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Abstract: Tolerance of anaerobic germination (AG) is a key trait in the development of direct seeded
rice. Through rapid and sustained coleoptile elongation, AG tolerance enables robust seedling
establishment under flooded conditions. Previous attempts to fine map and characterize AG2
(qAG7.1), a major centromere-spanning AG tolerance QTL, derived from the indica variety Ma-Zhan
Red, have failed. Here, a novel approach of “enriched haplotype” genome-wide association study
based on the Ma-Zhan Red haplotype in the AG2 region was successfully used to narrow down AG2
from more than 7 Mb to less than 0.7 Mb. The AG2 peak region contained 27 genes, including the Rc
gene, responsible for red pericarp development in pigmented rice. Through comparative variant and
transcriptome analysis between AG tolerant donors and susceptible accessions several candidate
genes potentially controlling AG2 were identified, among them several regulatory genes. Genome-
wide comparative transcriptome analysis suggested differential regulation of sugar metabolism,
particularly trehalose metabolism, as well as differential regulation of cell wall modification and
chloroplast development to be implicated in AG tolerance mechanisms.

Keywords: anaerobic germination; AG2; candidate genes; enriched haplotype GWAS; rice (Oryza
sativa); transcriptomics

1. Introduction

Rice is the staple food for more than half of the world’s population; however, the
overall rice agri-food sector is rapidly changing, particularly in the developing world [1,2].
On the production side, changing climates exacerbate abiotic and biotic limitations in exist-
ing rice-growing areas, while new areas at increased latitudes and altitudes are becoming
available for rice cultivation [3,4]. Significant socio-economic changes, such as urbanization
and rural industrialization, in conjunction with the water, energy, and food security nexus
are major forces driving mechanization and the shift from transplanting to direct seeding
(DS) in rice cultivation.
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Transplanted rice is one of the most resource-intensive crops in water and labor
demand [5]. Yet the supply of water and labor is limiting and becoming increasingly erratic
and unreliable, thus challenging traditional cultivation methods. There is substantial
opportunity for change, particularly in new areas opening up for cultivation, provided
management systems and adapted cultivars are available. Over the last decade, DS rice
has become increasingly popular across Asia due to its low-input demand and labor and
cost savings [5,6]. One of the world’s leading rice producers, India, now has more than
50% of its rainfed production under DS and Thailand, one of the leading rice exporters, has
most of its rainfed rice under DS conditions.

Mechanization of rice cultivation is paramount to fully capitalize on the cost savings
potential of DS. While the development of direct seeding technology and agronomy has
made substantial progress in recent years [6–8], the development of indica varieties suitable
for DS has lagged behind. Poor germinability and poor crop establishment, with down-
stream effects on weed competition and ultimately yield, are major challenges that must be
addressed for widespread adoption of DS. Direct seeded varieties need to be supplied with
a suite of specific traits, most of which relate to uniform and vigorous crop establishment
under conditions that drastically differ from nursery establishment and transplanting.

Tolerance of anaerobic germination (AG), the ability of vigorous germination and
heterotrophic growth under complete submergence, is among the best-studied traits in
regard to DS variety development. Tolerance of AG is a unique and variable trait of
rice [9]. Unlike other cereals, rice is adapted to growth in wetland conditions through
rapid germination in waterlogged soils and sustenance of heterotrophic coleoptile growth
to reach the water surface and transfer oxygen to the seed, thus allowing subsequent
growth of the radicle and leaf [10]. However, due to the absence of positive selection under
transplanted conditions, AG tolerance has become a rare trait.

DS rice benefits from high AG tolerance irrespective of whether the crop is grown in
a rainfed or irrigated environment. Rainfed crop cycles usually coincide with the wet or
monsoon season when heavy rains cause temporal flooding. Under irrigated conditions,
shallow flooding is preferred to suppress the growth of weeds, which are one of the major
constraints in DS conditions.

AG tolerance is a rare trait among tropical indica rice, the main rice subspecies grown
in South and South-East Asia, and absent from most high-yielding modern indica varieties,
such as IR64 and IR42 [11]. The screening of over 8000 gene bank rice accessions and
breeding lines at the International Rice Research Institute (IRRI) identified nearly two
dozen AG tolerant genotypes, including Ma-Zhan Red (MR), Khao Hlan On (KHO), Nanhi,
Kharsu 80A [11–14], and TKM9 [15]. While KHO, MR, and TKM9 are tropical indica
landraces, Nanhi and Kharsu 80A belong to the aus group.

Several major QTLs for AG tolerance were identified among bi-parental populations
between donor accessions and highly susceptible popular modern varieties. The cross
derived from KHO, a landrace from Myanmar, and the recurrent parent IR64 identified
a major QTL on chromosome 9, qAG-9-2 (referred to as AG1). The gene underlying this
QTL was cloned as OsTPP7, a trehalose-6-phosphate phosphatase gene, which enhances
anaerobic germination tolerance [16]. This QTL has been used for crop improvement and
has been successfully validated in the field [17–21].

AG1, however, remains the only AG QTL that has been fine mapped and characterized
at the gene level. Other major AG QTLs have yet to be refined to further our knowledge
of the underlying mechanisms of AG and develop predictive marker sets. A priority
candidate is qAG7.1 (AG2), a major QTL on chromosome 7, spanning the centromeric
region. It was identified in a mapping population derived from IR42 and MR [12], with
the favorable allele contributed by the tolerant donor, Ma-Zhan Red. Importantly, this
QTL co-localized with QTLs from previous studies, qAG7.1, derived from KHO [11], and a
QTL derived from TKM9 [15]. Furthermore, it partially overlapped with qAG7 and qAG7.1,
derived from Nanhi and Kharsu 80A, respectively [11,13,14]. A genome-wide association



Int. J. Mol. Sci. 2021, 22, 4445 3 of 19

study (GWAS) using an indica rice panel also detected an AG-associated region in a similar
location as AG2 [22].

Mainly due to poor recombination within the AG2 region and inefficiency in devel-
oping NILs, traditional fine-mapping approaches failed, necessitating the development
of an alternative strategy. In this study, we used a diverse panel enriched for potentially
AG-tolerant haplotypes at the AG2 QTL region selected from the 3K Rice Genomes (3K
RG) Project [23] to narrow down the QTL through GWAS. In addition, global expression
profiling under anaerobic conditions for selected accessions with contrasting phenotypes
was performed to identify potential candidate genes and metabolic mechanisms underly-
ing AG2.

2. Results
2.1. AG2-Enriched Panel Developed Based on SNP Variation between Ma-Zhan Red and IR42

Previously, a QTL mapping study from a cross between IR42 and Ma-Zhan Red (MR)
identified a major QTL qAG7.1 (AG2) in the region of 6 Mb to 13 Mb on chromosome 7
(LOD = 14.5; R2 = 31.7%) [12], which overlapped with several other AG QTLs identified in
the region (Figure S1). To narrow down the AG2 region and identify potential candidate
genes, a GWAS approach using an AG2 haplotype enriched panel was carried out based
on data from the 3000 Rice Genomes (3K RG) [24]. However, since known AG2 parental
donors and a susceptible recipient were not included in the 3K RG data set, we re-sequenced
them first. Notably, with the exception of TKM9, all AG2 donors displayed red pericarp,
indicative of a functional Rc allele. A total of 45,784,570–156,947,986 raw reads were
obtained for each MR, KHO, Kharshu 80A, Nanhi, TKM9, and IR42, of which 94.5–97.3%
successfully mapped to the Nipponbare reference (MSU7) (Supplementary File S1).

Among the donors and recurrent parents, comparative variant analysis across the
larger AG2 sequenced genomic region (6 Mb to 13 Mb) revealed patterns of SNP variation
(Figure 1a). The analysis showed that the two aus accessions Nanhi and Kharsu 80A
shared high similarity with a genetic distance of 0.1 (Figure 1b; Supplementary File S2)
and were distant from all other indica (average distance of 0.49 for Kharsu 80A and 0.47
for Nanhi). However, in the region between 7 Mb and 11 Mb, they showed minimal SNP
variation to the japonica Nipponbare reference genome (Figure 1a). Likewise, the two elite
AG susceptible indica recipients IR42 and IR64 were similar, with a genetic distance of
0.22 (Figure 1b; Supplementary File S2). Interestingly, the indica AG donor KHO clustered
with IR42 (distance 0.22) and IR64 (distance of 0.26), rather than MR (distance of 0.37) or
TKM9 (distance of 0.31). The two AG-tolerant donor indica accessions MR and TKM9 were
not very similar, with a distance of 0.35. Overall, the region discriminated better between
the subspecies aus and indica than the AG phenotype. Considering that the IR42/MR
population had the largest effect AG2 QTL at the highest physical resolution (Figure S1),
we decided to focus on variation between these two genotypes for downstream analysis.
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Figure 1. Sequence variation within AG2 region. (a) Sequence variants within the AG2 region (6 
Mb to 13 Mb on chromosome 7) of AG donors (Nanhi Ma-Zhan Red (MR), Khao Hlan On (KHO), 
Kharshu 80A, and Nanhi) and AG susceptible varieties (IR64 and IR42) relative to Nipponbare. (b) 
Genetic distance (identity-by-state) matrix between AG donors and AG recipients based on 
variations within the AG2 region. 

Within the AG2 region (6 Mb to 13 Mb on chromosome 7), 16,193 SNPs showed 
polymorphism between MR and IR42 and were used as the enriched panel selection 
criteria (as described in M&M; Figure S2a). A subset of 351 accessions from the 3K RG was 
selected as an enriched AG2 panel. Notably, the selected accessions were rather diverse as 
to being MR-positive (being among the 100 closest matchings to the MR haplotype in the 
respective bin) or MR-negative (not among the top 100 matching with MR bin haplotype) 
between bins for the first half of the region (9 bins). In contrast, the second half of the 
region was relatively conserved, either being MR-positive or MR-negative across the 
region (8 bins) (Figure S2b). This seems to indicate a lack of ancestral recombination in the 
downstream half, which is in line with the centromeric region of chromosome 7 predicted 
to be located at around 12.1 Mb 
(http://rice.plantbiology.msu.edu/annotation_pseudo_centromeres.shtml; accessed on 9 
September 2019). The panel consisted of 62.4% (219) accessions with white pericarp, 30.4% 
(107) red colored pericarp, and 7.1% (25) no observation recorded for pericarp color 
(Figure S3). Most accessions were from East Asia (126), South Asia (108), and South East 
Asia (87); while the rest were from Africa (13), America (10), Middle East (1), and 
unknown (6). They were mostly indica (93.7%) and some aus (5.4%) (Supplementary File 
3). 

  

Figure 1. Sequence variation within AG2 region. (a) Sequence variants within the AG2 region (6 Mb to
13 Mb on chromosome 7) of AG donors (Nanhi Ma-Zhan Red (MR), Khao Hlan On (KHO), Kharshu
80A, and Nanhi) and AG susceptible varieties (IR64 and IR42) relative to Nipponbare. (b) Genetic
distance (identity-by-state) matrix between AG donors and AG recipients based on variations within
the AG2 region.

Within the AG2 region (6 Mb to 13 Mb on chromosome 7), 16,193 SNPs showed
polymorphism between MR and IR42 and were used as the enriched panel selection criteria
(as described in M&M; Figure S2a). A subset of 351 accessions from the 3K RG was selected
as an enriched AG2 panel. Notably, the selected accessions were rather diverse as to being
MR-positive (being among the 100 closest matchings to the MR haplotype in the respective
bin) or MR-negative (not among the top 100 matching with MR bin haplotype) between
bins for the first half of the region (9 bins). In contrast, the second half of the region was
relatively conserved, either being MR-positive or MR-negative across the region (8 bins)
(Figure S2b). This seems to indicate a lack of ancestral recombination in the downstream
half, which is in line with the centromeric region of chromosome 7 predicted to be located at
around 12.1 Mb (http://rice.plantbiology.msu.edu/annotation_pseudo_centromeres.shtml;
accessed on 9 September 2019). The panel consisted of 62.4% (219) accessions with white
pericarp, 30.4% (107) red colored pericarp, and 7.1% (25) no observation recorded for
pericarp color (Figure S3). Most accessions were from East Asia (126), South Asia (108), and
South East Asia (87); while the rest were from Africa (13), America (10), Middle East (1),
and unknown (6). They were mostly indica (93.7%) and some aus (5.4%) (Supplementary
File S3).

http://rice.plantbiology.msu.edu/annotation_pseudo_centromeres.shtml
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2.2. Significant Phenotypic Variation Displayed within the Enriched-AG2 Rice Panel

The selected enriched panel of 351 accessions showed significant variability of sur-
vival rate. The phenotype distribution was skewed to the left, toward AG susceptibility
(Figure S4a, left panel). The survival rates of IR42 and MR were 0.8% and 34%, respec-
tively. It was noted that even the tolerant donor survival rates were also not as high as
previously reported (IR42: 3.3%, MR: 63%) [12], which was likely due to high temperature
(max of 39 ◦C) during the AG screening. Due to the data skewness, the phenotype data
were transformed using the logit transformation prior to GWAS [25]. The phenotypic
distribution of the transformed data was improved (Figure S4a, right panel). The Q-Q
plot of the logit-transformed data was much closer to normal (Figure S4b). Regressing the
transformed phenotype on the first 5 principal components yielded normally distributed
residuals with Shapiro–Wilk test accepting normality (p = 0.8) (Figure S4c, right panel).

Most of the accessions with colored pericarp exhibited the functional allele for Rc.
In contrast, most of the accessions with white pericarp contained the 14bp deletion in
the coding region of Rc, indicative of a non-functional allele (Supplementary File S4).
Interestingly, several accessions having a colored pericarp did not share the functional
allele. Likewise, several of the accessions having white pericarp possessed the functional
allele, including the AG donor TKM9 (Supplementary File S5).

2.3. GWAS of the Selected Enriched Panel Significantly Narrowed down the AG2 Region

To assess the AG2 enriched panel for the presence of AG QTLs and to narrow down
the region of AG2, a GWAS was performed using both filtered and linkage disequilibrium
(LD) pruned SNP-genotype dataset with the transformed data of the survival rate. It
revealed a single peak with negative log p-values of up to 8.531 at around 6 Mb to 6.7 Mb
on chromosome 7, which passed the Bonferroni-corrected significance threshold (Figure 2).
GWAS was also conducted for pericarp color using the enriched panel, and a single
dominant peak on chromosome 7 confirmed the previous report of the Rc gene as a major
contributor to the red pericarp trait (Figure S5). The red pericarp peak overlapped with the
AG peak of the panel, covering a region between 5.6 Mb and 6.8 Mb (Figure S6).
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Figure 2. Detection of AG2 peak on chromosome 7 in the enriched GWAS panel. (a) The Manhattan plot shows the level
of significance for SNPs correlated with AG tolerance from the GWAS analysis (numbers across the x-axis indicate the
chromosome). (b) The QQ plot is shown at the right. The blue line indicates the p < 0.00001 threshold and the red line
indicates the Bonferroni correction.

2.4. Five Major Haplotype Groups Identified within the Peak Region of AG2

The peak region contained 4016 SNPs and 1029 INDELs. Among the SNPs, 392 were
missense, 239 synonymous, 19 stop gain, 5 start gain, 1 start lost, 2 splice donor, 2 splice ac-
ceptor, 523 intron variants, and 20 splice region variants. Together with 277 deletion clusters
from Fuentes et al. dataset [26] and 4469 PAV (presence-absence variations, see methods),
the total region variant dataset comprised 9791 variants and a mixed-model GWAS with
the same settings as before was run on this dataset (with the same kinship matrix and
covariates). The most significant SNP was positioned at 6,086,998 bp, having a p-value
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of 8.531 in the intergenic region upstream of LOC_0s07g11050 (IPP transferase, putative
expressed) and around 20 kb downstream of LOC_Os07g11020 (Rc, the bHLH transcrip-
tion factor regulating proanthocyanidin production in seeds) (Figure 3a,b; Supplementary
File S6).
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Figure 3. A close-up view of AG2 peak region on chromosome 7. (a) The Manhattan plot shows the level of significance for
SNPs correlated with AG tolerance from the GWAS analysis (numbers across the x-axis indicate the chromosome). (b) The
gene track identified within the region (above line—positive strand, below line—negative strand, light red—transposable
elements, genes marked blue are some of the selected candidate genes). The annotation is taken from MSU7, numbers
like 11560 mean LOC_Os07g11560. (c) Lines connecting physical position plots (a,b) with consecutive variant plots (d,e).
The color of lines shows the effect (orange—nonsynonymous SNP, green—small indel, blue—large deletion or its part).
(d) Graphical genotype plot (columns are variants, rows are samples, genotypes are color-coded according to legend in the
bottom; the samples are ordered and grouped by hierarchical clustering). (e) LD heatmap of the region using r2.
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To simplify visualization and downstream analysis, we focused only on variants that:
(1) are located in gene regions (or overlap gene regions, for INDELs and PAV); (2) have
minimal significance level –log10(p) > 3; and (3) leave only SNPs that are predicted to have
an effect on protein sequence or splicing (missense, start/stop gain or loss, and splice donor
or acceptor variants), as well as gene region INDEL and PAV (Figure 3c). After this filtering,
we were left with 120 variants in the region 6.065 Mb to6.625 Mb (Supplementary File S7):
73 missense SNPs, 2 start gain SNPs, 21 INDELs, and 24 presence-absence variations
(Figure 3). The reduced Manhattan plot showed that signals of highly significant genic
SNPs INDELs and PAV were present throughout the 6.0 Mb to 6.7 Mb region, with variants
of highest significance found in the proximal part of the AG2 region (Figure 3a).

Within the MSU7 reference genome, the narrow AG2 region of 6.0 Mb to 6.7 Mb
contained 27 annotated genes (including expressed and hypothetical proteins) and 52 trans-
posable elements (TE) (including retrotransposons) (Figure 3b; Supplementary File S6).
Among the annotated genes were several seed storage proteins, including six seed al-
lergenic proteins (RAL1 to RAL6), three prolamins (PROLM 19, 20, and 22), and three
protease inhibitor/LTP family proteins. In total, three loci were annotated as regulatory
proteins, a leucine zipper protein (LOC_Os07g10970), Rc (LOC_Os07g11020) [27], and a
DUF630/DUF632 domains containing protein (LOC_Os07g11070) annotated as a putative
basic leucine zipper (bZIP) protein.

Nearly all of the annotated genes contained protein-altering variants potentially
associated with the phenotype (p < 0.0005, Supplementary File S6), with the most significant
among those, a missense SNP, found in an IPP transferase (LOC_Os11050). Notably,
the DUF630/DUF632 domains containing protein (LOC_Os07g11070) had two missense
variations and one INDEL, which were among the highest significant variations in the
AG2 peak region (Figure 3). The leucine zipper protein (LOC_Os07g10970) and a kinase-
associated phosphatase (LOC_Os07g11010) upstream of Rc did not contain any significant
protein-altering variants.

Simplified haplotype structure revealed 5–6 major blocks with near-perfect LD, each
having essentially two distinct alleles (Figure 3d,e). The blocks were tightly linked to
each other, such that combinations of these block alleles defined only five major haplotype
groups (Grp 1–5) across the whole peak region (Figures 3d and S7a). Further, the phenotypic
distribution of the transformed haplotype groups was improved (Figure S7b).

Modeling phenotype by haplotype groups using binomial GLM showed that in each
of the haploblocks the effect was significant (−log10(p) > 10; Supplementary File S8).
Arranging phenotypes by haplotype groups (Figure S7) revealed that Grp 1, with mostly
alternative alleles to the Nipponbare reference including wild-type functional Rc and MR-
type DUF630/DUF632 domains containing protein (LOC_Os07g11070), had the highest
average rates of survival, followed by Grp2, with mostly alternative alleles except for the
prolamin block towards the end of the region. Interesting to note was that the recombinant
haplogroups (Grp3 and Grp4) had a lower average phenotype that the reference-allele Grp5.
While MR and Nanhi belonged to Grp1, Kharsu 80 and TKM9 belonged to Grp2, consistent
with above-average survival rates. Interestingly, KHO, like IR42 and IR64, belonged to the
reference Grp5 with below-average survival rates under AG. While this did not fit with
KHO being an AG2 donor, it was consistent with genetic distance analysis across the AG2
region (Figure 1b).

2.5. Significant Expression Patern Differences between Tolerant Donors and Susceptible Parental
Genotypes Revealed by RNA-Seq Analysis

To further characterize the candidate genes in the refined AG2 region and provide
insight into global expression profiles of accessions with contrasting phenotypes under
AG, RNA-Seq analysis was performed on four tolerant genetic donors and two susceptible
accessions. An average of 18.78 ± 1.38 million clean reads were generated per sample, 89.2%
to 95.3% of which were successfully mapped to the MSU7 reference genome. The detailed
summary for these cDNA libraries is presented in Supplementary File S9.
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Based on an FDR corrected p-value < 0.05, pairwise comparisons between differentially
expressed genes (DEGs) of the four tolerant lines, MR, KHO, Kharsu, and Nanhi, relative
to IR42 and IR64 were made (Supplementary File S10). The union between all DEGs
within the 8 pairwise comparisons and filtering of significant DEGs for presence in at least
2 pairwise comparisons resulted in a list of 20,212 loci (Supplementary File S11). Of these
17,912 (89%) successfully mapped to 1114 bins in MapMan, of which 17 were ranked as
significant (Supplementary File S12).

Significant bins included photosynthesis, cell wall modifications, carbohydrate
metabolism, secondary metabolism, nucleotide metabolism, and fatty acid desaturation.
All are represented in the metabolism overview (Figure 4a). Together significant bins
comprised 447 unique loci out of the 1724 loci represented in the metabolism overview.
The most significant bins belonged to light reaction and Calvin Cycle, with most DEG in
these bins found upregulated in AG tolerant lines. This seemed surprising given that the
tissues consisted of white coleoptile and remnant embryo tissue, devoid of any signs of
chlorophyll, harvested 4 days after imbibition in the dark under complete submergence,
conditions prohibitive of photosynthesis.

There were two significant bins with DEGs exclusively upregulated in AG tolerant
lines associated with trehalose metabolism and contained OsTPP7, the causal gene of the
AG1 QTL, which was consistently among the most upregulated DEG across all four AG
tolerant lines (Supplementary File S11). The two large significant bins, corresponding to
cell wall modification and cell wall degradation, showed mixed differential expression
with a near equal amount of down and upregulated entries in AG tolerant lines, suggesting
differences in cell wall dynamics between AG tolerant and susceptible lines. Then, three
bins associated with secondary metabolism, isoprenoids and terpenes, flavonoids, and sim-
ple phenols, showed mixed differential expression. While the former two contained largely
downregulated DEGs in AG tolerant lines, DEGs associated with simple phenols were
mostly upregulated in AG tolerant lines. Significant bins mostly had DEGs downregulated
in AG tolerant lines related to sulfur metabolism and nucleotide metabolism.
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 Figure 4. Mapman visualizations of the union of 20,212 (17,938 successfully mapped) differentially
expressed genes (DEG) (FDR-corrected p < 0.05) of 8 pairwise comparisons between four AG tolerant
lines (Nanhi Ma-Zhan Red, Khao Hlan On, Kharshu 80A, and Nanhi) and two AG susceptible
varieties (IR64 and IR42). (a) Metabolism overview map representing 1724 DEG. DEG upregulated in
AG tolerant lines are represented in blue boxes and downregulated DEG in red boxes. Grey circles
indicate the absence of DEG in these bins. Black dotted trapezoid indicates pathways highlighted
in (b). Green rounded rectangles indicate significant bins. (b) Glycolysis and TCA cycle map
representing 124 DEG. DEG upregulated in AG tolerant lines are represented in blue boxes and
downregulated DEG in red boxes. Grey circles indicate absence of DEG in these bins.

A closer look at glycolysis, TCA, and energy metabolism (Figure 4b) revealed differ-
ences apart from the significant glycolysis and glyoxylate cycle bins (Figure 4a). DEGs in
glycolysis were mostly related to glucose-1-P conversion to either UDP-glucose or glucose-
6-P. No DEGs were found in the pathway leading from fructose-6-P to PEP. TCA-related
and glyoxylate cycle DEGs were moderately upregulated in AG tolerant lines. Upregu-
lated DEGs in fermentation were largely associated with the conversion of pyruvate to
acetaldehyde, suggesting enhanced alcoholic fermentation in AG tolerant lines.

2.6. Four Distinct Clusters Identified by Regional RNAseq Analysis of the Peak Region of AG2

Of the 27 genes in the AG2 region, 19 were expressed at detectable levels (Figure 5).
Interestingly, Rc and the IPP transferase in the proximal region that showed the highest sig-
nificant variants (Figure 3) were not expressed. Heatmap visualization of normalized gene
counts for all DEGs across two AG susceptible and four AG tolerant lines revealed four dis-
tinct clusters (Figure 5). Cluster1 (Clr1) contained genes relatively highly expressed across
the AG tolerant lines. Clr1 included the leucine zipper regulatory protein, three prolamin
genes (PROLM 19, 21, and 22), an NAD-dependent epimerase, and the DUF630/DUF632
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domains containing protein (LOC_Os07g11070). Cluster 2 (Clr2) genes were more highly
expressed only in the aus donor lines (Kharsu and Nanhi) and included seed allergenic
proteins and LTP protein. Cluster 3 (Clr3) genes were consistently more highly expressed in
susceptible lines relative to the donor lines. They included a kinase-associated protein phos-
phatase, a hydrolase and two expressed proteins. Cluster 4 (Clr4) genes were less expressed
in the 2 aus lines and included a seed allergenic protein and two expressed proteins.
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Figure 5. Heat map and the hierarchical clustering of differentially expressed genes (DEG) within
the AG2 peak region. The heat map shows the log2FC of relative gene expression within the region
across all six accessions. The default transformation method, rlog of deseq2 package [28] was used
to transform the gene count output from StringTie (v.2.1.4). The rlog transformed value of gene
counts scaled by library size was used to plot the heatmap. Red indicates up-regulation, green shows
down-regulation, and black is neither up- or down-regulated. Clr = cluster.

3. Discussion

Bi-parental QTL mapping approaches using various AG trait donors have consistently
identified AG2 (Figure 1) [11–14,29]. LOD scores for AG2 QTLs from the bi-parental
mapping approaches were high (Figure S1), and the variance explained ranged from 9.9%
to 39.7%. AG2. However, the physical size of the AG2 QTLs was quite large, spanning a
region from 5 Mb to 18 Mb (Figure S1). Collectively these results supported the presence of
AG2 in a variety of genetic backgrounds but did not enable precise localization of the AG2
causal mutation for downstream trait marker development or candidate gene approaches.

In most cases, the AG2 QTL region spanned the predicted centromeric region, where
recombination events are reportedly lower [30], likely contributing to the poor resolution of
AG2 in QTL mapping. One GWAS result identified a QTL for AG on chromosome 7 that was
proposed to be overlapping with AG2; however, the p-values were relatively low [22]. This
might partly be due to poor representation of AG2 in their selected panel, poor ancestral
recombination in the region, or a combination of both factors. Moreover, their chromosome
region spanning from 17.9 Mb to 18.3 Mb does not match the overlapping regions of the
previous biparental QTLs, that largely ranged from 6 Mb to 13 Mb (Figure S1), suggesting
the possibility of more than one QTL on chromosome 7.

Enrichment of GWAS panels can be achieved based on phenotype or genotype infor-
mation. Since we specifically targeted the AG2 region, we decided on a latter approach. To
our knowledge, enrichment of GWAS panels based on genotype data has not been previ-
ously described in crops. We used SNP information within the MR AG2 region to screen the
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3K RG panel for related germplasm. Based on a new comparison of the overlapping regions
of the AG2 QTLs (Figure S1), we focused on a region spanning 6 Mb to 13 Mb. Rather than
using the whole AG2 region, we arbitrarily divided the region into 17 bins of ~1000 SNPs
and used the respective MR-SNP haplotype of each region to query the 3K RG. This strategy
had several advantages: (1) higher resolution power since all the SNPs were accounted for
regardless of the physical size of each bin; (2) removal of bias against potentially highly
conserved regions that might mask less conserved regions; (3) anticipating that there might
be two or more sub-regions within AG2 that could contribute to the observed phenotype in
MR, but that might not be co-segregating in other genetic backgrounds.

The final GWAS panel contained mainly indica accessions (329), a smaller number of
aus accessions (19), and several admixed accessions (3) (Figure S3; Supplementary File S3),
confirming that AG2-related genotypes exist in both sub-groups (MR and KHO are indica,
while Nanhi and Kharsu are aus). Interestingly, even though the panel was highly enriched
for potential MR-derived AG2 haplotypes, phenotyping revealed that most accessions were
not AG tolerant. Phenotype distribution was heavily skewed toward low AG survival
rates. MR was still among the most tolerant accessions, indicating that the causal AG2
variation is either rare (Figure S4) or masked in specific genetic backgrounds. Nevertheless,
a single significant QTL peak for AG encompassing the Nipponbare reference region of
6 Mb to 6.7 Mb on chromosome 7 was detected using the enriched GWAS analysis within
the AG2 region, effectively refining the AG2 QTL by approximately 10-fold.

Interestingly, when the same panel was used to detect associations with red pericarp, a
single highly significant peak at 5.6 Mb–6.8 Mb on chromosome 7 was detected (Figure S5;
Figure S6); largely congruent with the AG peak. The proximity of the AG peak marker
to Rc and the tight overlap of AG and red pericarp GWAS peaks within the enriched
panel suggested a tight linkage of both traits or even possible pleiotropy of Rc. This
was supported by (1) a significant correlation of red pericarp and AG tolerance, and (2)
the finding that all known AG2 trait donors feature a red pericarp phenotype, with the
exception of TKM9 (Figure 1a).

Genome-wide comparative expression analysis of four AG tolerant lines vs. two
AG susceptible lines supported previous findings that AG tolerant accessions are able
to deal with AG-conditions through maintenance of active metabolism, driving growth
through cell expansion by efficient breakdown of storage carbohydrates, while mitigating
the deleterious effects of anaerobic energy metabolism (alcohol fermentation) through
alcohol catabolism and antioxidant activity (Figure 4, Supplementary File S12). Notably,
upregulation of trehalose metabolism, including upregulation of the AG1 gene OsTPP7,
was among the significant pathways distinguishing AG tolerant lines from susceptible
ones, underlining the importance of trehalose-6-phosphate mediated source sink regulation
during AG [16]. Since both AG1 and AG2 are present in all four AG tolerant lines, it was
not possible to distinguish between AG- and AG2-specific effects in our set and it is quite
possible that some of the observed differential expression between tolerant and susceptible
lines is due to the presence-absence of OsTPP7.

Surprisingly, light reactions, Calvin cycle and tetrapyrrole biosynthesis were among
the significantly upregulated pathways in AG tolerant lines, even though anaerobic germi-
nation was performed in complete darkness for 4 days. Thus, active photosynthesis was not
possible, even in the tolerant accessions and the observed transcript signature indicative of
photosynthesis, thus reflecting an overall preparation of the tolerant genotypes to switch
from heterotrophism to autotrophism once light and air are available. We speculate that
the surplus energy and carbon available to AG tolerant lines under AG is thus not only
invested in cell expansion to expand the submerged coleoptile towards light and air, but
also to drive etioplastic differentiation even though tissues were fully white at times of
harvest and did not show any signs of chlorophyll.

Among the 27 annotated genes within the AG2 peak region, 19 were differentially
expressed between AG-tolerant and AG-susceptible genotypes under AG conditions
(Figure 5). Rc, however, was neither expressed in AG-tolerant nor in AG-susceptible
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genotypes at detectable levels. This speaks against pleiotropic effects of Rc being responsi-
ble for the observed AG phenotypes unless Rc is transcribed earlier on during germination.
Published AG transcriptomic studies do not support Rc expression, even at earlier time
points [31–34]. Consequently, there is no evidence supporting the transcription of Rc
during germination or vegetative growth. Rc is mainly expressed in panicles during grain
filling stages [27], where it orchestrates the accumulation of proanthocyanidins (PA) in the
developing pericarp that gives red rice its distinct coloration. While flavonoid biosynthesis
was among the significant bins in MapMan analysis, DEGs within the bin were mainly
downregulated in AG tolerant backgrounds, which further argues against Rc activity
during germination.

It could simply be that Rc-mediated differences in PA concentrations in the pericarp
contribute to the observed differences in AG tolerance. PAs have been demonstrated to
exhibit strong antioxidant properties [35–37] and could influence hypoxia-related stress
signaling or mitigate the hypoxia-related accumulation of ROS during germination. It
was reported that PAs regulated some key enzymes that control the levels of ROS and the
antioxidant capacity in the germinating seeds of Arabidopsis [38] and antioxidant activity
and response to oxidative stress are among the enriched GO’s of AG donors (Supplementary
File S12). However, the finding that not all red accessions of the panel were tolerant and
that the highly AG tolerant TKM9 did not exhibit PA accumulation in the pericarp seems
to argue against this. Consequently, while Rc cannot be entirely ruled out as a candidate
gene, it is unlikely, and further studies in this respect are warranted.

In total, three prolamins, PROLM19, PROLM 20, and PROLM22, were highly upregu-
lated in all four AG tolerant genotypes relative to the two AG susceptible ones (Figure 5).
Prolamins are seed storage proteins of cereals synthesized during grain filling [39]. After
glutelins, they are the most abundant storage proteins in rice [39], and Nipponbare (MSU)
contains 28 putative prolamins. Expression of prolamins during late germination has not
been specifically reported, but all three genes were also upregulated under AG in an earlier
transcriptomic study by Narsai et al. [33]. Interestingly, PROLM 24 (LOC_Os06g31070)
was previously suggested as a biomarker for successful seed priming in rice, supporting
a yet unidentified role for prolamin synthesis during germination [40]. However, the
finding that Grp1, the haplogroup showing the highest average survival rates, largely
showed the absence of these three prolamins argues against these genes being causal for
the AG2 phenotype.

A leucine zipper protein (LOC_Os07g10970), in close proximity to Rc and the most
significant SNP, was also relatively more highly expressed in all AG tolerant varieties,
except MR (Figure 5). However, it was highly conserved, and no protein-altering variants
were found within the panel. The DUF630/DUF632 domains containing and putative bZIP
protein (LOC_Os07g11070) were more highly expressed in all AG tolerant lines except
Kharsu (Figure 5). In Grp1 and Grp2, which were the two haplotypes associated with higher
survival under AG, LOC_Os07g11070 did show several protein-altering variants, with the
potential to affect function. As a putative regulatory protein, differentially responsive to AG
in AG tolerant lines and with protein-altering variants associated with high AG survival,
LOC_Os07g11070 seemed a likely candidate to explain the global downstream effects of
the qAG2 region on gene expression and phenotype. A dysfunctional DUF630/DUF632
domains containing protein on chromosome 10 in rice, REL2, was implicated with altered
cell development and morphology in leaves [41]. The rel2 mutation was further associated
with transcriptional changes of many structural and regulatory genes involved in leaf cell
morphogenesis, suggesting a potential regulatory role of DUF630/DUF632 proteins in cell
development. Similarly, LOC_Os07g11070 could affect coleoptile cell shape and promote
elongation during AG.

Compared to the results of Hsu and Tung [22], this study demonstrates the advantages
of enriching a GWAS panel based on genotypic similarity in a target QTL region. It is
likely that the “AG2” peak at 18 Mb identified by Hsu and Tsung [22] is distinct from
the AG2 QTL at ~6 MB, and it did not appear in our panel since we did not enrich for
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it. Similarly, neither AG1 nor any other previously identified AG QTLs was detectable
in the enriched panel. Collectively this demonstrates the advantages and disadvantages
of using a “haplotype-enriched panel” to delimit the region of a QTL. This is similar to
a fine-mapping approach, where a specific focus is given to novel recombination in a
selected QTL region, resulting in higher resolution and sensitivity in the target peak region
at the expense of other QTLs that might have been detected in the original QTL mapping
population. The haplotype-enriched panel offers some advantages over traditional fine-
mapping, which include: (i) higher resolution is achieved even in poor recombination
regions such as AG2; (ii) no time-consuming backcrossing and progeny-testing; and (iii)
the original QTL is validated in other genetic backgrounds in the enriched-GWAS panel.
A distinct disadvantage, however, is that GWAS activities do not yield in near-isogenic
lines (NIL) containing the target QTL to be used for varietal improvement.

4. Materials and Methods
4.1. Resequencing of Potential Donors and Susceptible Recipients

Resequencing was performed for IR42, IR64, MR, KHO, Kharsu 80A, Nanhi, and
TKM9 since they were known AG2 donors but not part of the 3K RG data set. DNA was
extracted using Qiagen DNAeasy Plant Maxi kit (QIAGEN, Germantown, MD, USA),
according to the manufacturer’s instructions. Sequencing was performed by Macrogen
(Seoul 08511, Korea), generating 100 bp paired-end reads on a HiSeq1000 (San Diego, CA,
USA), using TrueSeq technology and lane partitioning via barcoding. Quality control, read
mapping and variant calling against the Nipponbare reference genome was performed
within the CLC Genomics Workbench 7.0.4 (QIAGEN, Germantown, MD, USA) using the
following parameters: Mapping mode: map reads to contigs; Mismatch cost = 2; Insertion
cost = 3; Deletion cost = 3; Length fraction = 0.5; Similarity fraction = 0.8. Identity by
state (IBS) genetic distance matrix at chromosome 7 from 6 to 13 Mb was calculated based
on variants (SNPs and INDELs) from the resequencing data of known AG donors and
recipients, replacing missing calls with the reference genotype.

4.2. Development of an Enriched-GWAS Panel

An enriched panel consisting of 351 rice accessions was selected from the 3K RG
dataset [23] using the following strategy: variants of IR42 and Ma-Zhan Red (MR) relative
to the Nipponbare reference within the QTL region (chromosome 7, 6 Mb to 13 Mb) were
considered for the selection. A total of 17,611 variants were identified that either show
polymorphism between MR and IR42 or, in case the genotype of IR42 was not called,
between MR and the Nipponbare reference. Of these, 16,193 variant positions were found
in the 3K RG dataset. Based on this list of variant positions, the region was split into
17 blocks of 1000 variants each, except the last one, which contained 193 variants. For each
block, we sorted the 3000 varieties from the 3K RG according to the number of positions
within the block where the genotype matches that of MR, while the missing calls were
counted as a half-match. The top 100 varieties with the highest match count were then
selected in each block and assigned as MR-positive. After merging the selections from each
block and removing duplicates, we obtained 490 accessions. Of these, 351 accessions from
the IRRI gene bank that had available seeds and possessed germination rates higher than
80% under control conditions were used for the GWAS panel.

4.3. Phenotyping

Seed germination tests in Petri dishes lined with moist filter paper and incubated
in a germination chamber at 30 ◦C were conducted for quality assessment of the seeds.
Germination rate was scored after 4 days after imbibition (dai) and 7 dai. Accessions with
rates below 80% were excluded from the panel. Phenotyping was conducted in a screen
house at IRRI, following the protocol of Septiningsih et al. [12] in December 2015, February
2016, and March 2016. Dry seeds were sown on trays filled with 1.5 cm of fine soil and
covered by another layer of 1 cm. A total of 20 seeds per entry with three replicates per
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entry in each experiment were used. An alpha plus design was used for randomization,
including the two controls (IR42 and Ma-Zhan Red) used in each tray. The trays were then
submerged in 8 cm of tap water, and the survival rate was counted on 14 and 21 days after
sowing (das), with the latter data used in GWAS.

Since the panel was selected based on haplotypes in a region that covers the domesti-
cation gene Rc (a gene that is responsible for red pericarp color), pericarp color was also
recorded and was used in separate GWAS analysis.

The function glm() from R stats package was used to model survival rate (using
binomial family GLM with logit link), and the zero-inflated extension of this model using
glmmTMB package was selected [42].

4.4. Association Mapping of an Enriched Panel Selection

Genotype data for panel accessions was prepared as follows. The 3K RG Filtered SNP
set (4.8M SNPs) was downloaded from the SNP-Seek website (http://snp-seek.irri.org;
accesed on 17 August 2018) [43], data for the selected panel were extracted, applying
filtering criteria (minor allele frequency > 3%, missing rate < 16%), resulting in a dataset of
2,891,859 SNPs (filtered set). This set was further LD pruned using PLINK v1.90 indep-
pairwise command with parameters r2 = 0.8, window 20 kb, window step 1, arriving
at a set of 231,112 SNPs. The kinship matrix on the LD pruned was set using GEMMA
software (command gemma –gk 1). The top five principal components of the linkage
disequilibrium (LD) pruned set to be used as covariates were computed using PLINK –pca
command [44,45]. The mixed linear model approach was preferred because it takes the
relationships among individuals through the kinship (K) matrix and the population struc-
ture into account [46–48]. Mixed linear model was run using Genome-wide Efficient Mixed
Model Analysis software (Genome-wide Efficient Mixed Model Analysis; GEMMA v.0.95a,
PLINK v1.90b3.46; http://www.xzlab.org/software.html; accessed on 5 May 2017) [49] on
both filtered and LD pruned set, using kinship matrix and top five principal components.
The survival rate was used as a primary phenotype. For the subset of samples with a non-
zero survival rate (n = 295), the same GWAS procedure was run on the logit-transformed
phenotype (computed as Y_logit = log(Y/(1 − Y)) where Y is the proportion of survival
rate). For the filtered set, the total number of SNPs analyzed by GEMMA was 2,525,802
for the original phenotype and 2,512,003 for the transformed phenotype due to additional
filtering within the software defined by default parameters (namely, missing rate <5%). For
the additional GWAS for pericarp color, encoded as a binary phenotype (white vs. colored),
we used a logistic regression model implemented in PLINK. For peak region analysis, the
GWAS was re-run with the extended dataset comprising SNPs, short INDELs, and larger
deletions [26].

4.5. Peak Region Analysis Using INDELs and Presence-Absence Variations (PAV)

For peak region analysis (chr7 6.0–6.7 Mb), we prepared an extended dataset compris-
ing both SNPs, short INDELs, and larger (>50 bp) deletions [26], and presence-absence
variations (PAV) organized as explained below. The INDEL dataset was taken from 3K [24].
For PAV data preparation, each large deletion cluster in the Fuentes et al. dataset consists
of deletion calls in different samples that have substantial overlap but may have different
breakpoints. While this representation is useful to focus on a unique evolutionary event, it
is useful to have a presence-absence variable for every base in the reference for the purpose
of association analysis. Thus, we also post-processed the per-sample deletion data to get a
presence-absence signal with single-base resolution. The boundaries of these PAVs were
computed using the “disjoin“ function in the GenomicRanges package [50] from Bioconduc-
tor. For haplotype analysis, we computed a distance matrix based on the filtered variants
and clustered the samples into 5 haplotype groups using hierarchical clustering. Linkage
disequilibrium (LD) between SNPs was measured as squared correlation (r2) using R. To
evaluate phenotype differences between groups, we used the ‘compare_means’ function

http://snp-seek.irri.org
http://www.xzlab.org/software.html
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from the R package ‘ggpubr’ [51]. The LD heatmap, genotype heatmap, and other elements
of Figure 3 were created using the R package ‘grid’.

4.6. RNAseq of AG Donors and Susceptible Parents

Seeds from four AG donors (MR, Khao Hlan On (KHO), Kharsu 80A, and Nanhi) and
two AG susceptible parents (IR42 and IR64) were obtained from the IRRI gene bank and
stored at 4 ◦C after post-harvest processing. Seed dormancy was broken by incubation
at 50 ◦C for 5 days. Seeds were de-hulled, sterilized in 70% ethanol for 2 min, washed
three times with sterile water, and submerged in beakers with 25 seeds each and 8 cm
of autoclaved distilled water for 4 d at 30 ◦C in a germination chamber in the dark. The
coleoptile and remaining embryo tissue were harvested after 4 d and snapped frozen in
liquid nitrogen and stored at −80 ◦C. Each experiment was performed individually and
repeated independently four times.

Total RNA was extracted on dissected coleoptiles from the seeds and ground in liquid
nitrogen following the method by Li and Trick [52] with some modifications. The clean-up
was performed using the RNeasy kit (Qiagen) and then quantified using Nanodrop (ND-
1000; Labtech, Paris, France). RNA quality was examined using a 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). High-quality RNA samples for library construction
were selected based on 260 nm:280 nm ratio and RNA integrity number (RIN) above 8.0. A
total of 24 samples were sent to Macrogen, Korea, for sequencing on an Illumina HiSeq2500
platform generating 100 bp paired-end reads.

FastQC [53] was used for the analysis of read quality and its visualization. Low-quality
bases and library adapters were removed using Trimmomatic ver. 0.36 [54]. Reads were
mapped against Nipponbare (IRGSP build 1.0 RAP-DB) while the mapping and alignment
of reads were analyzed using HISAT2 (hierarchical indexing for spliced alignment of
transcripts 2) [55]. The DESEQ2 package of Bioconductor was used to test for pairwise
differential expression analysis and gene count analysis [28]. To compare gene expression
within the AG2 region, expression levels were quantified by normalizing total gene counts
with the effective library size.

For genome-wide expression analysis, pairwise log fold changes of all 4 AG tolerant
lines vs. all 2 AG susceptible lines (8 comparisons in total) were filtered for FDR corrected
p-values below 0.05 and only DEG present in at least 2 out of the 8 comparisons were
considered for further analysis. MapMan [56] visualizations against the RAP-DB map were
used to visualize the gene expression data.

5. Conclusions

An “enriched-haplotype” GWAS approach for AG2 enabled the narrowing down of
the AG2 region to ~700 kb, where other methods have failed. The AG2 peak overlapped
with a peak for red pericarp coloration and contains Rc, a known major modulator for
proanthocyanidin accumulation in rice pericarp. While the contribution of Rc to the
observed AG tolerance phenotype in the panel cannot be ruled out, a strong linkage
between non-functional Rc alleles and the variation responsible for AG-susceptibility
are more likely to be responsible for the observed correlation between red pericarp and
functional Rc allele and AG tolerance. A strongly Rc-linked DUF630/DUF632 protein
with potential regulatory function emerged as a priority candidate gene within the AG2
region as it showed consistent expression differences and allelic variation between AG
tolerant and AG susceptible lines. Strong selection for white pericarp and consequently
non-functional Rc alleles in rice breeding may have thus inadvertently caused the purging
of AG2 donor alleles from the majority of the available breeding pool.
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