samples with 15% of heterozygous SNP sites over the total SNP
sites and >25% maximum minor allele frequency (MAF) were suggestive of a
mixture of two or more S. pneumoniae isolates in a single-DNA sample and were
therefore also excluded. The median length of the sequence reads was 100 and the
average quality score was 34.8. The reads were de novo assembled into contiguous
sequences using an automated pipeline93. The detailed genome assembly metrics
are shown in Supplementary Fig. 1.

Serotyping of the pneumococcal isolates was done using k-mer based in silico
serotyping based on genomic data using SeroBA v1.0.094. Pneumococcal clones or
sequence types (ST) were inferred using the pneumococcal multilocus sequence
typing (MLST) scheme54 implemented in MLSTcheck v2.0.151061295, while the
international pneumococcal lineage nomenclature defined by the global
pneumococcal sequence clusters (GPSC)52 were detected using PopPUNK v1.1.796.
The consensus whole-genome sequence alignment was generated by mapping reads
to the complete reference genome of a serotype 1 pneumococcal ST303 strain
P1031 (GenBank accession: CP000920) using SMALT v0.7.4 [www.sourceforge.
net/projects/smalt/] (minimum insert size: 50, maximum insert size: 1000,
minimum quality: 30, minimum depth of coverage: 4, minimum matching reads
per strand: 2 and minimum base quality: 50) (Supplementary Fig. 1). The
insertions and deletions were realigned using GATK v4.0.3.097.

Phylogenetic analysis and SNP patterns. The generated whole-genome align-
ment was iteratively screened for recombination events for removal using Gubbins
v1.4.1098, prior to construction of a maximum likelihood phylogeny with RAxML
v7.0.499 using GTR+ Γ (gamma) model100 and 100 bootstrap replicates101.
Visualisation and annotation of the phylogeny was done using the iTOL v2.0102.
The multiple sequence alignment and variant call format (VCF) for the sites with
single-nucleotide polymorphisms (SNP) in the whole-genome alignment were
generated using Snp-Sites v2.3.2103. The VCF files were used to generate PLINK-
formatted pedigree files for the genome-wide association study (GWAS) analysis
using VCFtools v0.1.16104. The pedigree files were merged with phenotype (CNS
and non-CNS isolation status) and variants with minor allele frequency (MAF) <
1% and missingness >5% were filtered out using PLINK v1.90b4105. Phylogenetic
clades were inferred from the 45,083 bp SNP alignment of the isolates using fas-
tBAPs v1.0.0106 using the ‘baps’ prior optimisation option. Before running fas-
tBAPS, we filtered out non-informative and private mutations from the SNP
alignment using extract_PI_SNPs.py script (https://gist.github.com/jasonsahl/
9306cd014b63cae12154). Genetic diversity of the isolates in each clade were
assessed using the Vegan v2.5.4 package107 while the geographical distance was
calculated using the ‘distHaversine’ function in ‘geosphere’ v1.5.7 package in R
v3.5.3 (R Foundation Core Team, 2019). Where >2 alleles were detected at each
genomic position, we generated bi-allelic variants at these positions by selecting
only the two most common nucleotides. We used two of the most common
nucleotides detected at each position variants at each chromosomal position for the
analysis. Genomic location of genes were determined using nucleotide BLAST
v2.2.30+ 108 and visually assessed using ACT v9.0.5109 and DNAPlotter v1.0110

while multiple sequence alignments were generated using MUSCLE v3.8.31111.

Pan-genome gene presence/absence patterns. The draft genomic assemblies
were annotated using Prokka v1.11112. These annotated assemblies were processed
by Roary v3.6.1 pan-genome pipeline113 to identify the clusters of orthologous

genes (COGs). We selected the reference gene for each COG and compared this to
each draft assembly using BLAST (percent identity: 85%, query coverage: 85%) in
order to generate a COG presence/absence matrix. We then checked for unique
COG presence-patterns and then created a reduced COG matrix by filtering out
COGs with MAF and missingness <1% and >5% respectively and combined it with
the phenotypic data (disease status) into the PLINK-formatted pedigree files for
GWAS. We validated the pedigree files MAF and missingness filtering using
PLINK. We also generated a separate file linking the lead or representative COG
presence/absence pattern to tagged COGs with similar patterns.

Generating the presence/absence patterns for unitigs. Unique k-mers were
identified in each draft genome assembly using DSK v2.3.0 (-abundance-min-
threshold 1 -abundance-min 1 -kmer-size 31 -solid-kmers-out)114. The unitigs are
computationally efficient and most importantly identify variants across the entire
genome without the requirement of using a reference genome. We then used
Bifrost115 to construct a compact De Bruijn graph and generate unique maximal
length unitigs; sequences represented by non-branching paths in the graph. The
909 genomes were decomposed into 4,122,999 k-mers of length 31 bp using
DSK114. The mean number of unique k-mers per genome was 2,027,332 (range:
1,804,558 to 2,119,269). We converted the k-mers into a De Bruijn graph and then
identified 123,401 unitigs115. The unitigs in Fasta format were compared to the a
De Bruijn graph of each genome to generate a unitig presence/absence matrix115.
The unitigs with MAF < 1% were excluded from the matrix and the resultant
matrix was converted to the pedigree formatted files containing phenotype data
similar to those required by PLINK.

GWAS analysis of SNPs, accessory COGs and unitigs. We used the FaST-LMM
v2.07.2014072355 and GEMMA v0.9856 to fit a univariate linear mixed model for
the association between SNPs, accessory COGs and unitigs with the disease phe-
notype of the isolates namely CNS and non-CNS. The input pedigree files were
formatted as haploid human mitochondrial genotypes with chromosome code
‘MT’ similar to bacterial GWAS elsewhere35,44. We calculated the genetic relat-
edness matrix for FaST-LMM and GEMMA using the SNPs to control for popu-
lation structure. The GWAS analysis included host age (years) and country of
isolate origin covariates. We used Bonferroni correction to control for the false
discovery rate due to multiple testing α=Nð Þ where the statistical significance level
α and N was the total number of SNPs, COGs and unitigs. The value of α was 0.05
and the value of N for SNPs, unitigs and COGs were 2393, 20,673 and 1068
resulting in the genome-wide significant threshold 0:05=Nð Þ of 2.09 × 10−05,
2.42 × 10−06 and 4.68 × 10−05 and suggestive threshold 1=Nð Þ of 4.18 × 10−04,
4.84 × 10−05 and 9.36 × 10−04, respectively. The proportion of phenotypic varia-
tion explained by the genetics or the narrow-sense heritability was estimated using
GEMMA. The genome-wide and suggestive unitigs were annotated using
nucleotide-BLAST v2.2.30+ (match identity: 90%, query coverage: 90%)108 and
complete genome references of S. pneumoniae obtained from GenBank (Supple-
mentary Table 1). The likelihood ratio test P-values from both FaST-LMM and
GEMMA were used to generate the Manhattan plots and QQ-plots using ‘ggplot2’
v3.1.0116. Correlation between variants was assessed using ‘ggcorrplot’ v0.1.3 in R.
Protein structures were modelled using SWISS-MODEL117 and Robetta118, and
visualised using PyMOL v2.4.0119.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequence data used in this study was deposited in the European Nucleotide Archive
(ENA) and the accession numbers, isolate information and other source data underlying
plots shown in main text figures are provided in Supplementary Data 1–3. The authors
declare that all other data supporting the findings of this study are available within the
paper and its Supplementary information files.

Code availability
All tools and R packages used for the analysis are publicly available and fully described in
the ‘Methods’ sections.
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