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Abstract
The pattern of epidemic meningococcal disease in the African meningitis belt may be influ-

enced by the background level of population immunity but this has been measured infre-

quently. A standardised enzyme-linked immunosorbent assay (ELISA) for measuring

meningococcal serogroup A IgG antibodies was established at five centres within the men-

ingitis belt. Antibody concentrations were then measured in 3930 individuals stratified by

age and residence from six countries. Seroprevalence by age was used in a catalytic model

to determine the force of infection. Meningococcal serogroup A IgG antibody concentrations

were high in each country but showed heterogeneity across the meningitis belt. The geo-

metric mean concentration (GMC) was highest in Ghana (9.09 μg/mL [95% CI 8.29, 9.97])

and lowest in Ethiopia (1.43 μg/mL [95% CI 1.31, 1.57]) on the margins of the belt. The force

of infection was lowest in Ethiopia (λ = 0.028). Variables associated with a concentration

above the putative protective level of 2 μg/mL were age, urban residence and a history of

recent vaccination with a meningococcal vaccine. Prior to vaccination with the serogroup A

meningococcal conjugate vaccine, meningococcal serogroup A IgG antibody concentra-

tions were high across the African meningitis belt and yet the region remained susceptible

to epidemics.
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Introduction
Epidemics of meningococcal disease have occurred at irregular intervals across the Sahelian
and sub-Sahelian regions of Africa, the African meningitis belt, for over 100 years.[1] However,
despite many years of research it is still not known why epidemics occur at a particular place at
any specific time. An important factor is likely to be the background level of immunity of the
population when faced with a potentially epidemic strain. It is known that protective immunity
to Neisseria meningitidis can be induced by meningococcal carriage,[2] infection with other
non-pathogenic Neisseria species, such as N. lactamica[3]and possibly by other bacteria.[4,5]
There is also some evidence that background immunity may be impaired with infection by
other bacteria that induce blocking antibodies.[6] The immune response to meningococcal
polysaccharide and conjugate vaccines has been studied in the African meningitis belt[7–10]
on several occasions but there have been few studies of population levels of antibody to N.
meningitidis in the African meningitis belt.[11,12] Therefore, we have undertaken a study of
community levels of serogroup-specific IgG antibody to N.meningitidis serogroup A (NmA)
in six countries in the African meningitis belt before the introduction of the serogroup A conju-
gate vaccine, MenAfriVac™, to investigate heterogeneity in the level of exposure across the
meningitis belt and to use age specific antibody titres to measure the force of infection.[13] To
ensure that patterns of antibody could be compared across sites, we implemented standardised
methods supported by careful quality control.

Materials and Methods

Study population
Cross-sectional meningococcal carriage surveys were conducted in seven countries across the
meningitis belt during the period July 1st 2010 to July 31st 2012 as described previously.[14]
Ethical approval for the study was obtained from the London School of Hygiene & Tropical
Medicine and from an appropriate committee from each African centre. Written, informed
consent for study participation was obtained from adults and for the children under their care.
Written informed assent was also obtained from participants aged 12 years or more. Oral
assent was obtained from younger children.

Subjects were selected randomly from within populations which were part of a routine
demographic survey system (DHSS) or in which a census had been performed recently. The
study population was recruited from urban and rural populations and stratified into four age
groups:< 5 years, 5–14 years, 15–29 years and 30 years or older.

Subjects were asked if they had received a meningitis vaccine in the previous six months.
Approximately a year before the survey, a vaccination campaign with an A + C polysaccharide
vaccine had been conducted in the study area in Senegal and also in part of the urban study
area in Niger.[15] None of the study populations had been vaccinated with MenAfriVac™ at the
time of the survey.

Blood samples were collected from the first 100 subjects surveyed within each of the four
age bands in both urban and rural study sites, giving an overall target of 800 samples per coun-
try. This target was achieved, or nearly achieved, except in Senegal where there was some resis-
tance to the collection of blood samples. A 5 mL sample was collected, serum separated within
six hours of collection and then stored at -20°C until assayed.

Enzyme Linked Immuno-Sorbent Antibody (ELISA) assay
An internationally standardised ELISA, as used at the Vaccine Evaluation Unit (VEU), Public
Health England, Manchester, UK was transferred to each of the MenAfriCar centres.
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Concentrations of IgG antibody against N.meningitidis serogroup A polysaccharide were
obtained through a classical sandwich assay ELISA as described previously,[16] except that the
standard reference serum CDC1992 was used as the quantification reference and that a mono-
clonal-PAN anti-human IgG Fc labelled with horseradish peroxidase (HRP)(Hybridoma
Reagent Laboratory, Baltimore, MD) was used as conjugate. The lower limit of quantification
(LLQ) of the meningococcal serogroup A ELISA was 0.19 μg/mL. Any value lower than the
LLQ was assigned a value of 0.095 μg/mL for computational purposes.

Standardisation of the assay and quality control
To ensure comparability of assay methods between centres, two training sessions were held in
Manchester, UK and in Bamako, Mali at the start of the project. Subsequently, approximately
50 samples obtained during a pilot study conducted in each country were selected to allow
cross-validation of the technique between each of the centres and the VEU, Manchester. After
repeated testing of the 50 samples and adjustment of the technique to ensure that the results
obtained fell within a defined range of the results obtained at the VEU, authorization was given
to start testing the samples obtained during the cross-sectional survey. During the course of
testing, monitoring of key values was performed by a resident scientist: two values representa-
tive of the standard curves (average of the duplicate values of the second higher concentration
point and midpoint of the slope) as well as the calculated concentration of the local positive
control were plotted routinely on Levey-Jennings charts. Regular review of these data was
undertaken by the MenAfriCar laboratory manager and advice provided on adjustment of the
technique when problems arose, for example detection of degradation in the anti-IgG conju-
gate used in the assay. It was not possible to complete cross-validation in Nigeria due to
increasing insecurity and samples collected in Nigeria were tested in Mali. The laboratory in
Chad did not reach the required standard in the validation assay to progress to testing of cross-
sectional samples.

Statistical methods
Pearson’s correlation coefficient (ρ) was used to compare the results produced at the VEU and
by each centre during the validation exercise. The acceptance criterion for passing the cross-
validation test was ρ greater than or equal to 0.9. In addition, Lin’s concordance coefficient of
correlation, (ρC), which evaluates the degree to which pairs of observations fall on the 45° line
through the origin and which provides a measure of both precision and accuracy of an assay
was used.[17]

For analysis of the results from samples obtained during the cross-sectional surveys, geo-
metric mean antibody concentrations (GMCs) were calculated and the percentage of samples
reaching the putative protective threshold of�2 μg/mL,[18] together with 95% confidence
intervals, was determined. Results by country were analysed graphically using reverse cumula-
tive distribution plots. GMCs were compared by urban /rural residence and by sex in each
country using a t-test. Risk factors for seropositivity (i.e. antibody concentration�2 μg/mL)
were investigated using logistic regression. A multivariable logistic regression model was devel-
oped as follows: all variables with a p-value<0.1 in univariable analyses were included initially,
then any variable with p-value<0.05 in the multivariable model was retained, with excluded
variables re-entered one by one. If any of the re-entered variables had a p-value<0.05, they
were retained in the final model. Because the survey was designed with the household as the
primary sampling unit, and to account for potential household clustering, we used the survey
commands in Stata (StataCorp, Texas).

Meningococcal Antibodies in Africa
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Seroprevalence was stratified into yearly age groups and then analysed using a reverse cata-
lytic modelling approach under a binomial sampling assumption, as described elsewhere.[13]
Two key parameters were estimated using this approach (1) the seroconversion rate (SCR), i.e.
the annual rate at which individuals change from seronegative to seropositive, also known as
the force of infection (λ) and (2) the seroreversion rate, the annual rate at which seropositive
individuals revert to a seronegative state (SRR or r). The catalytic model was fitted using a max-
imum likelihood approach. Analyses were repeated, excluding individuals who reported recent
vaccination to estimate ‘natural’ immunity.

All analyses were performed using Stata v12.0.

Ethics
The purpose and methods of the study were explained to community leaders at community
meetings and through the media. Written, informed consent for obtaining a pharyngeal swab
and a blood sample was obtained from adults and for the children under their care. Written
informed assent was also obtained from participants aged 12 years or more. Oral assent was
obtained from younger children. Consent and assent forms were translated into the relevant
local language.

The study protocols, consent and assent forms were approved by the LSHTM Ethics Com-
mittee and by the ethics committees of each of the African partner institutions with the excep-
tion of Chad, which does not have a formal ethical committee, and where approval for the
activities of the consortium was granted by a committee set up to oversee MenAfriCar studies
by the Ministry of Health.

Results

Cross-validation
Although the cross-validation exercise required several rounds of testing, five centres finally
achieved excellent results with Pearson correlation values (ρ) between 0.926 and 0.996
(Table 1). Final results obtained in Ghana are shown as an example in S1 Fig. Following the val-
idation exercise, quality control of the results obtained on analysis of the cross-sectional survey
samples was ensured by monitoring the key parameters of the standard curve as well as the
local positive controls, as shown for Ethiopia in S2A Fig.

Meningococcal serogroup A IgG antibodies by country and by sub-group
Sera obtained from 3930 individuals in six African meningitis belt countries were tested. The
prevalence of serogroup A specific IgG antibodies for each country is shown as a reverse

Table 1. Statistical analysis of a comparison of meningococcal serogroup A IgG concentrations obtained at the Vaccine Evaluation Unit (VEU),
Public Health England and at five MenAfriCar centres.

Variable/ Country Ethiopia Ghana Mali 1 Mali 2* Niger Senegal

Number of sera tested 50 (29 + 21) 49 50 29 50 60 (39 + 21)

Range of values tested (ug/ml) 0.095–133.38 0.34–133.38 0.43–67.42 0.095–3.42 0.095–79.36 0.28–133.38

Pearson’s correlation coefficient (ρ) 0.996 0.994 0.859 0.947 0.938 0.996

Lin’s concordance coefficient (ρc) 0.988 0.991 0.858 0.825 0.757 0.966

Slope 1.135 0.930 0.970 1.338 0.577 1.281

Intercept -0.957 -0.372 0.010 0.159 0.966 -0.703

Footnote

* Two sets of validation samples were used for Mali because the correlation co-efficient from the first 50 samples did not reach the required threshold of

0.9. The second set of samples was selected from a set tested at the VEU which gave consistent results when tested in Manchester, UK.

doi:10.1371/journal.pone.0147928.t001
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cumulative plot in Fig 1. There were significant differences GMC by country with Ghana hav-
ing the highest mean GMC and Ethiopia the lowest (Table 2).

The GMC increased with age in all countries with the exception of Senegal where there was
a drop in GMC in those over 30 years of age (Table 3). This was less apparent when subjects
with a history of recent vaccination were excluded. In four countries, no differences in GMCs
by sex were observed (Ethiopia, Niger, Nigeria, Senegal, p>0.2 in each country); in Ghana and
Senegal GMCs were higher in females compared to males (p = 0.0002 and p = 0.0203, respec-
tively). A comparison was made in each country between GMCs according to whether the

Fig 1. Reverse cumulative distribution curves of meningococcal serogroup A IgG antibodies by
country.

doi:10.1371/journal.pone.0147928.g001

Table 2. Geometric meanmeningococcal serogroup A IgG antibody concentrations and seropreva-
lence by country.

A. All individuals

Country Number GMC (95% CI) % �2ug/ml (95% CI)

Ethiopia 619 1.43 (1.31, 1.57) 33.8% (30.0, 37.5%)

Ghana 765 9.09 (8.29, 9.97) 87.6% (85.2, 89.9%)

Mali 756 2.04 (1.77, 2.34) 52.1% (48.5, 55.7%)

Niger 826 4.98 (4.37, 5.66) 65.6% (62.3, 68.8%)

Nigeria 584 2.24 (1.91, 2.62) 52.1% (48.1, 56.2%)

Senegal 380 5.90 (5.00, 6.96) 81.1% (77.1, 85.0%)

B. Excluding individuals with a history of recent meningococcal vaccination

Country Number GMC (95% CI) % �2ug/ml (95% CI)

Ethiopia 617 1.43 (1.31, 1.57) 33.7% (30.0, 37.4%)

Ghana 650 8.70 (7.89, 9.59) 87.2% (84.6, 89.8%)

Mali 706 2.10 (1.82, 2.43) 52.7% (49.0, 56.4%)

Niger 757 5.24 (4.59, 5.99) 66.8% (63.5, 70.2%)

Nigeria 559 2.20 (1.88, 2.58) 52.0% (47.9, 56.2%)

Senegal 178 3.96 (3.05, 5.15) 74.7% (68.3, 81.1%)

doi:10.1371/journal.pone.0147928.t002
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study site was urban or rural and by the sex of the participant. In five countries, NmA-specific
IgG GMCs were higher in urban than in rural areas (p<0.0001 for Ethiopia, Ghana, Mali and
Niger, p = 0.0012 for Senegal); in Nigeria, GMC was higher in the rural study site (p = 0.0123).

Factors associated with NmA-specific IgG concentrations above the putative protective
threshold of 2μg/ml are shown in Table 4. The multivariable model included the following fac-
tors shown to be associated with a higher odds of seropositivity in addition to observed coun-
try-level differences: urban location, increasing age and reported receipt of a meningitis
vaccine which is likely to have contained the serogroup A polysaccharide. Current carriage of
meningococci or other Neisseria species were not associated with seropositivity in the multivar-
iable model.

The influence of age on the putative protective threshold of 2 μg/mL is further shown by
country in Figs 2 and 3.

Force of infection
The force of infection was calculated based on the age prevalence of seropositivity as described
above. Unexpectedly, this was highest in Senegal, even when subjects with a recent history of
vaccination were excluded, followed by Ghana and Niger; Ethiopia had the slowest seroconver-
sion rate (Table 5).

Discussion
Although a number of studies of meningococcal serology have been performed previously in
countries of the African meningitis belt, most of these have been undertaken in the context of
evaluation of the response to vaccination[7–10] or in disease survivors.[19] Comparisons
between the results obtained in individual studies can be difficult when standardised methods
are not used. Therefore, for this comparative study, substantial efforts were made to standard-
ise the ELISA technique used at each of the collaborating centres with support from the Vac-
cine Evaluation Unit at PHE, Manchester, UK. This proved more challenging than anticipated

Table 3. Geometric meanmeningococcal serogroup A IgG antibody concentrations (95% CI) by age
and country.

A. All individuals

Country Age group (years)

< 5 5–14 15–29 > = 30

Ethiopia 0.62 (0.53, 0.72) 0.89 (0.78, 1.03) 1.86 (1.59, 2.17) 2.68 (2.30, 3.14)

Ghana 2.48 (1.92, 3.19) 6.25 (5.06, 7.72) 11.59 (9.97, 13.47) 12.06 (10.55, 13.80)

Mali 0.28 (0.13, 0.34) 1.89 (1.46, 2.46) 5.75 (4.67, 7.08) 5.86 (4.84, 7.10)

Niger 0.89 (0.72, 1.10) 3.39 (2.67, 4.31) 10.99 (8.90, 13.57) 14.36 (11.89, 17.35)

Nigeria 0.39 (0.30, 0.51) 1.00 (0.78, 1.29) 5.07 (3.95, 6.50) 8.88 (7.25, 10.88)

Senegal 1.84 (1.18, 2.87) 7.40 (5.46, 10.02) 11.95 (9.01, 15.87) 4.26, 7.07)

B. Excluding individuals with a history of recent meningococcal vaccination

Country Age group (years)

< 5 5–14 15–29 > = 30

Ethiopia 0.62 (0.53, 0.72) 0.89 (0.78, 1.03) 1.86 (1.59, 2.17) 2.68 (2.30, 3.14)

Ghana 2.41 (1.81, 3.22) 5.79 (4.64, 7.23) 11.36 (9.65, 13.38) 11.29 (9.81, 13.00)

Mali 0.26 (0.22, 0.32) 1.92 (1.46, 2.53) 5.67 (4.59, 7.00) 6.04 (4.98, 7.33)

Niger 0.94 (0.75, 1.19) 3.50 (2.72, 4.50) 10.89 (8.73, 13.57) 14.26 (11.77, 17.28)

Nigeria 0.39 (0.30, 0.51) 0.89 (0.70, 1.14) 4.88 (3.81, 6.26) 8.59 (7.02, 10.52)

Senegal 0.94 (0.41, 2.19) 3.68 (1.41, 9.60) 6.21 (3.28, 11.78) 5.10 (3.86, 6.74)

doi:10.1371/journal.pone.0147928.t003
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and satisfactory results were not obtained at one out of six centres prior to the end of the proj-
ect. Problems encountered included the short shelf-life of some of the reagents required, diffi-
culties in clearing reagents through customs and difficulties in shipping frozen samples to the
UK for validation. However, despite these challenges, excellent results were eventually obtained
at five centres using Pearson coefficient of correlation (r>0.92) and satisfactory ones using
Lin’s concordance coefficient of correlation, allowing adjustment of some issues which were
not identified using the correlation coefficient alone.

Overall, serogroup A meningococcal IgG antibody concentrations were high in the African
populations investigated, with the highest GMCs being obtained in countries in the centre of
the meningitis belt. This has been noted previously.[10,11] This was the case despite the fact
that there was little circulation of the serogroup A meningococcus in the African meningitis
belt at the time of the study.[20] These high antibody concentrations probably reflect prior
exposure to the serogroup A meningococcus and other cross-reactive bacteria such as Bacillus

Table 4. Logistic regression analysis of factors associated with a meningococcal serogroup A IgG concentration�2ug/ml, a putative correlate of
protection.

Variable N Crude Odds Ratio (95% CI) Adjusted Odds Ratio (95% CI)

Country

Ethiopia 619 0.27 (0.21, 0.33) 0.15 (0.11, 0.20)

Ghana 765 3.72 (2.83, 4.91) 2.79 (2.03, 3.85)

Mali 756 0.57 (0.46, 0.71) 0.49 (0.38, 0.64)

Niger (baseline) 826 1.0 1.0

Nigeria 583 0.57 (0.46, 0.71) 0.44 (0.34, 0.58)

Senegal 380 2.24 (1.65, 3.00) 2.02 (1.31, 3.12)

Age group

0 to 4 years 746 0.09 (0.07, 0.11) 0.06 (0.05, 0.08)

5 to 14 years 957 0.32 (0.27, 0.39) 0.26 (0.21, 0.32)

15 to 29 years (baseline) 1023 1.0 1.0

30+ years 1203 1.59 (1.29, 1.96) 1.68 (1.33, 2.12)

Sex

Female 2241 1.0 Not included

Male 1668 0.82 (0.72, 0.93)

Not known 20

Urban 1871 1.0 1.0

Rural 2058 0.64 (0.56, 0.73) 0.54 (0.45, 0.64)

Recently vaccinated with a meningitis vaccine

No 3459 1.0 1.0

Yes 463 2.09 (1.65, 2.66) 1.71 (1.23, 2.38)

Meningococcal carrier

No 3771 1.0 Not included

Yes 158 0.94 (0.67, 1.31)

Carrier of other Neisseria species

No 3706 1.0 Not included

Yes 224 0.40 (0.30, 0.53)

Crowded living conditions*

No 1438 1.0 Not included

Yes 2484 0.70 (0.60, 0.81)

* crowding was defined as > = 2 people per room as used previously[27]

doi:10.1371/journal.pone.0147928.t004
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pumilis [5,21] and Escherichia coli capsule types K51 or K93.[22] Similarly high serogroup A
meningococcal IgG antibody concentrations have been found In industrialised countries where
there is no group A disease and no evidence of carriage. For example, in England and Wales a
GMC of 4.75 μg/mL was found in the general population with 87% of individuals with anti-
body levels�2 μg/mL,[23] an observation which supports the role for cross-reactive bacteria in
inducing antibodies against the serogroup A meningococcus.

None of the populations in the MenAfriCar cross-sectional surveys had been vaccinated
previously with MenAfriVac™ but meningococcal vaccines containing A polysaccharide have
been used quite extensively in some of the study countries in the past. Subjects were asked
whether they had received a meningitis vaccine in the previous six months and if this was the
case, they are likely to have been vaccinated with a vaccine containing serogroup A polysaccha-
ride. Analyses of antibody distribution by country and by age were undertaken excluding these
subjects but this had little impact on the pattern of results. However, earlier vaccination cam-
paigns may have resulted in some persistent antibody. Prior vaccination may be the reason for

Fig 2. Statistical analysis of seropositivity data for all individuals. Age-adjusted seroprevalence (blue solid lines) using appropriate reversible catalytic
models. The observed seroprevalences (red-filled triangles) were pooled according to the 10%-centiles of the underlying age distribution.

doi:10.1371/journal.pone.0147928.g002
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the rapid seroconversion rate in the Senegalese population where a mass vaccination campaign
with an A + C polysaccharide vaccine had been undertaken in 2010, about 12 months prior to
the study and also for the reason why the GMC was lower in subjects over 30 years of age in
Senegal than in younger subjects who would not have been targeted in the immunisation cam-
paign. Thus, the antibody distribution seen in each country may reflect a combination of
responses induced by both natural exposure and vaccination.

An Ig meningococcal serogroup A polysaccharide antibody concentration of> 2 μg/mL as
measured by radioimmunoassay has been suggested as a correlate of protection against ser-
ogroup A meningococcal disease based on the results of a trial of a meningococcal polysaccha-
ride vaccine conducted in Finland in the 1970s.[18] However, it seems unlikely that this is the
case in countries of the meningitis belt where a high proportion of the population has antibody
concentrations above this value and yet, until the introduction of MenAfriVac™, the region
remained peculiarly susceptible to large serogroup A epidemics. It is likely that much of the
antibody detected by ELISA is non-functional, perhaps because it is induced by cross-reacting

Fig 3. Statistical analysis of seropositivity data excluding vaccinated individuals. Age-adjusted seroprevalence (blue solid lines) using appropriate
reversible catalytic models. The observed seroprevalences (red-filled triangles) were pooled according to the 10%-centiles of the underlying age distribution.

doi:10.1371/journal.pone.0147928.g003
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bacteria. Bactericidal antibodies are the accepted correlate of protection for meningococcal dis-
ease [24] and measurement of serogroup A serum bactericidal antibodies may give a better
reflection of the background level of immunity of a community. However, these are technically
more difficult to perform reliably than the ELISA, and were only undertaken at two of the cen-
tres that participated in this study before and after the introduction of MenAfriVac™. These
results, together with studies of the correlates of protection against invasive meningococcal dis-
ease and meningococcal pharyngeal carriage will be reported subsequently.

In this study, we have shown that serology can be used to show differences in exposure to
meningococcal infection between countries and age groups and we have shown how age
dependent variations in seropositivity can be used to measure the force of infection. The force
of infection was generally highest in countries in the centre of the meningitis belt, with the
exception of Senegal where the situation may have been confounded by vaccination, and lowest
in Ethiopia on the margin of the belt. Measurement of seroconversion by age has proved to be
a valuable approach to study of the epidemiology of malaria and of the impact of control inter-
ventions on this infection [25,26] and, as shown here, is valuable for the study of other infec-
tious diseases. Further study of antibody kinetics in the African meningitis belt is important for
understanding the epidemiology of meningococcal infection and monitoring control measures
including widespread deployment of conjugate vaccines.
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