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Abstract: Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They
play crucial tasks in controlling biological processes directed by proteases which, if not tightly
regulated, can damage the host organism. PIs can be classified according to their targeted proteases
or their mechanism of action. The functions of many PIs have now been characterized and are
showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer,
AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as
insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to
their pharmacological properties and their high specificity, selectivity, and affinity to their target
proteases at the tick–host interface. In this review, we discuss the structure and function of PIs
in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible
practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug
candidates, highlighting the most promising ones tested in vivo and which are now progressing to
preclinical and clinical trials.

Keywords: protease inhibitors; proteases; tick saliva; drug discovery

1. Introduction

Proteases are ubiquitous enzymes in plants, animals, and microorganisms that play
key roles in the majority of physiological processes [1,2]. Proteases are involved in several
reversible and irreversible reaction cascades including hormone production/signaling
pathways, apoptosis, inflammatory reactions, and homeostasis [3]. Depending on the
active amino acid in the enzyme’s active site, proteases are classified into cysteine, serine,
aspartic, glutamic, and threonine proteases [3], and metalloproteases represent another
protease class containing a divalent metal ion linked to the active site residues [4]. Serine
proteases are the most abundant proteolytic enzymes, followed by metallo- and cysteine
proteases and finally the aspartic and threonine proteases [5]. In addition to their roles
in vital biochemical processes, proteases are also implicated in various diseases such as
viral diseases, cancer, inflammation, and bleeding disorders [6]. Given their important
roles in diverse physiological processes, protease activity must be rigorously controlled
and regulated to avoid any enzyme dysregulation that might be pathogenic to the host
organism [7]. This tight regulation is usually conducted by blocking the zymogen, the
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inactive enzyme precursor, or through the action of protease inhibitors (PIs) [8], which
partially or totally inhibit enzymes by forming a complex with their target proteases [4].

While the majority of PIs are proteins or peptides, some low molecular weight non-
proteinaceous compounds such as polysaccharides, glycerolipids, triterpenes, and polyphe-
nols are also considered PIs [9]; these are not specific to particular proteases and inhibit a
broad spectrum of enzymes [10]. In contrast, proteinaceous PIs are usually more specific
and can even target unique proteases. As a result, PIs can be classified according to their tar-
get enzyme, although exceptions are frequently encountered, such as the α2-macroglobulin
that inhibits proteases of different classes [6]. A particularly impressive role for PIs has
been observed in parasite–host crosstalk; PIs found in tick saliva have been shown to
modulate host immune cells [11], mediating local immunosuppression and modulating
blood clotting at the site of infection, thereby exerting a beneficial effect to the tick (allowing
attachment and feeding) at the expense of the host [12].

Given their fundamental roles and potential translational application, there have
been significant efforts to identify new PIs from various sources and study those already
identified in detail using novel technologies and methods. Indeed, with technological
advances, the study of PIs has substantially improved over recent years, not least the
availability of three-dimensional (3D) structural information for several PIs and their
targeted proteases, permitting receptor-based design.

Here, we review the biochemistry and fundamental mechanisms of action of PIs. We
enumerate and discuss the different classes of PIs based on the proteases they inhibit and
their mechanism of action. Moreover, we discuss their applications in critical fields like
agriculture and medicine. In the final section, we focus on an interesting natural source of
PIs, tick salivary glands, and their potential pharmacological applications.

2. Classification of Protease Inhibitors

The catalytic activity of proteases is regulated by different inhibition mechanisms
and different PI families [13]. Despite similarities in the 3D structure of PIs, they can be
classified into over 107 families and divided into 40 clans according to their structural
similarities (secondary and tertiary) and their different functions [13]. Laskowski and Kato
first developed a classification scheme for PIs in 1980 [14] according to their reactive center,
disulfide bond number, and amino acid sequence [14]. With advances in biotechnology
and increasing knowledge about PIs, Rawlings et al. [15] established a classification of PIs
in 2004 based on amino acid sequence homology that subclassified PIs to 48 families and
26 clans [5].

2.1. Target-Based Classification

PIs can be classified according to their target protease into six groups [4]: serine,
cysteine, aspartyl, glutamate, and threonine protease inhibitors. Metalloprotease inhibitors
are also contained within this classification, as they inhibit proteases with a divalent metal
ion in their active site [16]. A non-exhaustive list of the most common PI families, their
principal features, and their properties according to the target-based classification system
is illustrated in Figure 1 and discussed below.
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2.1.1. Serine Protease Inhibitors

Since serine proteases are the most abundant protease family, containing >26,000 pro-
teases [17], their respective inhibitors are the largest group of PIs in animals, plants, and
microorganisms [18]. Most serine protease inhibitors follow the conventional mechanism
of inhibition through the generation of irreversible Michaelis complexes characterized by
covalent bonds between the protease and the inhibitor [19]. Serine PI domains ensure
efficient functionality and allow their subclassification into various superfamilies such
as the Kunitz-type PIs, Bowman–Birk inhibitors, serpins, trypsin inhibitor-like domain
inhibitors (TILs), and Kazal domain inhibitors [12].

Serpins

The serpin superfamily is the largest serine PI family [20]. Serpins typically weigh
~45 kDa and are relatively large molecules (~350–400 amino acids) compared to other
PIs [21]. The 3D structure of serpins includes three β-sheets (A, B, and C) and up to nine
α-helices that fold to form a specific spatial structure including a reactive center loop (RCL)
near the C-terminus [22]. Serpins are categorized as “suicide inhibitors” due to the inactive
covalent complex formed with their target protease [23]. This suicide inhibition is often
referred to as a “mousetrap”, since the RCL interacts with the target protease active site,
and its scissile bond (P1-P1’) is cleaved to generate a stable complex [24]. The resulting
bond between the protease and the RCL leads to the insertion of the cleaved RCL into the
β-sheet A and relocation of the protease to the opposite pole of the serpin, forming a suicide
covalent complex [24]. Serpins are involved in the regulation of different physiological
processes such as blood coagulation, fibrinolysis, signal transduction, the complement
cascade, and immune responses [25].

Kunitz-Type PIs

PIs in the Kunitz superfamily are characterized by the presence of one or many Kunitz
inhibitory domains. They are generally small proteins with molecular weights ranging
from 18 to 24 kDa [26]. The Kunitz domain is characterized by anti-parallel β-sheets
and α-helices maintained in a compact 3D structure by three disulfide bonds [27]. Most
Kunitz-type PIs are competitive inhibitors, acting in a substrate-like manner and binding
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reversibly to the protease [28]. Active site blocking is mediated by the RCL attachment
to the catalytic zone through a non-covalent bond. The highly exposed RCL loop of
Kunitz-domain inhibitors is suitable for a wide variety of proteases, so these inhibitors are
relatively non-specific and therefore potentially useful across a range of applications [29].
Indeed, Kunitz-type PIs are known to regulate inflammation and coagulation factors and
have also been implicated in tumor biology [3].

Bowman–Birk Inhibitors (BBIs)

This superfamily of PIs is characterized by small molecular weight peptides ranging
from 5 to 16 kDa and a structure with a single or two inhibitory regions [30]. BBIs are
competitive inhibitors and follow the classical mechanism of substrate binding to the
protease active site [31]. A single BBI inhibitor protein can act on two different target
proteases simultaneously by virtue of two opposed loops formed by antiparallel β-sheets
and stabilized by seven disulfide bonds [23,32]. Given their specific mechanism, several
researchers have focused on BBIs for specific applications such as to inhibit cancer [33].

2.1.2. Cysteine Protease Inhibitors

Cysteine protease inhibitors (CPIs), or cystatins, are the second largest group of PIs
after serine PIs. They are divided into three main families: family-1 cystatins or stefins,
family-2 cystatins or cystatins, and family-3 cystatins or kininogens. Stefins are mostly
intracellular and the smallest cystatin family in terms of molecular weight (10–11 kDa) [3].
Stefins inhibit cathepsins B, L, and H and also papain. In several therapeutic investigations,
they have been identified as potential diagnostic tools for cancer [34]. Like stefins, cystatins
inhibit papain and cathepsins B, L, and H, but, they are larger (11–14 kDa) and are trans-
ported out of the cell to exert their action [35]. Kininogens are divided into three categories:
high molecular weight kininogens (120 kDa), T-kininogens (68 kDa), and low molecular
weight kininogens (60–80 kDa) [3,36,37]. They play important roles in the modulation of
inflammatory responses and are used as biomarkers of kidney disorders [37].

There are numerous documented functions of CPIs, and some have been shown
to be critical for the proper functioning of important physiological pathways such as
cathepsin regulation [38]. The structural features of CPIs include 4 to 5 antiparallel β-sheets
surrounding an α-helix. Their highly conserved inhibitory domain is mainly composed of
two hairpin-like loops formed by the β-sheets and the N-terminal region [39]. Cystatins
follow the competitive inhibition model with slight modifications, as they do not bind
in a substrate-like manner. In fact, the two hairpin loops bind to the protease active site
and block the access of any substrate, while the N-terminal region maintains effective
attachment of the inhibitor to the enzyme [40,41].

2.1.3. Metalloproteases Inhibitors

Despite their low molecular weight (only 3–4 kDa), metalloprotease inhibitors (MPIs)
effectively inhibit a wide range of metalloproteases [42]. MPIs are classified as competitive
inhibitors, since they act in a substrate-like manner [43]. From a structural point of view,
MPIs do not possess an inhibitory loop or a specific secondary structure for inhibition.
Instead, their inhibitory fragment is located near the C-terminus and contains a scissile
bond. The cleavage of this latter bond allows the fixation of the new C-terminal side to the
active site of the protease with the help of its metallic ion [23,28]. The efficiency of MPI
inhibition has been reported to be enhanced by secondary interactions outside the active
site of the protease [44].

2.1.4. Aspartyl Protease Inhibitors

The natural aspartyl PIs are proteins of about 20 to 22 kDa and conformational stability
ensured by two disulfide bonds [45]. Despite aspartyl proteases including important
members such as cathepsins D and E, renin, pepsin A and C, and, most importantly, the
HIV-1 protease, their natural inhibitors remain poorly described for several reasons. One
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main reason is probably related to the low representation of aspartyl proteases in the human
genome, with only 15 members described [46]. Regardless of their low bioavailability, the
presence of a scissile bond and their short half-life have meant that strategies to inhibit
aspartyl proteases involve the development of synthetic peptides or mimics with a non-
cleavable bond to replace the scissile bond [47].

2.2. Mechanism-Based Classification

The target-based classification is limited, as numerous PIs are active against two or
more enzymes. Indeed, in humans, there are vastly more proteases than PIs; despite the
continuous discovery of human proteases and their respective inhibitors, the ratio of one
PI for every five proteases has remained constant [41,48]. However, in addition to the
target-based classification, it is possible to classify PIs according to their mechanism of
inhibition, in particular the steric or catalytic inhibition of the enzyme active site or its
neighboring regions [49]. Enzyme inhibition mechanisms can be divided into two general
categories, reversible and irreversible. Reversible inhibition can be further subdivided
into competitive, uncompetitive, and non-competitive inhibition [41]. The mechanism
based-classification can be divided into three major classes (Figure 2): competitive protease
inhibition (also called canonical inhibition), exosite-assisted competitive inhibition or
non-canonical inhibition, and finally irreversible inhibition or trapping inhibition [41].
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Figure 2. The mechanism-based classification of protease inhibitors. (a): competitive inhibition: the
inhibitor binds to the active site instead of the substrate, (b): Exosite-assisted competitive inhibition:
the inhibitor blocks the access to the active site through binding to an exosite, (c): Irreversible
inhibition: the inhibitor binds irreversibly to the enzyme inducing its inactivation

2.2.1. Competitive Protease Inhibitors

The canonical inhibition mechanism is also known as the standard or Laskowski
mechanism [50]. Inhibitors belonging to this class attach using a lock-and-key system
through the insertion of the inhibitor RCL into the catalytic site of the targeted protease
(Figure 2a). The β-sheet conformation allows the binding of the inhibitor to the active site
in a substrate-like manner. Consequently, the RCL scissile bond is slowly hydrolyzed by
the protease without any product release, as the amide bond is later reconnected [15,41].
Numerous PIs belong to this family, mainly the BBIs and Kazal and Kunitz domain-
containing inhibitors.
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2.2.2. Exosite-Assisted Competitive Inhibitors

Known also as non-canonical inhibitors, this class represents inhibitors binding to a
secondary site distinct from the protease active site (Figure 2b). Access to this active site
is blocked in a non-catalytic manner [51,52]. This inhibition mechanism is classified as
competitive but differs from the standard Laskowski mechanism [50]. Inhibitor binding to
the exosite is crucial for inhibition, as it maintains the inhibitor–enzyme interaction and
enhances inhibitor specificity [51]. As mentioned above, CPIs are non-canonical PIs that
follow a slightly modified competitive inhibition mechanism, since the N-terminal region
does not interact with the active site in a substrate-like manner but switches to the side of
the active site to ensure sufficient binding energy for the enzyme–inhibitor complex [41,53].

2.2.3. Irreversible Inhibition

This class of inhibition is triggered by the protease, which catalyzes the activation
of its respective inhibitor (also referred to as a suicide substrate). The cleavage of the
inhibitor reactive loops (Figure 2c) triggers a major conformational change, resulting in
the irreversible cross-linking of the protease to its inhibitor [23,51]. α-2-macroglobulin is a
600 kDa inhibitor with four reactive loops on its surface, which plays a major role in the
elimination of excessive proteases in the blood [54]. Serpins are also well-known suicide
inhibitors, as described above [55].

3. Applications of Protease Inhibitors

The accelerating increase in PI-related knowledge (structure, mechanism of action,
functional applications) has paved the way for several biotechnological applications of PIs
related to medicine and agriculture, as summarized in Table 1.

Biomedical research efforts have underscored the major role of these inhibitors in
pathobiology, providing opportunities to exploit them for the treatment of diseases such as
HIV [56] and cancer [57]. PIs targeting human proteases are implicated in protease-related
blood coagulation disorders, cancers, immune system dysfunction, and neurodegenerative
diseases [4]. In HIV infections, several combinations of PIs have been used therapeu-
tically [58], and protease inhibitor-based drugs such as nucleoside/nucleotide reverse
transcriptase inhibitors (NRTIs) or non-nucleoside reverse transcriptase inhibitors (NNR-
TIs) have been developed as antiretroviral drugs [59]. In cancer, PIs have been tested as
antitumor therapies to target the proteases implicated in tumor progression and metastasis
such as matrix metalloproteases, cathepsin B, matriptase, and kallikreins [60]; for example,
a BBI caused apoptosis and cell cycle arrest in colon cancer (HT-29) and breast cancer
(MCF-7) cell lines [61]. Moreover, a BBI mixture from soybean was shown to have a cancer
chemo-preventive effect against neoplastic polyps and was applied to the preclinical detec-
tion of prostate cancer [36]. Additionally, proteases are common in the immune system and
neurodegenerative diseases [32]. Several interesting properties, such as their high target
specificity, have made PIs interesting candidates for drug discovery [2]. Over 70 PIs have
been commercialized as drugs, with over 150 examined in clinical trials and thousands
preclinically [23]. Among the commonly-used commercialized PI drugs, enalapril and cap-
topril inhibit angiotensin-converting enzyme and are used to treat cardiovascular disease,
and bivalirudin is a thrombin inhibitor and potent anticoagulant [62,63].

In agriculture, plant PIs have been thoroughly investigated as they are important
in plant defense mechanisms. With the increased use of genetic engineering, transgenic
plants with genes coding for PIs have been investigated to improve agriculture. Indeed,
the PI dose applied to plants was correlated with protection against phytopathogens,
insects, microbes, and pests [64,65]. As a result, PIs have been employed in agriculture
as insecticides [66], anti-fungal agents [67], and antibacterial agents [68]. They target
the digestive proteases of phytophagous entities to exert anti-proliferative and growth
inhibitory effects [69]. Transcriptomic studies have revealed that PIs are the main proteins
produced during plant exposure to external pathogens [70]. A previous in silico study of
soybean plants revealed that a multigene family coding for Bowman–Birk PIs contained
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11 BBI genes that were expressed in a synchronized manner and that played a crucial
role in host-plant defenses against pathogens [71,72]. However, further studies of plant
PIs are required to overcome persistent challenges such as the adaptation of some insects
by downregulating their targeted proteases and upregulating other proteases (e.g., gut
proteases) to avoid the neutralization of their enzymes [73].

Table 1. Examples of protease inhibitors used in agriculture and medicine.

PI Type Source Application/Role Reference

SlCYS8 Cysteine protease inhibitor Solanum lycopersicum Inhibition of herbivorous
insects [74]

PPTI Kunitz-type inhibitor Poecilanthe parviflora seeds Pesticide [75]

TCMP-1 Metalloprotease inhibitor Tomato Protect plants from cadmium
accumulation [76]

CPI Metalloprotease inhibitor Tomato leaves Protect plants against
herbivores attacks [77]

PpyTI Kunitz-type inhibitor Poincianella pyramidalis Insecticide [78]

BWI-1 Serine protease inhibitor Buckwheat seeds Suppression of filamentous
fungi growth [79]

Cowpea cystatin Cysteine protease inhibitor Cowpea seeds Pesticide [80]

AtCYSa/AtCYSb Cysteine protease inhibitor Arabidopsis thaliana Improve plants tolerance to
various stresses [81]

Maspin Serine protease inhibitor Humans Tumor suppressor [82]

MNEI Serpin Humans Regulation of extravascular
sites inflammation [83]

DtTC Serine protease inhibitor Derris trifoliata Antimalarial agent [84]

BBI Bowman–Birk inhibitor Soybean Suppresses autoimmune
encephalomyelitis [85]

BBI Bowman–Birk inhibitor Soybean Anticarcinogenic agent [86]

JPM-OEt Cysteine protease inhibitor - Inhibition of tumor growth [87]

BBI Bowman–Birk inhibitor Soybean, pea, lentil, and
chickpea Colorectal cancer prevention [61]

PDI Kunitz-type inhibitor Potato Trypsin and cathepsin D
inhibitor [88]

CMTI-V Serine protease inhibitor Pumpkin seeds Trypsin inhibition [89]

SPIPm2 Kazal-type inhibitor Shrimp (Penaeus monodon) Immune response against
white spot syndrome virus [90]

BILN 2061 Serine protease inhibitor - Antiviral effect against
hepatitis C virus [91,92]

AFLEI Serine protease inhibitor Aspergillus flavus Elastase inhibitor [93]

PIs are regulated after saturation by available or free inhibitors, and other reports
have indicated that they are inactivated through oxidation of their active sites or through
proteolysis catalyzed by specific non-complexing proteases [94]. CPIs, for example, can
be degraded by neutrophil elastase, which is an extracellular serine protease [95]. On the
other hand, PI expression and synthesis are mainly stimulated by the presence of inactive
inhibitors or by an increase in PI complexes [96].
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4. Tick Salivary Glands: An Attractive Source of PIs with Potential Pharmacological
Applications

Ticks are obligate hematophagous arthropods that transmit the greatest variety of
pathogenic microorganisms to a wide range of wild and domestic animals, as well as
humans [97]. Hard ticks (Ixodidae) are unique among blood-feeders, lacerating small
vessels and sucking blood from the resulting hematoma for several days or even weeks [97].
Meanwhile, the host develops various responses to minimize blood loss and to reject the tick
including hemostasis, innate and acquired immunity, and inflammatory responses, leading
to wound healing and tissue remodeling [98]. Most of these responses rely on proteolytic
pathways involving several proteases, in particular pro-coagulants (thrombin, coagulation
factors), pro-inflammatory enzymes (neutrophil elastase, proteinase 3, chymase, tryptase,
kallikrein, and cathepsins L, B, S, C, and G, etc.), and complement enzymes [99–101]. To
complete their blood meal, ticks must hijack the host defense mechanisms triggered by
the tick bite and the accompanying infection [98]. To do so, they secrete a wide variety of
pharmaco-active molecules into the host via their saliva to modulate the proteolytic balance
in the bite site to guarantee an interrupted blood meal [102]. These molecules include PIs
with anti-clotting, anti-platelet, anti-tumor and anti-angiogenic effects, and that interfere
with defense-related host proteases (Figure 3) [103].
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mans [97]. Hard ticks (Ixodidae) are unique among blood-feeders, lacerating small vessels 
and sucking blood from the resulting hematoma for several days or even weeks [97]. 
Meanwhile, the host develops various responses to minimize blood loss and to reject the 
tick including hemostasis, innate and acquired immunity, and inflammatory responses, 
leading to wound healing and tissue remodeling [98]. Most of these responses rely on 
proteolytic pathways involving several proteases, in particular pro-coagulants (thrombin, 
coagulation factors), pro-inflammatory enzymes (neutrophil elastase, proteinase 3, chy-
mase, tryptase, kallikrein, and cathepsins L, B, S, C, and G, etc.), and complement enzymes 
[99–101]. To complete their blood meal, ticks must hijack the host defense mechanisms 
triggered by the tick bite and the accompanying infection [98]. To do so, they secrete a 
wide variety of pharmaco-active molecules into the host via their saliva to modulate the 
proteolytic balance in the bite site to guarantee an interrupted blood meal [102]. These 
molecules include PIs with anti-clotting, anti-platelet, anti-tumor and anti-angiogenic ef-
fects, and that interfere with defense-related host proteases (Figure 3) [103]. 
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Figure 3. Examples of protease inhibitors from tick salivary glands with anti-hemostatic, anti-tumor and anti-angiogenic
effects. (a) Numerous PIs from tick salivary glands have been characterized as anti-hemostatic compounds targeting platelet
aggregation such as Disagregin and Iris, blood coagulation including IrCPI, Ixolaris, TAP, Sculptin, Iris, and AAS19, and
fibrinolyses like BmTI-6 and Tryptogalinin. (b) With great interest, Amblyomin-X and Ixolaris were found to significantly
inhibit tumor growth with efficient anti-angiogenic action.

Other PIs were rigorously described for their immunomodulatory and anti-inflammatory
effects targeting both innate and adaptive host immunity (Figure 4) [103]. Apart from their
role in sustaining tick feeding, PIs represent the most prominent protein families in tick
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saliva that promote the establishment of tick-borne pathogens in the host [104]. Other tick
PIs target proteases involved in tick digestion, mainly those degrading hemoglobin and
albumin [105], or proteases implicated in embryogenesis that degrade reserve proteins and
energy supplies during the early phases of the tick lifecycle [106]. There are a few studies
reporting tick salivary PIs that facilitate successful pathogen transmission to hosts or that
have a role in tick digestion and embryogenesis and are reviewed elsewhere [103].
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salivary glands have been described for their anti-inflammatory activity such as HlSerpin a-b, Dscystatin, Ixodidin, TdPI,
and AAS41 or as immunomodulatory candidates including Iris, IRS-2, Sialostatin L2, Iristatin, and IrSPI.

PIs from tick salivary glands have long aroused interest in scientists in the field due
to their pharmacological characteristics and their high specificity, selectivity, and affinity
to their target proteases in the host [12]. As a result, research into tick PIs has steadily
progressed. Primarily, PIs have been purified from tick saliva or salivary gland extracts and
then characterized in several biochemical assays [107]. Nevertheless, some downstream
assays require milligrams or even grams of purified protein, and obtaining this amount of
native protein from crude tick saliva fractions or salivary gland extracts is challenging and
any purified proteins are likely to be contaminated [108]. However, the development of
new protein production methods using diverse expression systems has been a milestone in
drug discovery, in particular using the highly cost-effective Escherichia coli expression sys-
tem [109–111]. With advances in high-throughput approaches such as transcriptomics and
proteomics, several tick PI-encoding cDNAs have been cloned, and individual recombinant
PIs have been thoroughly studied [12]. Indeed, the expansion of sialoma projects (from the
Greek sialo = saliva) over the three last decades has enabled the annotation of thousands
of tick salivary sequences that are attributable to different protein families and are now
available in public databases [112]. These projects have unraveled two abundant PI families
in tick salivary glands: serine PIs and cysteine PIs [12]. Specifically, four superfamilies of
serine PIs have been identified in tick saliva including kunitz domain-containing inhibitors,
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serpins, trypsin inhibitor-type cysteine-rich domain inhibitors (TIL domain inhibitors),
and kazal domain inhibitors, while cysteine PIs refer to the cystatin family [12]. Several
PIs, principally kunitz-type inhibitors, serpins, and cystatins, have now been rigorously
characterized in vitro and in vivo [102,113,114], but only a limited number have progressed
to pre-clinical and clinical trials due to strict criteria for clinical use [11].

4.1. Tick Serine Protease Inhibitors and Their Applications

Kunitz domain inhibitors are highly abundant in tick salivary secretions and are
usually associated with the inhibition of trypsin-like serine proteases [115]. As men-
tioned above, members of this family can contain multiple tandem repeats of Kunitz
domains [115]. In tick salivary glands, only proteins with a single (monolaris), two (bilaris),
or five (penthalaris) Kunitz inhibitory domains have been detected [116]. Proteins from
this superfamily are considered to be the most valuable serine PIs in tick salivary glands
given their wide range of possible applications.

Tick salivary Kunitz domain inhibitors mostly function as anti-thrombotic factors by
inhibiting various proteases in the coagulation cascade and involved in platelet aggrega-
tion [117]. Most of these inhibitors target thrombin, factor Xa, factor XIIa, trypsin, and
elastase [117]. For instance, Ir-CPI [118] and TAP [119] were reported as anticoagulants,
and Disagregin was identified as a platelet aggregation inhibitor. Ir-CPI is a multi-target
Kunitz-type inhibitor that specifically interacts with activated human contact phase factors
(FXIIa, FXIa, and kallikrein), thereby inhibiting the intrinsic coagulation pathway [118].
The administration of Ir-CPI in both rat and mouse venous and arterial thrombosis models
resulted in a significant dose-dependent reduction in venous thrombus formation and
revealed a defect in the formation of arterial occlusive thrombi [118]. In addition, mice
injected with Ir-CPI were protected against collagen- and epinephrine-induced thromboem-
bolism without bleeding or impaired blood coagulation parameters [118]. Recently, the
antithrombotic activity of Ir-CPI was evaluated in preclinical animal models, confirming
that Ir-CPI is an effective and safe antithrombotic agent [120]. TAP, on the other hand, is a
single target Kunitz-domain anticoagulant peptide from Ornithodoros moubata saliva [119]
first identified as a slow tight-binding competitive inhibitor of FXa [119]. The recombinant
form (rTAP) was shown to significantly inhibit thromboplastin-induced fibrinopeptide
A generation following infusion into conscious rhesus monkeys [119]. TAP has been
tested in diverse models of venous and arterial thrombosis. In a primate model of arterial
thrombosis, rTAP demonstrated an antithrombotic effect and inhibited blood clotting more
effectively than heparin, a commonly used anticoagulant in patients with cardiovascular
disease, acute thrombosis, and arrhythmias [121,122]. In another study, TAP-antibody
had antithrombotic effects at low doses in a murine ferric chloride-induced carotid artery
thrombosis model [123]. Despite its promising anti-thrombotic effects, TAP has yet to be
tested in humans, mainly due to its antigenicity. However, both studies hypothesized
that direct FXa inhibitors could be used as an effective pharmacological approach for the
prevention of high-shear arterial thrombosis and other diseases such as atherosclerosis or
atrial fibrillation. In contrast to TAP, Disagregin, also isolated from O. moubata, is a potent
Kunitz-type inhibitor and selective inhibitor of fibrinogen-dependent platelet aggregation
and the adhesion of platelets to fibrinogen [124]. Disagregin inhibits platelet aggregation
in plasma stimulated by several agonists such as ADP, thrombin, platelet-activating factor,
and collagen [125]. Apart from having a unique sequence, the authors of this study demon-
strated that Disagregin binds to GPIIb-IIIa through a mechanism distinct from that used by
RGD-containing disintegrins [125]. These anti-hemostatic Kunitz-type compounds may be
useful therapeutically to treat other cardiovascular or hematological diseases.

In addition to their anti-hemostatic proprieties, some tick PIs have been described
as having anti-tumor and anti-angiogenic therapeutic properties, such as Ixolaris and
Amblyomin-X [126,127]. Ixolaris is a pleiotropic two-Kunitz domain PI isolated from the
salivary glands of Ixodes scapularis, with promising antithrombotic [126], anti-angiogenic,
and antitumor proprieties [128]. Recombinant Ixolaris was expressed in insect cells and
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shown to behave as a fast-and-tight ligand of FXa exosites, thereby inhibiting factor VIIa
(FVIIa)/tissue factor (TF)-induced factor X (FX) activation [128–130]

A recent structural study revealed that Ixolaris interacts with FXa via a noncanonical
mechanism [131]. Ixolaris also reduces heparin-catalyzed inhibition by antithrombin III
by binding to plasmatic FX and weakens the binding of FXa to plasmatic or immobilized
heparin [129,132]. In its antithrombotic activity, Ixolaris caused a dose-dependent reduction
in thrombus formation in a venous thrombosis model by inhibiting the extrinsic pathway of
the coagulation cascade [133]. Due to its potent and long-lasting activity with no apparent
hemorrhage or bleeding side-effects, Ixolaris is considered to be an effective and possibly
safe antithrombotic agent [133]. Given the mutual relationship between cancer and its blood
supply [134], several studies have investigated the effect of Ixolaris on tumor growth and
tumor vascularization. First, Ixolaris has been shown to inhibit the growth of U87-MG cells
in nude mice without visible bleeding [135], and the inhibitory effect of Ixolaris on tumor
growth was accompanied by downregulation of vascular endothelial growth factor (VEGF)
and a decrease in tumor vasculature in a human glioblastoma model [135,136]. In recent
preclinical studies, Ixolaris administered in a murine melanoma model retained inhibitory
activity on blood coagulation and showed a significant anti-metastatic effect compared to
untreated controls [126]. Taken together, these findings suggest that Ixolaris might be a
promising anticancer and antiangiogenesis therapeutic, especially for metastatic melanoma.

Amblyomin-X is a well-studied Kunitz-type inhibitor from tick salivary glands that
has undergone advanced pre-clinical testing. Amblyomin-X is a non-competitive inhibitor
of FXa with a unique structure that acts on prothrombinase and tenase complexes. It was
identified in the salivary glands of Amblyomma cajennense (currently A. sculptum) [137] and
was first described as an anti-coagulant [137,138] and later intensively investigated for its
anti-tumor and anti-angiogenic effects [139,140]. Although the effects of Amblyomin-X on
blood coagulation might be relevant to its antitumor effects, it has also been shown to have
direct, non-hemostatic effects on cells such as proteasome and autophagy inhibition [134].
Amblyomin-X selectively acts on tumor cells and induces apoptotic cell death, inhibiting
murine melanoma growth in vivo and decreasing the number of metastatic events [141].
Moreover, Amblyomin-X induced apoptosis in murine renal cell carcinoma in a dose-
dependent manner, provoking mitochondrial dysfunction and stimulating the production
of reactive oxygen species (ROS) [139]. Apart from its anti-tumor effects, Amblyomin-X
inhibits VEGF-A-induced angiogenesis by modulating endothelial cell proliferation and ad-
hesion in the chicken chorioallantoic membrane (CAM) [142,143]. Moreover, Amblyomin-X
modulates Rho-GTPases and uPAR signaling and reduces the release of MMPs, thereby dis-
rupting the actin cytoskeleton and decreasing the cellular migration of tumor cell lines [141].
In a pre-clinical study, Amblyomin-X was administered to mice harboring orthotopic kid-
ney tumors and significantly decreased lung metastasis [144]. Impressively, the injected
dose of Amblyomin-X was safe, with any symptoms of toxicity being reversible and only
seen at higher doses. In a horse melanoma model, Amblyomin-X modulated the tumor
immune microenvironment by inducing tumor cell death and significantly reducing the
tumor size [144].

Other Kunitz-type proteins have been described as immunomodulatory compounds,
particularly anti-inflammatory candidates. From I. ricinus, IrSPI, a Kunitz elastase inhibitor,
exhibited immunomodulatory activity by repressing the proliferation of CD4+ T lymphocytes
and pro-inflammatory cytokine secretion from both splenocytes and macrophages [145]. BmTI-
6 is a Kunitz-type trypsin and plasmin inhibitor isolated from Rhipicephalus (Boophilus) microplus,
which attenuated the pathophysiological and inflammatory parameters of induced emphy-
sema in mice [146]. Kunitz domain-containing proteins were also found to inhibit tryptases
released from mast cells during the inflammatory process. Tick-derived protease inhibitor
(TdPI) from the salivary glands of R. appendiculatus is a tight-binding Kunitz-related in-
hibitor of human tryptase β [147]. TdPI was also found to suppress the activity of trypsin
and plasmin, but with lower specificity. In one model, TdPI entered mouse mast cells, accu-
mulated in their cytosolic granules, and prevented the autocatalytic activation of tryptase,
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thereby suppressing inflammation [147]. Tryptogalinin from I. scapularis, in addition to
inhibiting β-tryptase, also targeted other serine proteases such as α-chymotrypsin, plas-
min, matriptase, and elastase involved in inflammation and tissue remodeling [148]. Both
TdPI and Tryptogalinin are therefore promising candidates for the treatment of allergic
inflammatory disorders like asthma [147–149].

Aside from inhibiting proteases, proteins with this domain can also target ion chan-
nels [150,151]. It has been shown that a modified Kunitz domain peptide from the salivary
glands of R. appendiculatus can activate potassium channels in an in vitro system, suggest-
ing a vasodilator function [152]. These properties have made Kunitz domain inhibitors
attractive potential new remedies targeting various life-threatening diseases [134].

Serpins are the largest family of serine protease inhibitors, present in all kingdoms
and the second most abundant PI superfamily in tick salivary glands [153]. Like their
mammalian counterparts, tick serpins appear to execute their function through a suicide
cleavage mechanism in which both the serpin and the targeted protease are permanently
inactivated after recognition [153]. Of note, some tick serpins can inhibit multiple enzymes
including AAmS6, AAS27, and AAS41 from A. americanum [154–156], IxscS-1E1 from
I. scapularis [157], and RmS-6 and RmS-17 from R. microplus [158]. Rather than being
considered promiscuous, they appear to be selective in the sense that the targeted enzymes
are often part of a conserved biological mechanism. One well-studied protein to illustrate
this point is AAS19 from the salivary glands of A. americanum, which inhibits blood clotting
factors Xa, IXa, XIIa and XIa, thrombin, trypsin, and plasmin, all of which are involved in
the hemostatic system [159,160].

Investigations into several tick serpins have provided a fundamental understanding
of the molecular basis of their roles in tick biology, reproduction, parasitism, and blood
feeding [153]. From this perspective, various possible applications of tick salivary serpins
have been proposed based on extensive in vitro and in vivo studies. Nevertheless, to our
knowledge, none of these serpins has reached preclinical trials, possibly due to their high
molecular weight. As serpins are relatively “big” molecules, typically ~45 kDa but up
to 100 kDa due to differences in their glycosylation profiles, this could be problematic
when designing new drugs [161]. Encouragingly, a recent study investigated the activity of
the SA-RCL peptide derived from the RCL domain of the tick serpin HlSerpin-a, which
displayed similar enzymatic inhibitory activity and immunosuppressive properties to
full-length HlSerpin-a [162]. By virtue of their proprieties, various applications of tick
salivary serpins have emerged. For instance, RHS8 from the tick R. haemaphysaloides was
studied to understand tick reproduction, given its role in vitellogenesis [163]. rSerpin
from R. microplus [164], Iris from I. ricinus [165], and AAS19 from A. americanum have
been proposed as candidate anti-tick vaccines. The immunization of rabbits and/or mice
with recombinant rSerpin and Iris increased the mortality of feeding ticks and reduced
their weight after engorgement [165]. The vaccination of rabbits with rAAS19 resulted
in faster feeding, smaller ingested blood volumes, and impaired the ability of ticks to lay
eggs [159]. Of significant interest, almost 20 serpins from different tick species have now
been proposed for pharmacological use, since they target diverse physiological processes
including blood coagulation, fibrinolysis, inflammation, and immunity [166]. Tick ser-
pins have been shown to profoundly modulate host inflammation, and several serpins
have been proposed as potential candidates for drug development against inflammatory
diseases. For example, HlSerpin-a and HlSerpin-b, from the hard tick Hae. longicornis,
displayed PI activities against multiple mammalian proteases [162]. Both suppressed the
expression of inflammatory cytokines such as TNF-α, interleukin (IL)-6, and IL-1β from
lipopolysaccharide-stimulated mouse bone marrow-derived macrophages (BMDMs) or
mouse bone marrow-derived dendritic cells [162]. From A. americanum, rAAS41 inhibited
chymase-mediated inflammation in rat paw edema and vascular permeability models [154].
Furthermore, some tick salivary serpins are pleiotropic, targeting both hemostatic and
immune system components. Iris was the first ectoparasite serpin shown to interfere with
both hemostasis and the immune response [167,168]. Iris modulated T cell and macrophage



Int. J. Mol. Sci. 2021, 22, 892 13 of 23

responsiveness by inducing a Th2-type response [168]. Iris also interfered with inflam-
mation by inhibiting the production of pro-inflammatory cytokines by peripheral blood
mononuclear cells [167]. Iris also was noted to bind to monocytes/macrophages and alter
the secretion of TNF-α [169]. Interestingly, these activities were independent of Iris’s pro-
tease inhibitory function, making it an attractive candidate for the design of therapies for
diseases with TNF-α overexpression. Finally, Iris modulates host hemostasis by targeting
thrombin, FXa, and tissue plasminogen activator, thereby inhibiting platelet adhesion,
blood coagulation, and fibrinolysis [168]. In contrast to Iris, the anti-inflammatory action
of a second serpin from I. ricinus, IRS-2 [170], was solely due to its function as a serine
proteinase inhibitor. IRS-2 was the first ectoparasite protein that specifically inhibited both
the cathepsin G and chymase released by stimulated neutrophils and mast cells, respec-
tively, during inflammation [170]. IRS-2 also selectively inhibited the production of IL-6 in
dendritic cells stimulated with Borrelia spirochetes, attenuating STAT-3 phosphorylation
and finally impairing Th17 differentiation and maturation [171]. Its anti-inflammatory
function was confirmed in in vivo paw edema experiments, in which IRS-2 extensively
inhibited edema formation and neutrophil recruitment in the inflamed tissue [170]. More-
over, this serpin inhibited cathepsin G-induced and thrombin-induced platelet aggregation,
suggesting a role in hemostasis [170].

TIL domain inhibitors (trypsin inhibitor-like cysteine-rich domain) are underrepre-
sented in tick salivary glands compared to the other protease inhibitor superfamilies but
are predicted to inhibit serine proteases [12]. Several TIL domain-containing peptides
were reported in the sialotranscriptomes and sialoproteomes of different tick species [98].
However, to our knowledge, only one has so far been functionally characterized: Ixodidin
from R. microplus [172]. Ixodidin has anti-trypsin and anti-elastase properties in addition
to antimicrobial activity [172].

The Kazal-type proteinase inhibitors (KPIs) were detected in tick salivary glands
and are predicted to function as anticoagulants in blood-sucking animals such as leeches,
mosquitoes, and ticks [98]. However, to our best knowledge, no protein from this super-
family has been functionally characterized from tick salivary glands.

Although most of the PIs found in tick saliva can be classified into the previously
mentioned classes, some inhibitors defy classification. For instance, Sculptin was classified
as a new thrombin inhibitor identified in a transcriptomic analysis of A. sculptum salivary
glands. It also prolonged blood clotting times in a concentration-dependent manner [173].
This inhibitor is similar to hirudin, an important and widely-studied inhibitor from leeches,
and molecules of the same class have been used clinically [174]. Sculptin was classified as
a competitive, reversible, and specific thrombin inhibitor, because its inhibition mechanism
was slightly different to that of hirudin; however, the agents have a similar inhibition
constant (Ki). Studies with Sculptin have shown that, during inhibition, it is degraded by
serinoproteases including thrombin, so it has been suggested that this inhibitor probably
does not require antidotes [173]. Interestingly, Sculptin diverges phylogenetically from
hirudin, and this class of inhibitors is rarely found in ticks; however, due to the importance
of molecules similar to hirudin in salivary complexes from leeches, this class may warrant
closer attention in ticks.

4.2. Tick Cysteine PIs and Their Applications

Cystatins constitute a superfamily of tight-binding inhibitors that are widely repre-
sented in various organisms and reversibly interact with papain-like cysteine proteases
(family C1) and legumains (family C13). In ticks, only inhibitors of papain-like cysteine
proteases have been reported to date [11], all belonging to two of four subgroups of CPIs:
type 1 cystatins (stefins), which are mostly involved in intracellular blood digestion or
tick developmental processes; and type 2 cystatins, the most studied in ticks, which can
be secreted via their saliva to overcome host immune responses [175]. We previously
reviewed the role of cystatins in tick physiology and blood feeding [175]. Since their
first identification in ticks, the functions of around 20 cystatins have been experimentally
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validated, at least in vitro, and we list and describe these in our recent review [12], so here
we only discuss those cystatins validated in vivo. Due to their immuno-pharmacological
properties, tick cystatins have been proposed as therapeutics for immune-related diseases.
For instance, two secreted type 2 salivary cystatins from I. scapularis, Sialostatin L and
Sialostatin L2, have been functionally characterized and shown to have anti-inflammatory
and immunosuppressive functions in vitro and in mammalian models of immune-related
diseases [176,177]. Sialostatin L’s proprieties are possibly due to its inhibitory activity
against lysosomal cysteine cathepsins L, C, V, S, and X and papain, which are important
in matrix degradation by fibroblasts, and intracellularly for protein cleavage by antigen-
presenting cells [176]. In a related study, Sialostatin L inhibited the proliferation of both
CD4+ and CD8+ T cells, suggesting a modulatory effect on adaptive immunity [176–178].
Furthermore, Sialostatin L inhibited neutrophil migration in severe inflammation and the
secretion of cytokines by mast cells, dendritic cells, and lymphocytes [176]. Sialostatin L
dramatically reduced the secretion of IL-9 by Th9 cells, an essential inducer of asthma symp-
toms [179]. Through this inhibition, Sialostatin L abrogated airway hyperresponsiveness
and eosinophilia in an experimental asthma model, probably by inhibiting IRF4 [179,180].
Another possible application of Sialostatin L was associated with its ability to decrease the
production of IFNγ and IL-17 by T cells in an experimental autoimmune encephalomyelitis
(EAE) mouse model of multiple sclerosis [181], in which administration of Sialostatin L
significantly prevented disease symptoms [181]. Similar to Sialostatin L, Sialostatin L2 has
been described as an anti-inflammatory compound since it inhibits cathepsins L, C, V, and
S, with preferential affinity for cathepsins L and V [182]. Sialostatin L2 impaired inflamma-
some formation and inhibited caspase-1 maturation, leading to a decrease in IL-1 and IL-18
secretion by macrophages [182]. Moreover, Sialostatin L2 suppressed IFN-β-mediated
immune reactions in murine dendritic cells upon infection with Borrelia burgdorferi [183].
DsCystatin, from the salivary glands of Dermacentor silvarum, interacted with human
cathepsins L and B and impaired their activities [184]. DsCystatin was demonstrated to
inhibit the expression of inflammatory cytokines such as IL1β, IFNγ, TNFα, and IL-6
from mouse BMDMs. DsCystatin also attenuated TLR4 signaling by targeting TRAF6 and
relieved inflammation in Freund’s adjuvant-induced mouse arthritis models [184]. With a
similar affinity to Sialostatins, Iristatin, a novel type 2 cystatin from I. ricinus, inhibited the
proteolytic activity of cathepsins L and C [185]. It also reduced the production of several T
cell-derived cytokines including IL-2, IL-4, IL-9, and IFN-γ, mast cell pro-inflammatory
cytokines (notably IL-6 and IL-9), and nitric oxide by macrophages [185]. In addition,
Iristatin inhibited CD4+ T cell proliferation following OVA antigen induction and hin-
dered neutrophil and myeloid cell recruitment in vivo and in vitro. With such promising
immunosuppressive activities, these cystatins may be exploitable as immunotherapeutics.

5. Concluding Remarks

Nature has always been a constant resource for drug discovery, providing a catalog
of diverse compounds with different and interesting proprieties. Given their crucial
roles in diverse physiological processes, naturally-derived PIs are major drug candidates
for the treatment of several life-threatening diseases. Here, we reviewed several PIs
implicated as therapies for diseases such as hypertension, AIDS, adult T cell leukemia,
malaria, Alzheimer’s disease, hepatitis, and diabetes. Naturally-derived PIs have a high
target specificity and selectivity and a low risk of toxicity and immunogenicity due to
their low molecular weights; consequently, they are predicted to have fewer side-effects
when administered at the correct doses. PIs are also seen as attractive compounds in
agriculture due to their pesticide, antimicrobial, insecticide, anti-fungal, and antibacterial
properties. Interestingly, some PIs from vegetable sources exhibit unique stabilities at high
temperatures and extreme pH. As reviewed here, two classification schemes are often
used when characterizing new PIs. Despite their functional and sometimes structural
similarities, there is no unified design concept that is valid for all classes, and PI-derived
drug development remains quite challenging. For efficient development of PI-derived
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drugs, new design concepts and technologies are required such as docking simulations,
in silico screening, or in silico de novo design. The evolving knowledge and continuous
increase in information about their structure, mechanism of action, and function pave the
way for future in-depth studies.

Addressing these challenges, PIs from tick salivary glands might be regarded as “safe
compounds” given their high affinity and specificity to their target protease in the host.
Apart from being specific, tick PIs target several biological systems including the immune
system, hemostasis, inflammation, and wound healing as well as pathophysiological
processes such as tumor formation and angiogenesis. Over the last three decades, hundreds
of PIs from different tick species have been characterized at the biochemical and functional
levels, and some of them have been tested in advanced in vivo and preclinical trials.
However, there is still no commercialized tick-derived therapy, and even the most advanced
studies are still at the preclinical stage.
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ADP Adenosine diphosphate
BBI Bowman–Birk inhibitor
BMDM Bone-marrow-derived macrophages
CAM Chicken chorioallantoic membrane
EAE Experimental autoimmune encephalomyelitis
HIV Human immunodeficiency virus
IFN Interferon
IL Interleukin
Ir-CPI Ixodes ricinus contact phase inhibitor
IRF IFN-regulatory factor
IrSPI Ixodes Ricinus serine protease inhibitor
IRS-2 Ixodes ricinus serpin-2
KPIs Kazal-type proteinase inhibitors
MMP Matrix metallopeptidase
MPI Metalloprotease inhibitor
NRTI Nucleotide/nucleoside reverse transcriptase inhibitor
NNRTI Non-nucleoside reverse transcriptase inhibitor
OVA Ovalbumin
PBMC Peripheral blood mononuclear cells
PDGF Platelet-Derived Growth Factor
PI Protease inhibitor
RCL Reactive center loop
RENCA Murine renal adenocarcinoma
RGD Arginylglycylaspartic acid
RHS8 Rhipicephalus haemaphysaloides
ROS Reactive oxygen species
STAT Signal transducer and activator of transcription
TAP Tick anticoagulant peptide
TdPI Tick-derived protease inhibitor
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TIL Trypsin inhibitor like
TLR Toll-like receptor
TNF Tumor necrosis factor
TRAF TNF receptor-associated factor
VEGF Vascular endothelial growth factor
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