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Background: The Sahel region of West Africa has the highest
bacterial meningitis attack and case fatality rate in the world.
The effect of climatic factors on patterns of invasive respiratory
bacterial disease is not well documented.
Objective: We aimed to assess the link between climatic factors
and occurrence of invasive respiratory bacterial disease in a
Sahel region of Niger.
Methods: We conducted daily disease surveillance and climatic
monitoring over an 8-year period between January 1, 2003, and
December 31, 2010, in Niamey, Niger, to determine risk factors
for bacterial meningitis and invasive bacterial disease. We
investigated the mechanistic effects of these factors on
Streptococcus pneumoniae infection in mice.
Results: High temperatures and low visibility (resulting from
high concentrations of airborne dust) were identified as
significant risk factors for bacterial meningitis. Dust inhalation
or exposure to high temperatures promoted progression of
stable asymptomatic pneumococcal nasopharyngeal carriage to
pneumonia and invasive disease. Dust exposure significantly
reduced phagocyte-mediated bacterial killing, and exposure to
high temperatures increased release of the key pneumococcal
toxin pneumolysin through increased bacterial autolysis.
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Conclusion: Our findings show that climatic factors can have a
substantial influence on infectious disease patterns, altering
density of pneumococcal nasopharyngeal carriage, reducing
phagocytic killing, and resulting in increased inflammation and
tissue damage and consequent invasiveness. Climatic surveillance
should be used to forecast invasive bacterial disease epidemics,
and simple control measures to reduce particulate inhalation
might reduce the incidence of invasive bacterial disease in regions
of theworld exposed to high temperatures and increased airborne
dust. (J Allergy Clin Immunol 2017;139:977-86.)

Key words: Meningitis, climate, Neisseria meningitidis, Strepto-
coccus pneumoniae, pollution, dust

The 1000-km-wide semiarid Sahel region, which lies between
the Sahara desert to the north and the Sudanese Savanna to the
south, has the highest attack rate (10 per 100,000) and case fatality
rates (15%) in the world for bacterial meningitis.1,2 This region,
which is also known as the meningitis belt, comprises 350 million
persons at risk across 21 countries.

Niger, a Sahel country, has a long history of meningitis
epidemics, with recent large-scale outbreaks occurring in 2000,
2003, and 2009. Neisseria meningitidis serogroups A and X and
Streptococcus pneumoniae are the main causative agents.3,4

Meningitis outbreaks in Niger show strong seasonality, suggest-
ing climatic factors could play a role in disease mechanisms,5-10

but these studies focus on all-cause meningitis, and little is known
about the specific effect of climate on bacterial meningitis.

The dry and dusty Harmattan winds that blow between
November and May are a unique defining feature of the West
African climate and have been associated with outbreaks of
meningitis.11 On its passage over the desert, the Harmattan wind
picks up fine fractions of Saharan dust particles (mostly
particulate matter <10 mm).11 The sheer amount of dust in the air
can severely limit visibility and sometimes block the sun for several
days, which is comparable with a heavy fog. Indeed, the inverse
correlation between visibility and particulate matter concentration
has been demonstrated in Niger and elsewhere.12,13 Dust is
thought to have a negative effect on health, increasing morbidity
caused by diseases of the upper and lower respiratory tract.14

A recent study using a global atmospheric chemistry model has
suggested that outdoor air pollution leads to 3.3million premature
deaths per year worldwide, with natural sources of particulate
material (predominantly desert dust) responsible for 600,000
(18%) of those deaths.15 In large parts of North and East Africa,
the Middle East, Central Australia, and Central Asia, natural
sources of small particulate material, such as desert dust, make
a larger contribution to mortality than more recognized pollution
sources, such as industry, traffic, energy, and agriculture. Thus
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understanding the link between desert dust inhalation and
mortality and the climatic factors that influence levels of airborne
dust is key to disease control in affected areas.

Long-term forecasting and identification of climatic risk
factors would help public health decision makers improve early
warning systems and would help the scientific community to
identify physiologic factors implicated in the development of
invasive diseases. Statistical forecasting models that integrate
climatic factors, linking environmental and epidemiologic sur-
veillance, could act as early warning systems of infectious disease
epidemics. Here we present findings from a study quantifying, on
a daily scale, this link between climate and meningitis in Niamey,
Niger. Furthermore, we model these effects in vivo by using
experimental infection of mice.
METHODS

Ethics statement
Biological surveillance was performed by the national reference center of

the PublicHealthMinistry ofNiger, CERMES (Centre deRechercheM�edicale

et Sanitaire), which is part of the meningitis national control program.
Study area and meteorology
The study area was defined as a radius of 50 km around the meteorological

station of the international airport of Niamey, Niger, and constituted a

homogeneous geographic area for which climatic factors weremeasured daily.

These measures comprise minimal and maximal temperatures, minimal and

maximal relative humidity, mean wind speed, mean visibility (defined by the

World Meteorology Organization as the maximal distance from which an

observer can distinctly see an object on a horizontal plane), and rainfall.

Seasons were defined by the National Forecasting Direction (Direction de la

M�et�eorologie Nationale) of Niger.

The population of the study area was 1,099,057 for the median year 2006.

Cases of meningitis are registered daily, and all cases within the study area

confirmed bymeans of culture, PCR, or both were enrolled between January 1,

2003, andDecember 31, 2010. Thirty-four health care facilities were involved.

Full details can be found in the Methods section in this article’s Online

Repository at www.jacionline.org.
Mouse model of S pneumoniae infection
All animal experiments were performed at the University of Liverpool in

accordance with the Animal Scientific Procedures Act 1986 and with the prior

approval of the UK Home Office (PPL 40/3602) and the University of

Liverpool ethics committee.

Sex- and age-matched MF1 mice (Charles River, Margate, United

Kingdom)were used. Asymptomatic nasopharyngeal carriagewas established

in mice by means of intranasal infection, as described previously.16,17 For par-

ticle inhalation experiments, 2 days after infection, mice underwent intranasal

administration of 50 mg/mL silicon dioxide (dust; mean particle size, 10 mm;

Sigma, Dorset, United Kingdom) or PBS as a control. This was repeated at

4 days after infection, and mice were culled at 7 days after infection or if inva-

sive disease signs (as described by the scheme of Morton and Griffiths18) pro-

gressed to visible lethargy. For heat exposure experiments, mice were put in a

heat box at 408C for 10 minutes before and for 20 minutes after induction of

nasopharyngeal carriage. Control mice were housed at 218C throughout. The
nasopharynx, lungs, brain, and blood were removed and homogenized in PBS

before plating on blood agar for assessment of tissue colony-forming units

(CFU). Full details can be found in theMethods section in this article’s Online

Repository.

Pneumolysin detection ELISA
Sandwich ELISAwas performedwith mouse anti-pneumolysin (PLY; PLY-

4; Abcam, Cambridge, United Kingdom) and rabbit anti-PLY antibody

(Abcam). Absorbance at 405 nm was read with a Multiskan Spectrum

microplate reader (Thermo Scientific, Waltham, Mass). Full details can be

found in the Methods section in this article’s Online Repository.
Opsonophagocytic killing assay
Opsonophagocytic killing assays (OPKAs) were performed, as previously

described,19 with minor modifications. Briefly, J774 mouse macrophages or

HL-60 human neutrophils were incubated with 50 mg/mL silicon dioxide

for 1 hour of shaking (175 rpm) before addition of opsonized S pneumoniae

and complement. CFU values were determined after a further 45 (HL-60) or

60 (J774) minutes of incubation. Full details can be found in the Methods

section in this article’s Online Repository.
Measurement of autolytic activity
Triton X-100–induced autolysis assays were performed, as described by

Houston.20 Full details can be found in the Methods section in this article’s

Online Repository.
Hemolytic assay
Overnight cultures of S pneumoniae serotype 2 (strain D39) and its isogenic

autolysin (LytA)–deficient mutant were subcultured in brain-heart infusion

media and incubated at 378C or 408C to an absorbance at 600 nm (A600) value

of 1.0. Cells were then pelleted, and the supernatant was removed and filter

sterilized. Hemolytic activity against sheep red blood cells was measured,

as described previously.21
Statistical analysis
A descriptive analysis was performed for the median and interquartile

range of the climatic factors, with the range and coefficient of variation

according to season. AMantel-Haenszel x2 test was used to adjust the relative

risk for a maximal temperature threshold of greater than 39.58C on seasons

with the statcalc program of Epi Info 6.04 software (Centers for Disease Con-

trol and Prevention, Atlanta, Ga).

A generalized additive model with a negative binomial family was used

to regress a time series of daily counts of confirmed cases of meningitis

with daily changes in climatic factors. Full details can be found in the

Methods section in this article’s Online Repository. All analyses were per-

formed with R software (R Development Core Team, 2010, version

2.12.0).

Mousemodel datawere analyzedwithGraphPadPrismsoftware (GraphPad

Software, La Jolla, Calif) by using ANOVA or a log-rank test with appropriate

posttesting. Results with P values of less than .05 were considered significant.

Data representmeans6SEMs, unless otherwise indicated.Datawere assessed

for normality by using the D’Agostino-Pearson (omnibus K2) test.

RESULTS
We conducted daily disease surveillance and climatic

monitoring over an 8-year period between January 1, 2003, and
December 31, 2010, in Niamey, Niger. Over the 8 years, 893
confirmed cases of bacterial meningitis were recorded within the
study site. Epidemics ranged in size from 36 in 2008 to
305 in 2006, with corresponding attack rates of 3.3 to 27.8
1025 (Table I).

http://www.jacionline.org


TABLE I. Distribution of meningitis cases per year and according to season and threshold of maximal temperature

2003 2004 2005 2006 2007 2008 2009 2010 2003-2010*

Annual cumulative incidence (cases) 148 93 84 305 44 36 123 60 112

Attack rate (cases per 100,000) 13.5 8.5 7.6 27.8 4.0 3.3 11.2 5.5 10.2

Cases during very hot season (%) 77.1 36.3 47.7 93.7 38.6 47.3 87.9 76.7 74.0

Cases when Tmax >_39.58C (%) 35.8 33.3 47.6 89.5 29.5 36.1 82.9 45.0 62.5

No. of days when Tmax >_39.58C 90 89 95 105 97 85 100 113 97

Tmax, Maximum temperature.

*Average of the parameters during the overall period.

FIG 1. Temporal changes in the causative agent and number of cases of bacterial meningitis in Niamey,

Niger. Nm, Neisseria meningitidis.
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Children less than 15 years of age were the most severely
affected age group, accounting for 81.7% of cases. S pneumoniae
was the major cause of meningitis epidemics in 5 of the 8 years
and was responsible overall for 25.9% of total cases (Fig 1).
N meningitidis was the other predominant causative agent,
particularly during epidemics, and serogroups X (50.1% of total
N meningitidis cases) and A (33.0%) were common (Fig 1).

Climate monitoring demonstrated that all factors other than
wind speed displayed strong seasonality (Fig 2 and Table II). High
maximal temperatures of greater than 408C were observed in all
seasons, and minimal temperatures of greater than 308C were
recorded during the very hot and rainy seasons. The most
striking associations between climatic factors and meningitis
cases were increased meningitis cases with increasing maximal
temperature, low visibility, and low maximal relative humidity
(Fig 2).

The highest numbers of meningitis cases were recorded from a
threshold maximum temperature of 39.58C (b 5 0.087,
SE5 0.042, P5 .04), with an excess risk of 9.1% for an increase
of 18C (Fig 3), and this risk could not be explained by seasonal
variation in incidence alone (Table III).

An increase in visibility from 0.3 to 5.3 km led to a decrease in
the number of meningitis cases (b520.49, SE5 0.15,P5 .001)
34 to 44 days later. Five days after an increase in maximal relative
humidity from 38% to 72%, the number of meningitis cases
decreased (b 5 21.86, SE 5 0.69, P 5 .007).



FIG 2. Temporal changes in the number of meningitis cases with climatic factors in Niamey. Visibility is

defined as the maximal distance from which an observer can distinctly see an object on a horizontal plane.

RH, Relative humidity; T, temperature.
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TABLE II. Climatic factors suspected to be linked with meningitis by season

Season Tmax (8C) Tmin (8C) RHmax (%) RHmin (%) Rainfall (mm) Wind speed (m $ s21) Visibility (km)

Cold

Median (IQR) 34.1 (4.8) 17.4 (3.4) 32 (11) 10 (4.3) 0 (0) 6.4 (2.7) 5.4 (2.4)

Range 24.6-41.0 11.2-29.2 13.1-54.0 2-22 0-0 1.4-13.6 0.3-7.1

CV (%) 9.6 14.4 23.1 32.7 NC 31.0 35.6

Very hot

Median (IQR) 37.5 (4.4) 26.5 (5.6) 33 (29) 12 (14) 0 (0) 6.4 (2.8) 5.4 (0.9)

Range 25.4-46.2 15.5-33.0 7.34-97.0 2-88 0-19 2.2-12.9 0.5-7.1

CV (%) 7.0 14.3 46.8 66.3 13.6 30.6 35.4

Rainy

Median (IQR) 35 (3.5) 25 (3.5) 86 (16) 46 (17) 0 (0.2) 6.1 (2.8) 6.5 (0.6)

Range 23.7-43.5 18.0-33.5 32-100 10-80 0-7.3 1.8-13.6 3.6-8.5

CV (%) 9.3 9.8 13.8 25.8 2.5 31.2 8.0

Hot

Median (IQR) 37.5 (3.5) 22 (5.6) 47 (27.2) 15 (11) 0 (0) 4.5 (2.0) 6.0 (2.6)

Range 27.5-41.2 11.6-29.0 20.6-100 5-59.2 0-6.2 1.6-9.8 0.9-8.0

CV (%) 6.8 15.4 32.1 54.6 10.0 30.5 20.6

CV, Coefficient of variation; IQR, interquartile range; RH, relative humidity; T, temperature.

FIG 3. Relative risks for meningitis by maximal temperature from a

threshold of 39.58C. The gray zone corresponds to the 95% CI of the risks

at greater than a maximal ambient temperature of 39.58C. A significant

effect was observed from a maximal ambient temperature of 39.58C, and
no significant effect was found at less than this value.
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Decreased visibility is predominantly the result of increased
airborne dust, and therefore a potential explanation for the
association with increased incidence of meningitis is that
inhalation of particulate matter during periods of low
visibility increases the susceptibility of subjects to invasive
bacterial disease. We tested both this hypothesis and the
association of temperatures of greater than 39.58C with invasive
bacterial disease in a model of pneumococcal nasopharyngeal
carriage. In this model pneumococci stably colonize the naso-
oropharynx and carry for long periods with no invasion into the
lower respiratory tract and no transmission into the blood.16,17

Thus this system models the situation in Niger, where a high
proportion of children have asymptomatic nasopharyngeal
colonization with potentially pathogenic bacteria, including
S pneumoniae, Haemophilus influenzae, and N meningitidis.
S pneumoniae–colonized mice displayed significantly
increased densities of pneumococcal carriage in the naso-
oropharynx after dust exposure compared with normal bacterial
colonization control mice (Fig 4, A). Importantly, this was
accompanied by significant invasion of bacteria into the lung
and brain after dust exposure (Fig 4, B and C). This was the
case both for mice colonized with the laboratory serotype 2 strain
of S pneumoniae (D39) and those colonized with a clinical
serotype 1 isolate (Fig 4). Serotype 1 S pneumoniae isolates
were frequently recovered from patients with meningitis in our
disease surveillance study (44.8% of S pneumoniae cases).

High temperatures also emerged as a significant risk factor for
bacterial meningitis, and we sought a direct demonstration of the
effect of temperature on invasive bacterial infection. Mice were
exposed to temperatures of 408C (greater than the 39.58C
threshold) for 10 minutes before and 20 minutes after pneumo-
coccal colonization. After heat exposure, pneumococcal numbers
in the nasopharynx and brain remained comparable with those in
control mice (Fig 4, A andC), but significantly increased numbers
were recovered from the lungs (Fig 4, B). This demonstrates that
invasive dissemination from the nasopharynx to the lungs occurs
after exposure to extreme temperatures. Mice exposed to both
dust inhalation and high temperatures had significantly increased
bacterial numbers in lung tissue compared with mice exposed to
either dust or high temperature alone (Fig 4, B).

The combinatorial effect of dust and high temperature was also
evident in survival analysis of infected mice (Fig 4, D). Visible
disease signs and progression to death do not ordinarily occur
in the pneumococcal nasopharyngeal carriage model, and this
was the case for the serotype 1–colonized mice and the serotype
2–colonized mice that were not exposed to dust (Fig 4, D).16

However, after dust exposure, 23% of serotype 2–colonized
mice had severe invasive disease and had to be culled (Fig 4,
D). Mortality increased to 54% when dust inhalation was
combined with exposure to high temperatures (Fig 4, D). All
mice that died had significantly increased bacterial loads in their
nasopharynx, lungs, brain, and blood compared with survivors
(data not shown).

To explore potential mechanisms of dust- or temperature-
induced susceptibility to pneumococcal disease, we examined a



TABLE III. Risk for meningitis according to a threshold of maximal temperature of 39.58C or greater adjusted for season

No. of days with >_1

meningitis case when

maximal temperature

No. of days with no meningitis

case when maximal temperature

RR 95% CI>_39.58C <39.58C >_39.58C <39.58C

Season

Rainy 8 52 78 837 1.59 0.78-3.24

Hot 8 36 91 465 1.12 0.54-2.35

Cold 5 101 4 378 2.63 1.43-4.85

Very hot 232 72 348 206 1.54 1.24-1.93

Temperature (crude RR) 253 261 521 1886 2.69 2.31-3.13

Temperature (RR adjusted for season) 1.54 1.26-1.88

RR, Relative risk.
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key component of innate antibacterial defense: phagocytic
responses. We observed significantly increased levels of the
neutrophil chemoattractant macrophage inflammatory protein 2
(Fig 5, A) and increased neutrophil numbers (Fig 5, B) in lungs of
dust-exposed mice compared with PBS-exposed and naive mice.
However, surprisingly, increased infiltration of phagocytic cells
did not lead to enhanced bacterial clearance (Fig 4, A-C). OPKAs
were performed with untreated or dust-exposed neutrophils and
macrophages to determine whether dust-exposed phagocytes
were impaired in their ability to kill bacteria (Fig 5, C). Both
macrophage and neutrophil cell lines showed a significantly
decreased ability to kill pneumococci after dust exposure
(Fig 5,C), suggesting that the increased recruitment of phagocytic
cells into lungs in dust-exposedmice is ineffective in containment
and clearance of pneumococcal infection.

Previous studies in Staphylococcus aureus have described
temperature-dependent changes in the rate of bacterial
autolysis.22 We sought to determine whether the enhanced
virulence of pneumococci at high temperatures might be due to
increased autolysis and thus increased release of the cytosolic
toxic PLY. Serotype 2 S pneumoniae cultures were grown to
OD600 1.0 at 378C or 408C before addition of Triton-X to the
cultures. Cultures that had been grown at 408C displayed a
markedly increased rate of autolysis compared with those grown
at 378C (Fig 5,D). Cell death was significantly reduced in cultures
of autolysin-deficient serotype 2 pneumococci grown at either
378C or 408C (Fig 5, D).

Importantly, increased autolysis was associated with increased
release of PLY into the culture medium (Fig 5, E and F). Super-
natant from 408C cultures induced significantly greater lysis of
erythrocytes than supernatant from 378C cultures (Fig 5, E),
and 408C supernatants contained, on average, more than 2-fold
higher levels of PLY than 378C cultures of comparable OD
(Fig 5, F). Thus increased bacterial lysis and toxin release in
the nasopharynx during periods of high temperature might
damage the respiratory epithelium, allowing surviving bacteria
a route through which to disseminate within the host, and might
also lead to lysis of recruited host leukocytes, further impairing
antipneumococcal immunity and hampering containment and
removal of infection.
DISCUSSION
We have provided the first quantified risk of the occurrence

of meningitis linked to climatic factors, including high
temperature, low visibility, and dust. These data demonstrate
that environmental exposure to inhaled particulates or extremes of
temperature can significantly increase bacterial numbers in the
respiratory tract and lead to invasive diseasewith increased risk of
mortality through mechanisms including impaired phagocytic
function and increased release of toxins.

The huge epidemic of N meningitidis serogroup X meningitis
in and around Niamey in 2006 has been reported elsewhere.23

Although rare, sporadic epidemics of serogroup X meningitis
have occurred previously in Niger.24 In all years other than
2006, numbers of meningitis cases caused by N meningitidis
and S pneumoniae were comparable, together accounting for
79% to 96% of cases, with a small but consistent year-on-year
contribution from H influenzae (1% to 16%).

It is difficult to extrapolate data from a meteorological station to
an entire district and therefore impossible to study the link
between meningitis and climate without incurring ecological
bias. To minimize this bias, daily changes in the count of
clinical meningitis cases and climatic factors were obtained
throughout the study period (8 years). Furthermore, reinforced
microbiological surveillance since 2002 in Niger provides reliable
daily counts of biologically confirmed cases of acute bacterial
meningitis. Other studies have used data from epidemiologic
surveillance based on weekly collection of notifications of
suspected meningitis cases at the district level within a meningitis
belt country. Consideration should be given to implementation of
newmodels integrating climatic data with high-quality, case-based
meningitis surveillance data (based on new World Health
Organization guidelines on meningitis outbreak responses) across
the African meningitis belt. This could expedite design of effective
epidemic control strategies and aid risk management. Dust
exposure, for example, could be minimized with simple interven-
tions, such as the use of scarves around the nose and mouth during
periods of low visibility.

Saharan dust, carried by the Harmattan, has been shown
previously to affect health, particularly by exacerbating asthma
and favoring the establishment of respiratory tract infections,25-27

and is thought to have contributed to meningitis outbreaks in
Burkina Faso and Niger.3 Previous studies have demonstrated
that uptake of particulates by macrophages can disrupt phagocytic
bacterial killing,28 and we demonstrate here that dust-exposed
phagocytes (both macrophages and neutrophils) are functionally
impaired. Thus we propose that one mechanism underlying dust-
induced disease susceptibility might be that inhalation of dust gen-
erates an inflammatory lung condition coupled with impaired
phagocytic bacterial clearance, creating an environment conducive
to bacterial survival and dissemination to sites, such as the brain.

The ability of inhaled dust to drive up bacterial loads in the
nasopharynx is significant because we have recently described



FIG 4. Inhaled dust and exposure to high temperatures increase invasiveness of S pneumoniae in mice.

Mice were colonized with S pneumoniae serotype 2 strain D39 or a Niger serotype 1 meningitis isolate

(ST303) and challenged intranasally with dust at 2 and 4 days after colonization. Mice were kept at

room temperature (218C) or 408C, as indicated for 10 minutes before and 20 minutes after infection and

dust/PBS exposure.A-C, CFU permilligram of tissue in the nasopharynx (Fig 4,A), lungs (Fig 4, B), and brain

(Fig 4, C) at 7 days after infection. D, Kaplan-Meier survival curve. Asterisks represent significance in 1-way

ANOVAwith the Dunn posttest (Fig 4, A-C) or log-rank analysis (Fig 4, D). *P < .05, **P < .01, and ***P < .001.
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how changes in carriage density substantially affect the delicate
balance of host immune control in the nasopharynx, driving
immune-tolerogenic responses toward damaging proinflamma-
tory responses as bacterial burden increases.17 Inhaled dust is
likely to trigger inflammatory reactions at the surface of the upper
airway mucosal epithelium both through direct abrasion of the
respiratory surface and because of its effect on bacterial carriage
density. This increased inflammation could induce increased
expression of host receptors that act as binding sites for bacteria.29

Thus, by triggering local inflammation, inhaled dust can drive
colonized bacteria toward a more invasive phenotype.

Set against a backdrop of accelerated climate change, high
temperatures could have a strong future effect on the occurrence
of bacterial meningitis. Extremes of temperature can cause heat
stress in both pathogen and host and thereby favor transition from
carrier state in the naso-oropharynx to invasiveness in part



FIG 5. Dust exposure inhibits phagocytosis, and high temperatures induce pneumococcal autolysis and

PLY release. A and B, ELISA quantification of macrophage inflammatory protein 2 (MIP-2; Fig 5, A) and flow

cytometric determination of neutrophil (Gr-1high; Fig 5, B) numbers in lungs at day 5 after infection. C, Killing

(as a percentage of total bacteria added) of D39 by J774macrophages and HL-60 neutrophils with or without

preincubation of phagocytes with dust. D, Triton X-100–induced autolysis of serotype 2 (D39) and its

autolysin-deficient DlytA strain grown at either 378C or 408C. E, Hemolytic activity measured as increased

OD after lysis of sheep erythrocytes. F, ELISA-calculated PLY concentration in filtered supernatant of D39

and DlytA grown at either 378C or 408C until A600 reached 1.0. Results are representative of 3 independent

experiments and are shown as means 6 SEMs. Asterisks represent significance in 1-way ANOVA with the

Dunn posttest. *P < .05, **P < .01, and ***P < .001.
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through induction of the synthesis of stressor-induced proteins
that play a complex role in the phenotypic manifestation of
virulence.30 Furthermore, at high temperatures, oxidative stress
increases, and antioxidants become scarce. Cellular oxidative
stress is associated with impairment of host immunity, and im-
mune responsiveness has been found to correlate with levels of
antioxidants in plasma in carriers of N meningitidis, particularly
in children less than 3 years of age.31,32

PLY can also be key to the link between high temperatures and
invasive bacterial disease. PLY is a key pneumococcal virulence
factor and can both promote and dampen inflammation through its
ability to induce host cell lysis at high concentrations, as well as
inducing a wide range of effects at sublytic concentrations.29

PLY-deficient pneumococcal strains are attenuated in virulence
in animal disease models, including those of meningitis,33 and
PLY levels in the cerebrospinal fluid in the setting of meningitis
correlate negatively with patient outcomes.34

Our data demonstrate an interaction of heat and dust inhalation,
whereby mice exposed to both were at significantly increased risk
of invasive pneumococcal disease. It might be that the combina-
tion of abrasion of the respiratory tract, impaired phagocytosis,
and increased release of damaging pathogen toxins creates a
‘‘perfect storm’’ for dissemination of colonized bacteria from the
nasopharynx. Alternatively, the effects of particulate inhalation35

and high temperatures36 on respiration can lead to direct aspira-
tion of precolonized or aerosolized bacteria into the lung. Further
mechanistic studies in this area are urgently required to determine
how climatic factors contribute to bacterial disease incidence dur-
ing epidemics.

Collectively, these findings have significant implications for
those areas of the world with high bacterial carriage rates coupled
with hot climates and high levels of natural pollution. In such
settings high levels of atmospheric dust and increased tempera-
tures combine to create a significant risk factor for the develop-
ment of invasive disease.
We thank all the doctors and medical assistants who have sent cerebrospinal

fluid/Trans-Isolate medium specimens and epidemiologic forms to CERMES

and to Direction de la Surveillance et de la Riposte aux Epid�emies (DSRE)

staff. We also especially thank CERMES staff involved since 2002 in the

meningitis surveillance and microbiology, especially Suzanne Chanteau and

Pascal Boisier.

Key messages

d Temperatures of greater than 39.58C and increased
airborne dust are significant risk factors for invasive pneu-
mococcal diseases, such as pneumonia and meningitis.

d Exposure to high temperatures and inhalation of airborne
dust particulates drive progression from stable nasopha-
ryngeal carriage to pneumonia and invasive disease.

d High temperatures and inhaled airborne dust particulates
alter the functional activity of host immune cells and pro-
mote expression of bacterial virulence factors, leading to
increased pathogenicity.

d Limiting exposure to airborne dust in populations with
high pneumococcal carriage rates will reduce the risk of
invasive disease.
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METHODS

Study area and meteorology
The study area was defined as a radius of 50 km around the meteorological

station of the international airport of Niamey, Niger. This choice was made in

accordance with the National Forecasting Direction (Direction de la

M�et�eorologie Nationale) of Niger to obtain a homogeneous geographic area

for which climatic factors are measured daily. These measures comprise

minimal and maximal temperatures, minimal and maximal relative humidity,

mean wind speed, mean visibility (defined by the World Meteorology

Organization as the maximal distance from which an observer can distinctly

see an object on a horizontal plane), and rainfall. Seasons were defined by the

National Forecasting Direction (Direction de la M�et�eorologie Nationale) of

Niger.

The population of the study area was 1,099,057 for the median year 2006.

Children aged between 0 and 5 years represented 21.9% of the population.

Because all cases of meningitis are registered daily, all cases of acute bacterial

meningitis confirmed by means of culture or PCR occurring within the study

area were enrolled between January 1, 2003, and December 31, 2010.

Thirty-four health care facilities were involved in the survey. Almost all the

suspected meningitis cases were referred to the national hospital of Niamey

(72.3%). The other health care structures in Niamey that participated in the

survey were the National Hospital of Lamord�e, the La Poudri�ere

Regional Hospital, and 2 health care centers located at the periphery

(altogether 13.6% of themeningitis cases). The remaining cases were detected

in 1 district hospital, 6 private clinics, and 22 health care centers. Of the total

population, 68.2% were vaccinated on April 20, 2009, with a bivalent

polysaccharide A/C vaccine after an outbreak involving N meningitidis

serogroupA (vaccination coverage from92% to 100% according to the district

of Niamey in persons aged 2-30 years). The vaccination coverage was

assumed to decrease linearly according to population growth at a daily rate

of 0.02%.

Laboratory testing
Cerebrospinal fluid samples were analyzed by means of PCR at the Niger

National Reference Laboratory for bacterial meningitis, where all

samples collected in the country are analyzed.E1 A confirmed case of acute

bacterial meningitis was defined as a first positive culture or PCR for

N meningitidis, S pneumoniae, or H influenzae. For N meningitidis–positive

samples, a slide agglutination with antisera or a second PCR was

performed to identify serogroups A, B, C, X, Y, and W. The characteristics

of the patient on the epidemiologic form and PCR results were recorded

into a database.

Mouse model of S pneumoniae infection
All animal experiments were performed at the University of Liverpool in

accordancewith the Animal Scientific Procedures Act 1986 and with the prior

approval of the UK Home Office (PPL 40/3602) and the University of

Liverpool ethics committee.

Sex- and age-matched (8-10 weeks) MF1 mice (Charles River UK) were

divided into cages of equal size (usually 3-5 mice) on arrival by animal unit

technical staff with no involvement in study design. For a single experiment,

weights in all mice were within 2 g (total range for study, 19-24 g) of each

other. Investigators were blinded to group allocation, and unblinding was

performed after the experiment, when bacterial numbers had been

enumerated.

As described previously, asymptomatic nasopharyngeal carriage was

established in mice intranasally infected with 1 3 105 CFU of S pneumoniae

serotype 2 (strain D39) or a Niger serotype 1 strain (ST303) isolated from a

child with meningitisE2,E3 in 10 mL of PBS. Infection was performed after

achievement of light anesthesia with O2/isoflurane. For particle inhalation

experiments, 2 days after infection, mice were given intranasal administration

of 50 mg/mL silicon dioxide (dust; mean particle size, 10 mm; Sigma) in

10 mL of PBS (10 mice for serotype 1 and 22 mice for D39) or PBS only as

a control (10 mice for serotype 1 and 22 mice for D39). This was repeated

at 4 days after infection, and mice were culled at 7 days after infection or if

invasive disease signs (as described by the scheme of Morton) progressed to

visible lethargy.E4 For heat exposure experiments, mice were put in a heat

box at 408C for 10 minutes before and 20 minutes after induction of

nasopharyngeal carriage (10 mice). Control mice were housed at 218C
throughout (10mice). The nasopharynx, lungs, brain, and bloodwere removed

and homogenized in PBS before plating on blood agar for assessment of tissue

CFU (secondary outcome).

PLY detection ELISA
Ninety-six-well ELISA microplates (Corning Laboratories, Corning, NY)

were coated overnight at 48C with 1 mg/well mouse anti-PLY (PLY-4)

antibody (Abcam). After washing, plates were blocked for 2 hours and

washed again, and then 100 mL of bacterial culture supernatant was added for

2 hours. After washing, 1 mg/well rabbit anti-PLY antibody (Abcam) in

100 mL of diluent was added for 2 hours. Plates were washed, and goat anti-

rabbit–alkaline phosphatase antibody (Abcam) was added for 30 minutes.

After washing, 250 mL/well pNPP color reagent (Sigma-Aldrich, St Louis,

Mo) was added for 15 minutes before the reaction was stopped with 50 mL of

3N NaOH. Absorbance at 405 nm was read with a Multiskan Spectrum

microplate reader (Thermo Scientific).

Opsonophagocytic killing assay
OPKAs were performed, as previously described,E5 with minor

modifications. Briefly, 1 3 105 J774 mouse macrophages or 4 3 105 HL-60

human neutrophils were incubated with 50 mg/mL silicon dioxide (sand;

mean particle size, 10 mm; Sigma UK) for 1 hour of shaking (175 rpm) before

addition of 1 3 103 opsonized S pneumoniae and complement. CFU values

were determined after a further 45 minutes (HL-60) or 60 minutes (J774) of

incubation. Intravenous immunoglobulin at a final dilution of 1:20 was used

as the source of pathogen-specific antibody for opsonization.Wells containing

nonopsonized pneumococci were used as controls.

Measurement of autolytic activity
Triton X-100–induced autolysis assays were performed, as described by

Houston et al.E6 Overnight cultures of S pneumoniae serotype 2 (strain D39)

and its isogenic LytA-deficient mutant were subcultured in brain-heart

infusion media and incubated at 378C or 408C to an A600 of 1.0. Cells were

then pelleted and washed twice with PBS and subsequently resuspended in

PBS containing 0.02% Triton X-100. The suspensions were then incubated

at 378C or 408C. A600 readings were taken at 0 minutes and then at

15-minute intervals. Triton X-100–induced autolysis was measured as a

percentage of the initial A600 value. Each experiment was repeated 3 times.

Statistical analysis: General additive model
The general model was written as follows:

Cases 5 a 1 s(Time) 1 b.s9(Climatic factors) 1 bt.t(Climatic

factors) 1 g.Factors.

The models were fitted by controlling for long-term trend and seasonality

by using a penalized thin-plate regression spline s with the mgcv package,

which allowed optimization of the numeric method for smoothing and

minimized autocorrelation in the residuals. s9 was defined as spline function,

b was defined as the coefficient of the variable with nonlinear effects, and g

was defined as the coefficient of the linear predictor, such as season, weekdays,

holiday, celebration, or vaccination rate. The climatic factors of minimal and

maximal temperatures, minimal and maximal relative humidity, rainfall, wind

speed, and horizontal visibility were tested as independent covariates in the

models. The natural history of meningitis often involves a period of

nasopharyngeal carriage before invasion of meninges. The model aimed to

explore 2 steps: immediate invasive meningitis after 0 to 5 days of exposure

(very short-term effect of environmental exposure) or acute meningitis after

a period of carriage (up to 40 days; short-term effect of environmental
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exposure). A distributed lag model performed with the dlnm package was

used, with a natural spline (s9) to estimate the health effect of the climatic fac-

tors on the current day and several previous days. The distributed lag model

allows the effect of a given day’s increase in a given climatic factor to be

distributed over several days after its values increase at equally spaced quan-

tiles or quintiles. Several durations, from the daily change of a given climatic

factor to that of confirmed meningitis cases, were tested.

A linear threshold parameterization (t) was also performed to explore a

health effect from given values of climatic factors. It was assumed that a

linear effect was observed from a single value of the climatic factor greater

than the threshold chosen and null below. The lag dimension was specified

from 0 to 5 days. Several thresholds were tested from the median of each

climatic factor.

The quality of the adjustment of the models was checked by means of

inspection of the sum of partial autocorrelation function (first 30 lags),

residuals, and adjustment of predicted data according to observed data. The

choice of the final model was based on the Akaike information criterion and

adjustment of predicted data according to observed data.E7
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