
HAL Id: pasteur-03548830
https://riip.hal.science/pasteur-03548830

Submitted on 31 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deep learning regularization techniques to genomics
data

Harouna Soumare, Alia Benkahla, Nabil Gmati

To cite this version:
Harouna Soumare, Alia Benkahla, Nabil Gmati. Deep learning regularization techniques to genomics
data. Array, 2021, 11, pp.100068. �10.1016/j.array.2021.100068�. �pasteur-03548830�

https://riip.hal.science/pasteur-03548830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Array 11 (2021) 100068
Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/journals/array/2590-0056/open-access-journal
Deep learning regularization techniques to genomics data

Harouna Soumare a,b,*, Alia Benkahla b,1, Nabil Gmati c,1

a The Laboratory of Mathematical Modelling and Numeric in Engineering Sciences, National Engineering School of Tunis, University of Tunis El Manar, Rue B�echir Salem
Belkhiria Campus Universitaire, B.P. 37, 1002, Tunis Belv�ed�ere, Tunisia
b Laboratory of BioInformatics, BioMathematics, and BioStatistics, Institut Pasteur de Tunis, 13 Place Pasteur, B.P. 74 1002, Tunis, Belv�ed�ere, Tunisia
c College of Sciences & Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
A R T I C L E I N F O

Keywords:
Deep learning
Overfitting
Regularization techniques
Dropout
Genomics
* Corresponding author. The Laboratory of Mathe
El Manar, Rue B�echir Salem Belkhiria Campus Univ

E-mail addresses: soumare.harouna@enit.utm.tn
1 These autors contributed equally, the order of t

https://doi.org/10.1016/j.array.2021.100068
Received 28 November 2020; Received in revised f
Available online 24 May 2021
2590-0056/© 2021 Published by Elsevier Inc. This
A B S T R A C T

Deep Learning algorithms have achieved a great success in many domains where large scale datasets are used.
However, training these algorithms on high dimensional data requires the adjustment of many parameters.
Avoiding overfitting problem is difficult. Regularization techniques such as L1 and L2 are used to prevent the
parameters of training model from being large. Another commonly used regularization method called Dropout
randomly removes some hidden units during the training phase. In this work, we describe some architectures of
Deep Learning algorithms, we explain optimization process for training them and attempt to establish a theo-
retical relationship between L2-regularization and Dropout. We experimentally compare the effect of these
techniques on the learning model using genomics datasets.
1. Introduction

In the last decade, Deep Learning (DL) algorithms have achieved
tremendous success in many domains where large scale datasets are used
such as Bioinformatics [2,13,50,62,88,94], Natural Language Processing
[5,15,28,47,71], Computer Vision and Speech Recognition [1,4,29,34,
37,56,65].

In this work, we review a class of DL algorithms called Feedforward
Neural Network (FNN) [54,68,91], in which information moves in one
direction, from input to output through sequential operations called
“layers”. These models are the generalization of logistic regression
models, both (FNN and logistic regression) are widely used in Bioinfor-
matics and Biomedical science to perform classification and diagnosis
tasks [8,20,21,24,27,44,48,70,73]. In most cases, we look for a non
linear mapping y ¼ f ðxÞ between a variable y and a vector of variables x.
The form of f depends on the complexity of the studied problem.

Logistic regression defines a low complexity model using a simple non
linear mapping from inputs to outputs. Whereas FNN defines a more
complex mapping between inputs and their corresponding outputs, thus
resulting models have high complexity and flexibility and better pre-
diction capacity. However, increasing the complexity of predictive
models increases also the risk of overfitting problem, which repercussion
matical Modelling and Numeric in
ersitaire, B.P. 37, 1002, Tunis B
(H. Soumare), Alia.Benkahla@pa
heir names is alphabetical.

orm 26 March 2021; Accepted 1

is an open access article under t
is that the training model fits well the training dataset but looses its
prediction capacity on unseen datasets.

Preventing overfitting problem is one major challenge in training
these algorithms. However, there are many techniques that deal with the
problem of overfitting called “regularization techniques”. The most used
regularization techniques in Machine Learning (ML) community are L1

and L2 regularization's [53]. The idea is to prevent the weights of the
model from being large by adding a supplementary term to the loss
function. The effect of this penalization is to make it so the learning al-
gorithm prefers to learn small weights. This method makes models less
complex and avoid the risk of overfitting. Another commonly used reg-
ularization technique so-called “Dropout”, developed by Hinton et al.
[33] consists to randomly remove some neurons (in hidden layers) dur-
ing the training phase. This forces the hidden units to extract useful in-
formation's from the input data and reduce co-adaptation between
hidden units, thus making the model less sensitive to the specific weights
of neurons. The Dropout technique allows to train an exponential number
of (thinned) Networks in a reasonable time [33]. During the test phase,
taking the mean prediction of the different (thinned) Networks is
equivalent to test on a single Network with all the hidden neurons [6]
(without dropping out any unit). To compensate the fact that the weights
are learned under Dropout, the outcome weights of neurons of each
Engineering Sciences, National Engineering School of Tunis, University of Tunis
elv�ed�ere, Tunisia.
steur.tn (A. Benkahla), nmgmati@iau.edu.sa (N. Gmati).

0 May 2021

he CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:soumare.harouna@enit.utm.tn
mailto:Alia.Benkahla@pasteur.tn
mailto:nmgmati@iau.edu.sa
www.sciencedirect.com/science/journal/25900056
www.elsevier.com/journals/array/2590-0056/open-access-journal
https://doi.org/10.1016/j.array.2021.100068
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.array.2021.100068

H. Soumare et al. Array 11 (2021) 100068
hidden layer are multiplied by the Dropout rate of that layer, which is a
gain in terms of computation time. However, the quality of this
approximation remains little known.

Many theoretical Dropout analyses have been explored [6,23,31,49,
55,58,75,79,81]. Baldi et al. [6] showed how the technique acts as
adaptative stochastic Gradient Descent. Wager et al. [79] analyzed
Dropout as an adaptive regularizer for Generalized Linear Models
(GLMs). Ma et al. [46] attempted to explicitly quantify the gap between
Dropout's training and inference phases and showed that the gap can be
used to regularize the standard Dropout training loss function.

This paper explains the mathematics behind training DL algorithms
and attempts to further establish the theoretical relationship that exists
between Dropout and other regularizations, mainly L2 norm. We
compare experimentally the effects of regularization techniques on
training models using two different genomic classification datasets.

The human DNA is a long chain of 3 billion base pairs, the function of a
large part of it, is unknown. Some fragments of DNA called genes code for
proteins that play important roles in chemical processes essential to life.
Some changes in the genes cause a dysfunction in the production of the
corresponding proteins, which could cause genetic diseases. The most
common genetic changes are called Single Nucleotide Polymorphisms
(SNPS) and are caused by a change of a base pair by another one at a
given position in the genome. It has been shown that some SNPS are
involved in several human diseases and can be used to predict human
reponse to certain drugs [27].

In our experiments, we started by using Logistic Regression on cancer
datasets, obtained from the Expression Project for Oncology (EXPO) [60].
Then we trained FNN on one 1000 Genomes Project dataset for individual
ancestry prediction according to their genetic profile [59]). All in-
dividuals are represented in both datasets by their SNPS profile [14].

This work is organized as follows:Section 2 describes the FNN archi-
tectures and the mathematics behind them; in Section 3 Gradient descent
algorithm is presented; Section 4 describes the traditional regularization
techniques and Dropout, Section 5 describes the materials and methods
and in Section 6, we present the experimental results, where different
regularization techniques are used.

2. Deep Learning: Feedforward Neural Network(FNN)

In this work, we discuss Feedforward Neural Network (FNN) [42,54,
57,69,76,91] or Multi-Layer Perceptron (MLP). In such Networks, the in-
formation moves only from the input to the output (see Fig. 2), without
any loop. This type of model is mostly used for supervised ML tasks such as
regression or classification tasks, where the target function is known. The
basic supervised learning algorithm is linear regression [12,51,82], in
this task the algorithm learns to map an input data x 2 Rd to some real
value y, by a linear transformation

f : Rd → R

x → z ¼ x �wþ b
:

Where w and b are respectively the weight vector and the bias term. The
symbol “�” is the dot product between two vectors. Another simple su-
pervised learning algorithm called logistic regression is used for the
classification problems where the target function takes discrete values.
Given an input data x, the logistic regression [18,19,39,74,86] applies a
non linear function to its corresponding linear regression output z, to
produce classes membership probabilities. For example, in a binary
classification task, given x and it corresponding class C1, logistic
regression algorithm outputs the conditional probability PðC1jxÞ of x
given C1. This probability is given by sigmoid function σðzÞ ¼ 1

1þe�z. In the
case where there are more than two classes, the conditional probability
PðCijxÞ is given by the softmax function softmaxðzÞi ¼ eziPnc

k¼1
ezk
. Where z ¼

ðz1 z2 …znc Þ and zi ¼ x �wi þ bi. wi and bi are respectively the weight
vector and bias term of the ith class Ci. nc is the number of classes and the
2

class probabilities sum up to 1, i.e.
Pnc
i¼1

softmaxðzÞi ¼ 1. Fig. 1 describes

the simplest possible Neural Network (NN), which contains a single
neuron corresponding exactly to an input-output mapping. A neuron with
sigmoid output function is equivalent to logistic regression. FNN is a
nonlinear function, which is also composed of several simpler func-
tions(neurons, where the output of a neuron can be used as an input of
another. Each of these functions provides a new representation of the
input data. It is composed of an input layer, one or more hidden layer(s)
and an output layer.

2.1. Supervised Neural Network

Let's consider an L hidden layer Feedforward Neural Network, in
which n input training samples X ¼ x1; x2;…; xn are labeled, i.e., given an
input xi, the corresponding output by the model is known and denoted yi
or yðxiÞ. Where y is a vector containing labels. A standard Neural Network
can be described as follows:

aðlÞj ¼ φ
�
zlj
�
; (1)

zlj ¼
X
i

wl
ija

ðl�1Þ
i þ blj ¼ aðl�1Þ �wl

j þ blj; (2)

where zlj, b
l
j and alj (a

0
j ¼ xj, for a d-dimensional input x ¼ ðx1 x2 …xdÞT)

are the jth hidden input, bias and activation function of the lth layer,
respectively. wl

ij is the weight connection from the ith unit of the ðl � 1Þth
layer to the jth unit of the lth layer. wl

j and aðl�1Þ are, respectively, the
incoming weight vector to the jth neuron of layer l and the output vector
of (l-1)th layer, φ is any activation function. FNNs can be seen as a
generalization of simple regression models. In fact, keeping only the
input layer with one linear output neuron in a Feedforward Network
defines a linear regression, and with a sigmoid or softmax function at the
output layer represents a logistic regression. Learning of a supervised
Network [26,63,87,90] consists to find the parameters wj and bj so that
output aL from the model approximates the desired output vector yðxÞ,
for all training inputs x. To achieve this goal, we define a mean squared
error loss function

C ¼ 1
n

X
x2X

Cx; (3)

Cx ¼ 1
2kyðxÞ � aLðxÞk22 ¼ 1

2

Pnc
k¼1ðyk � aLkÞ

2. Where yk and aLk are kth output
activation and desired output respectively, for a given input x.

There is another choice of loss function known as crossentropy. To
define this function, let's consider a binary classification problem with
sigmoid output function aLðxÞ ¼ σðzÞ, for each training input sample x,
we have Pðy¼ 0jxÞ¼ 1�Pðy¼ 1jxÞ ¼ 1� aLðxÞ and more generally

Pðy¼ yijxiÞ ¼ aLðxiÞyi
�
1� aLðxiÞ1�yi

�
:

Fig. 1. Logistic regression “neuron”.

Fig. 2. Classification network.

Fig. 3. Autencoder

H. Soumare et al. Array 11 (2021) 100068
Supposing that the couples ðxi; yiÞ, i 2 f0;…;1g are independent, the
likelihood function is given

P

yjXÞ¼ �

Yn
i¼1

Pðy¼ yijX
!

(4)

¼ �
Yn
i¼1

aLðxiÞyi
�
1� aLðxiÞ1�yi

�
: (5)

Training the NN consists to maximize the likelihood function which is
equivalent to minimize the crossentropy loss function defined by

C ¼ �1
n

Xn
i¼1

yilog aLðxiÞ þ ð1� yiÞlogð1� aLðxiÞÞ: (6)

Consider now, a multi-class classification problem, where the labels
are mutually exclusive. In this case, (6) takes the form

C ¼ �1
n

Xn
i¼1

Xnc
k¼1

ykðxiÞlog aLk ðxiÞ: (7)

aLkðxiÞ is the softmax function satisfying 0 � aLkðxiÞ � 1 and
Pnc

k¼1a
L
kðxiÞ ¼

1. In the rest of this work, C denotes the loss function defined by (3).
Fig. 4. Classification network & autoencoder.
2.2. Unsupervised Neural Network(Autoencoder)

So far, we have described FNN in the supervised learning case. Here,
we suppose that input samples X ¼ fx1; x2;…; xng are unlabeled, where
xi 2 Rd. Autoencoder is one the most used unsupervised learning algo-
rithms [41,52,77,83,93]. An Autoencoder is a NN designed to learn an
identity function in a way that the original input can be reconstruct from
a compressed version. Such a network will allow the discovery of a more
efficient and compressed representation of the input data. It consists of
two parts, an encoder and a decoder. Encoder maps input samples to a
3

hidden representation and decoder tries to reconstruct inputs from an
encoder, so it contains at least one hidden layer. In an Autoencoder
Network, the target yðxÞ of each input sample x is the input it self, i.e.
yðxÞ ¼ x, 8x 2 Rd. At the end the output has the size of the input.

The main objective of an Autoencoder is to automatically capture the
most relevant features from input data. It is also used as a nonlinear
dimensionality reduction technique [32,66,80] to transform a high d
dimensional data to a lower dimensional data. Mathematically it is
defined by the following application:

o : Rd → Rd

xi → φ
0
W 01 ∘ φW1 ðxiÞ; 8xi 2 Rd

Where φW1 and φ
0
W 01 are the encoding and decoding functions parame-

trized by W1 2 Rd�h and W
01 2 Rh�d respectively and defined as follow:

φW1 : Rd → Rh

xi → ahðxiÞ ;
φ

0
W 01 : Rh → Rd

ahðxiÞ → oðxiÞ
:

Where ah and o are, respectively, the hidden and output layers output
vectors. The parameters ðW1;W

01Þ are learned by minimizing the
reconstruction error between the input and the output of Network

L¼ 1
2n

Xn
i¼1

kxi �φ
0
W 01 ∘φW1 ðxiÞk22:

After Autoencoder training, the decoding layers are removed and the
encoding layers are retained and the learned matrix W1 is then used as
parameters of the first layer(s) of the supervised Network (see Fig. 3).

Alternatively, the couple (W1;W
0 1
) can be learned jointly(see Fig. 4) with

the classification Network [22,61,92]by minimizing CT , the following
loss function

CT ¼Cþ γ

2n

Xn
i¼1

kxi � x̂ik22:

Where x̂i ¼ φ
0
W 01 ∘ φW1 ðxiÞ, X̂ is a matrix whose rows are formed by x̂i’s

and γ is a tuning parameter.
3. Gradient descent

Once the loss function is defined, gradient descent strategy is typically
used to minimize it. Gradient descent is a first-order optimization strat-
egy for nonlinear minimization problems [17]. The loss function C is
minimized iteratively by using Gradient descent method [3] given by

wl
ij → wl

ij �
α
n

X
x2X

∂Cx

∂wl
ij
: (8)

Where α is the learning rate. For the sake of simplification, we assume
that there are no bias terms blj or simply consider it as an additional

component of wl
j. At each iteration, we have to compute partial de-

rivatives of Cx for each training input x, and then average them to update
weights wl

ij. Unfortunately, this method can be very expensive and
learning occurs slowly when the number of training inputs is large. This
problem of learning slowness can be avoided by the Stochastic Gradient

H. Soumare et al. Array 11 (2021) 100068
Descent (SGD) method.

3.1. Stochastic gradient descent

The idea of stochastic gradient descent [9,10,40,89] is to estimate at
each iteration partial derivatives for only a small randomly chosen
sample Xm ¼ fx1; x2;…; xmg called mini-batch and train with it.

wl
ij → wl

ij �
α
m

X
x2Xm

∂Cx

∂wl
ij
: (9)

We then take another randomly chosen mini-batch and the weight pa-
rameters are updated on it, until the training inputs are exhausted, which
is called an epoch of training. At this point, we start again with a new
epoch. To compute the partial derivatives, ∂Cx

∂wl
ij
at each layer, we apply the

chain rule:

∂Cx

∂wl
ij
¼ δljðxÞ

∂zlj
∂wl

ij
¼ δljðxÞal�1

i ðxÞ:

Where δlj ¼ ∂Cx
∂zlj

represent the error function of j neuron in the lth layer, for

an input x. For the sake of simplicity, we just write δlj and al�1
i instead of

δljðxÞ and al�1
i ðxÞ. This expression tells us how a little change in the

weighted input to the jth neuron in layer l changes the overall behavior of
the loss function. The backpropagation algorithm is used to compute δlj
for each layer.

3.2. Backpropagation

Backpropagation [30,84,85] is a widely used algorithm inminimizing
Feedforward Neural Network loss functions. It uses the chain rule to
compute iteratively the error of each neuron in a Network, from the
output to the input layer.

Errors at the output layer: Let's begin by computing δLj ; i 2 f1;…;cg,
errors of neurons in the last layer L. By using the chain rule, we have

δLj ¼
∂Cx

∂aLj

∂aLj
∂zLj

¼
�
yj � aLj

�
φ

0
�
zLj
� (10)

Because the loss function depends on zLj , through aLj only.

Errors at any hidden layer: error δlj of any hidden neuron j at any

layer l. The weighted input zlj of a hidden layer l is linked to the loss

function through all weighted inputs ðzlþ1
k Þk to the next layer.

δlj ¼
X
k

∂Cx

∂zlþ1
k

∂zlþ1
k

∂zlj

¼
X
k

δlþ1
k

∂zlþ1
k

∂zlj
:

Using the chain rule, we have

∂zlþ1
k

∂zlj
¼ ∂zlþ1

k

∂alj

∂alþ1
k

∂zlj

¼ wlþ1
jk φ

0
�
zlj
�
:

δlj ¼ φ
0
�
zlj
�X

k

wlþ1
jk δlþ1

k : (11)

The above expression tells us that error functions at any hidden layer are
given by the weighted sum of the error functions at the next layer. Which
4

means that errors are computed backwards, hence the name back-
propagation. By writing partial derivatives, ∂Cx

∂wl
ij
with respect to δlj, the

gradient descent updating rule is rewritten

wl
ij → wl

ij �
α
m

X
x2Xm

Xnh
j¼1

δljðxÞal�1
i ðxÞ: (12)

Where nh is the number of neurons in the lth layer. Typically, in DL al-
gorithms, the SGD algorithm is combined with backpropagation, where
we have to compute the gradient of a loss function, to be minimized for a
large set of data. The implementation of this algorithm is done in a few
steps:

1. Provide a set of training examples
2. For each example x:give a1ðxÞ, and perform the following steps:

● Do a Feedforward: For l ¼ 2;3;…; L compute zlðxÞ ¼ Wlal�1ðxÞ þ
bl with alðxÞ ¼ φðzlðxÞÞ.

● Output error function δL:Compute δLðxÞ ¼ rCx � φ
0 ðzLðxÞÞ.

● Backpropagate the error: For l ¼ L� 1; L� 2;…; 2 compute
δlðxÞ ¼ ððWlþ1ÞTδlþ1ðxÞÞ � φ

0 ðzlðxÞÞ
3. Gradient descent:For l ¼ L; L� 1;…;2 update the weights according

to the formula Wl → Wl � α
m

P
x2Xm

δlðxÞðal�1ðxÞÞT . We can also show

with small computations that the update formula for the vector bl

containing the bias terms in any l layer is written:bl → bl �
α
m

P
x2Xm

δlðxÞ

To implement stochastic gradient descent in practice, an external loop
generating mini training example runs, and an external loop running
through several training epochs are required. However, these were
omitted for simplicity.

4. Regularization techniques

One of the most serious problems in training ML models, particularly
for NN, is overfitting. This problem occurs when a training model is too
complex.
4.1. L1 and L2 regularization techniques

A widely used technique to reduce a model complexity is to add a
regularization term [26] to the loss function C. The new model loss
function Cλ is defined as follows:

Cλ ¼ C þ λΩðWÞ

These, update the general cost function by adding another term known as
the regularization term, where Ω is L1 or L2 norm and w is the NN weight
parameters.

4.1.1. L2 regularization
The L2 regularization term, commonly known as weight decay. The

idea of this technique also known as ridge regression or Tikhonov
regularization [78], is to add a L2 term to the function to beminimized, in
this case ΩðWÞ ¼ 1

2kWk22. This added term in L2 norm imposes the
weights to live in a sphere of radius inversely proportional to the regu-
larization parameter [[26], p. 249] λ. In this context, the updating rule,
using gradient descent strategy becomes

wl
ij →

�
1� αλ

n

�
wl

ij �
α
n

Xn
i¼1

∂Cxi

∂wl
ij
: (13)

this means that, after each iteration, the weights are multiplied by a
factor slightly smaller 1. It tends to force the model to prefer small
weights.

H. Soumare et al. Array 11 (2021) 100068
4.1.2. L1 regularization
L1 regularization modifies the loss function by adding a L1 term, i.e.

ΩðWÞ ¼ P
w2W jwj. The idea behind this technique is to regularize the

loss function by removing the irrelevant features from the training
model. In this situation, the updating rule is written

wl
ij → wl

ij �
αλ
n
sgn
�
wl

ij

�
� α

n

Xn
i¼1

∂Cxi

∂wl
ij
: (14)

Where sgnðwl
ijÞ is the sign of wl

ij. Both types of regularization try to
penalize the big weights when it's necessary by shrinking them after each
updating step, but the way of shrinkage is different [26]. When L2 reg-
ularization is used, the weights are shrunk by an amount proportional to
wl
ij, whereas in L1 regularization, the weights are shrunk by constant

quantity toward to zero. As shown in Fig. 5 (graph on the left), in a two
dimensional space, the L1 norm defines a parameter space bounded by a
parallelogram at the origin. In this case, the loss function is likely to hit
the vertices of the parallelogram rather than its edges. L1 regularization
removes some of the parameters, thus L1 technique can be used as a
feature selection technique. On the other hand, the L2 regularization
defines a circle whose radius size is inversely proportional to the regu-
larization parameter (see Fig. 6).

4.2. Dropout technique

In training a NN, Dropout technique regularizes learning by dropping
out some hidden units with certain probability. This is equivalent to
modifying [72] the NN by setting some hidden activation functions to
zero. Using Dropout, we can formally define the NN as follows:

~alj ¼ δlja
l
j; (15)

At each neuron j, in a hidden layer l, the output activation alj is multiplied

by a sampled variable δlj, to produce thinned output activations ~alj. These
thinned functions are then used as inputs to the next layer and the same
process is applied at each layer. This application is equivalent to sampling
a sub Neural Networks from a larger network. Where δlj is a Bernoulli

random variable (δlj ↪ Bernoulli(pl)) of parameter pl, i.e. a neuron in the

lth layer is kept with a probability of pl and removed with a probability
1
n

X
x2X

��yðxÞ � EδL�1

��
δL�1ðxÞ � aL�1ðxÞ �WL

���2
2
þ1
n

X
x2X

Var
��
δL�1ðxÞ � aL�1ðxÞ �WL ¼

1
n

X
x2X

��yðxÞ � pL�1aL�1ðxÞWL
��2
2
þ1
n

X
x2X

WLVar
�
δL�1ðxÞ � aL�1ðxÞ �ðWLÞT :

Fig. 5. Two dimensional graphical interpretation of L1 and L2 regularizations.
1� pl.
Srivastava et al. [72] suggested that, applying Dropout to a NN with n

units can be seen as sampling 2n sub Networks with weight sharing. In the
test phase, as it is not always practical to take the mean of 2n models, an
approximate averaging method is used. The idea is to approximate the
exponentially many Networks by a single NN without Dropout. To correct
the fact that training outgoing weights of a layer are obtained under
condition that neurons were retained with a probability p, the weights
are simply multiplied by p. This approximation has been proved for lo-
gistic and linear regression models [72,79]. But, for Deep Neural Net-
worksDNNs, there is an unknown gap between the expected output of
exponential sub Networks and the output of a single deterministic model.
Ma et al. [46] showed that under some assumptions on input data, the
gap is controlled and it can be used to regularize the single NN.
5

In this work, without any assumption of input data, we quantify
explicitly the gap and then show how it related to L2 regularization.

4.2.1. Dropout application to linear networks
To see more clearly the relationship between L2-regularization, we

start by studying the problem in a very simple case, where all activation
functions in the model are linear. Consider a NN, where all units are linear
(i.e. al ¼ al�1Wl, where al and Wl are the output vectors and weight
matrix of layer l 2 f1;…; Lg respectively). The Dropout NN loss function is

1
n

X
x2X

���yðxÞ � aL�1ðxÞ ~WL
���2
2
þ1� pL�1

pL�1

���ΣL�1 ~W
L
���2
2
: (16)

yðxÞ is the output vector given an input vector x. ΣL�1 ¼�
1
n diagðaL�1ðXÞðaL�1ðXÞÞTðXÞÞ

�1
2

, ~W
L ¼ pL�1WL. Given a matrix A, we

denote by diagðAÞ, a diagonal matrix with the same size and diagonal
elements as A.

At each layer l, we define a matrix alðXÞwhose columns correspond to
the values taken by the vector of the activation function al across input
data: alðXÞ ¼ ðaliðxjÞÞ, 1 � i � m, 1 � j � n, where aliðxjÞ is the ith output
neuron in (l)th layer of the jth input and m is the number of neurons in
the layer.

Proof. Training a standard nn without dropping neurons is done by
minimizing the following loss function:

1
n

X
x2X

��yðxÞ � aL�1ðxÞWL
��2
2

(17)

Dropout modifies the training process and the loss function in (17)
becomes

1
n

X
x2X

EδL�1

��yðxÞ � �δL�1ðxÞ � aL�1ðxÞ�WL
��2
2
: (18)

Where δL�1 is a random vector of the layer L� 1 with δL�1
i ↪

BernoulliðpL�1Þ and � denotes the Hadamard product. Using the formula
EðX2Þ ¼ ðEðXÞÞ2 þ VarðXÞ for a random variable X, we show that (18) is
equal to

Fig. 6. Dropout.

H. Soumare et al. Array 11 (2021) 100068
As VarðδL�1ðxÞ�aL�1ðxÞÞ ¼
�

1�pL�1

pL�1

�
aL�1ðxÞaL�1ðxÞT , we obtain the

desired result. Under the assumption that input layers follow a
Gaussian distribution with standard deviation σ, Dropout is equivalent in
expectation to L2-regularization. The regularization parameter λ is a

function of 1�pL�1

pL�1 σ2 which increases (resp. decreases) with the variance of

input layers σ2 (resp. with pL�1). Thus, Dropout regularization consists of
detecting the inputs with more variance and shrink their weights.
4.2.2. Dropout application to non linear networks
Here, we try to generalize the relationship between Dropout and

L2-regularization to Networks with nonlinear units. Consider a NN with a
non linear activation function, i.e., al ¼ φðal�1WLÞ. Dropout training
expected loss function is given by
1
n

X
x2X

����yðxÞ � φ

��
~W

L
�T

aL�1ðxÞ
�����

2

2

þ 1
2n

�
1� p
p

�X
x2X

kφ00
�
aL�1ðxÞ ~WL

�
ΣL�1
x

~WLk22: (19)
Where ΣL�1
x ¼

�
aL�1ðxÞðaL�1ðxÞÞT

�1
2
and ~W

L ¼ pL�1WL.

Proof. We know that a non linear Dropout Network training loss is
defined as

1
n

X
x2X

EδL�1

��yðxÞ � φ
��
δL�1ðxÞ � aL�1ðxÞ�WL

���2
2
: (20)

Using triangle inequality, (20) is bounded by
1
n

X
x2X

��yðxÞ � φ
�
pL�1aL�1ðxÞWL

���2
2
þ1
n

X
x2X

��EδL�1ðxÞ
�
φ
��
aL�1ðxÞ � δL�1ðxÞ�WL

��� φ
�
pL�1aL�1ðxÞWL

� ��2
2
:

Table 1
Different datasets used in this study.

Dataset #of samples Class 1 Class 2 # of SNPS

Breast-Kidney 604 344 260 10937
Colon-Kidney 546 286 260 10937
Breast-Colon 630 344 286 10937
Colon-Prostate 286 69 355 10937
Now, by applying a second order Taylor expansion of φ around EδL�1��
aL�1 �δL�1ðxÞWLÞ� ¼ pL�1aL�1ðxÞWL and by posing Z ¼ ðaL�1ðxÞ�

δL�1ðxÞÞWL � pL�1aL�1ðxÞWL, we have φððaL�1ðxÞ�δL�1ðxÞÞWLÞ ¼
φðpL�1aL�1ðxÞWLÞþ φ

0 ðpL�1aL�1ðxÞWLÞZþ 1
2φ

00ðpL�1aL�1ðxÞWLÞZZT .
Then EδL�1ðxÞ

�
φððaL�1ðxÞ�δL�1ðxÞÞWLÞ�� φðpL�1aL�1ðxÞWLÞ ¼ 1

2φ
00

ðpL�1aL�1ðxÞWLÞVarðZZTÞ. Because Z is centered i.e., EδL�1ðxÞðZÞ ¼ 0.
Thus, an upper bound of (20) is given by

1
n

X
x2X

���yðxÞ � φ
�
aL�1ðxÞ ~WL

����2
2
þ 1
2n

�
1� pL�1

pL�1

�X
x2X

kφ00
�
aL�1ðxÞ ~WL

�
Σx

~WLk22:

Here again, Dropout can be seen as regularizer, where the regularizer
represents the gap between EδL�1

�
φððaL�1 �δL�1ÞWLÞ� the expected

output of exponential thinned Networks produced by applying Dropout
and φðpL�1aL�1WLÞ, the output of a single deterministic Network, in
6

which the weights are scaled by pL�1 to compensate the fact that they are
learned under conditions in which 1� pL�1 of hidden units where
dropped out. In this case, Dropout training model can be seen as an
L2-regularization where, the regularizer λ depends on: Dropout rate; the
variance of each input and output layer.
4.2.3. Dropout with others regularization techniques
Dropout is known to improve training model performance when it is

combined with other regularization techniques. Batch normalization,
introduced by Ref. [35], is a regularization technique used to speed up
the training and improve performance of Deep NNs. In the training of a
DNN, the distribution of each layer's inputs change, as the parameters of all
layers that come before it, variate. This can slow down by requiring small
learning rates and careful parameter initialization. Given a batch of
sample used to update parameters, batch normalization normalizes the
inputs of each layer by recentering and rescaling (subtracting the mean
and dividing by the batch standard deviation). Thus, batch normalization
prevents layers inputs to have large standard deviations [35]. show
experimentally that batch normalization with large learning rate, speed
up significantly training as it can eliminate the need for Dropout. In fact,
as discussed in Section ??, Dropout look for layer's inputs with more
varitions and shrink their weights, this function of shrinking is then
largely reduced by batch normalization application. Combining dropout
with batch normalization [25,35,43] can improve DNNs prediction accu-
racy. Dropout regularization is known to give a significant improvement
when it is combined with others regularization methods such as
max-norm [72] and weight normalization [67]. Rather than constraining
whole weight matrix of each layer as in L2 regularization, these constrain
each column of the weight matrix to prevent separately any hidden
neuron from having very large weights. Max-norm regularization con-
sists to constrain the incoming weight vector of each hidden neuron to
live in a ball of radius c, where c is a hyper-parameter. Weight normal-
ization constrains incoming weight vectors to have unit norm.

5. Materials and methods

All models in this work are constructed using Keras and Tensorflow
open source libraries [38]. Logistic regression is built using a Feedfor-
ward classification network without hidden layers, this model can be
extended later to a more complex classification Network, depending on

Table 2
Unregularized logistic reg.

Dataset Accuracy (in %)

Breast-Kidney 96.53
Colon-Kidney 97.82
Breast-Colon 94.13
Colon-Prostate 97.46

Table 3
Logistic reg. with L1 norm.

Dataset Regularization L1 Accuracy(in %)

Breast-Kidney λ ¼ 10�2 97.36
λ ¼ 10�3 99.01

Colon-Kidney λ ¼ 10�2 95.82
λ ¼ 10�3 97.45

Breast-Colon λ ¼ 10�2 94.44
10�3 93.17

H. Soumare et al. Array 11 (2021) 100068
the problem complexity. Stochastic gradient descent is adopted in all
experiments as an optimization strategy. Two types of datasets are
included in our experiments, Expression Project for Oncology (expO)
cancer datasets and 1000 Genomes Project ethnicity datasets respectively
used for training logistic regression and FFN models.

Individuals in selected datasets are humans that are represented by
the list of their SNPS. Each SNP is represented by its genotype (i.e. genetic
information) at a specific locus. In a diploid organism at each locus, there
are two copies of alleles, one comes from the father and other from the
mother. Consequently, a genotype takes one of three values for a diploid
organism: 0 (homozygous reference), 1 (heterozygous) and 2 (homozy-
gous alternate). The homozygous reference refers to the base that is
found in the reference genome, an homozygous alternate refers to any
base, other than the reference, that is found at that locus and genotype is
said heterozygous at a given position, when the two alleles are different.

The input of a model is a matrix X of size n� d, where n is the number
of individuals included in the study and d correspond to the number of
features (SNPS). The output y takes discrete value(s) between 0 and 1.
Colon-Prostate λ ¼ 10�2 98.59
λ ¼ 10�3 98.03

Table 4
Logistic reg. with L2 norm.

Dataset Regularization L2 Accuracy(in %)

Breast-Kidney λ ¼ 10�2 98.18
λ ¼ 10�3 98.02

Colon-Kidney λ ¼ 10�2 98.18
λ ¼ 10�3 98.91

Breast-Colon �2 92.86
5.1. Expression Project for Oncology(expO) cancer datasets

The different cancer samples included in this study (see Table 1), are
downloaded from Ref. [11]. The original datasets can be obtained from
the Expression Project for Oncology (expO) that was deposited at Gene
Expression Omnibus (GEO) repository [7], with accession number
GSE2109. The objective of expO is to obtain and perform gene expression
analysis on cancer tissue samples and assemble the patient's long term
clinical results.
λ ¼ 10
λ ¼ 10�3 99.44

Colon-Prostate λ ¼ 10�2 97.18
λ ¼ 10�3 96.62

Table 5
MLP accuracy vs its size.

of units by hidden layer Accuracy(in %)

[50] 81.33
[50-50] 81.68
[100] 90.68
[100�100] 92.70
[100-100-100] 90.49
[500-500-500] 90.46
5.2. 1000 Genomes Project dataset

The 1000 Genomes Project [16] took advantage of developments in
Next-generation sequencing (NGS), which allows to sequence DNA and RNA

much more quickly and cheaply. It's the first project to sequence the
genomes of a large number of people in populations from different re-
gions and countries. In this study, n ¼ 3450 is the number of individuals
sampled worldwide from 26 populations and d ¼ 315345 is the number
of SNPS. The desired output of the model is a vector Y 2 Rc, whose
components correspond to the 26 classes of populations (i.e. c ¼ 26). The
model consists of an input layer, an output layer and two hidden layers of
equal size. Given the input matrix X, the model output is a vector a3 2 Rc.
A reluaction function is used in the two hidden layers followed by a
sotmax layer to perform ancestry prediction.

6. Experiments

In this section, we present the effects of regularization techniques on
training models for different datasets (see Table 1).
6.1. Cancer dataset classification using logistic regression

Un-regularized logistic regression results are reported in Table 2,
despite its simplicity, logistic regression model gives good classification
accuracy on these cancer datasets. To improve prediction capacities of
the present model, a penalty term is added and obtained results are
presented in Table 3 and Table 4 for L1 and L2 regularization added term,
respectively. We can observe from theses table that penalization with the
appropriate regularization parameter improves the classification accu-
racy. For example, when L1 regularization is used with regularizer λ ¼
10�3, the classification accuracy on Breast-Kidney dataset goes from
96:53 to 99:01. Similarly, when L2 penalization is applied(λ ¼ 10�3), the
prediction accuracy on Breast-Colon dataset increases from 94.44 in
unregularized case to 99:44.
7

6.2. Ancestry prediction using a multilayer perceptron (MLP)

In this subsection, FNN is used on 1000 Genome Project ethnicity
dataset to predict individuals ancestries. As in the preceding subsection,
we start with a simple logistic regression model, which gives a low pre-
diction accuracy of 54.64%. To achieve better prediction results, a MLP

with equal hidden units is constructed and the obtained results by
varying the model complexity are reported in Table 5. As expected, the
model prediction accuracy starts by increasing with its complexity until
some level (two hidden layers with 100 units for each one), then it starts
to drop. Because beyond this stage, the training model is considered too
complex and it overfits.

6.2.1. Classification with autoencoder
We start by using a classification Network with one hidden layer of 50

units with reconstruction path. This gives an accuracy of 84:85%. When
another hidden layer of 50 neurons is added between hidden the repre-
sentation ah and the output layer aL, as described in Fig. 4(where
MPL¼½50�). This last gives an accuracy of 85:36%. Training the classifi-
cation Network with a reconstruction path is difficult due to the high
dimensionality of the input data.

Table 6
Prediction accuracy for Dropout, batch normalization and dropout combination with batch normalization.

of uni. by hid. layer Drop.(p¼0.2) Drop.(p¼0.5) Bat.norm Drop.(p¼0.2)þBat. norm Drop.(p¼0.5)þBat. norm

(accuracy in%) (accuracy in%) (accuracy in%) (accuracy in%) (accuracy in%)

[50] 90.32 87.54 90.58 91.48 92.61
[50-50] 89.94 40.96 91.01 92.58 92.93
[100] 88.81 92.26 90.75 91.65 93.01
[100�100] 90.32 64.12 89.19 92.46 93.00

Table 7
Prediction accuracy for L1, L2, Dropout regularization techniques and Dropout combination with others regularization techniques.

of uni. by hid. layer L1(λ ¼ 10�4) reg. L2(λ ¼ 10�3) reg. Drop.(p¼0.5)þBat. norm Drop.(p¼0.5)þMa.norm Drop.(p¼0.2)þUn.norm

(accuracy in%) (accuracy in%) (accuracy in%) (accuracy in%) (accuracy in%)

[50] 92.13 92.61 92.61 92.35 93.25
[50-50] 91.77 90.75 92.93 83.68 90.32
[100] 92.70 92.70 93.01 93.83 94.43
[100�100] 92.29 93.39 93.00 90.17 91.94
[100-100-100] 90.87 91.01 92.42 89.68 92.19

H. Soumare et al. Array 11 (2021) 100068
6.2.2. Classification with regularization
When Dropout is used alone, the choice of its rate p is very important

as in Table 6, we have to be more careful about it. Combining Dropout
with batch normalization improves the performance training model and
makes the choice of p less important. L1 and L2 regularization, give good
prediction accuracy and outperform Dropout as observed in Table 7.
However, when Dropout is combined with batch normalization, max-
norm and unit-norm outperforms the traditional regularization tech-
niques. We have obtained our best prediction accuracy 94.43%, when
Dropout is combined with unit norm constraint.

7. Discussion

Regularized Logistic Regression has achieved good results compared
to previous machine learning approaches tested on the same cancer
samples [70,73]. For instance, Stiglic et al. [73] combined different
feature selection methods such as Vector Machines Recursive Feature
Elimination (SVM-RFE) and ReliefF followed by SVM or k-nearest
neighbors. To the best of our knowledge, the best results on these data-
sets were reported in Ref. [70], where the authors used Stacked Sparse
Autoencoders (SSAE) to select most relevant features followed by a
classification Neural Network to categorize the samples. Despite its
simplicity, the proposed approach outperforms SSAE on datasets such as
Breast-Kidney and Breast-Colon (see Table 8). In Stacked Sparse
Autoencoders [36,45] many Autoencoder layers are stacked together to
form an unsupervised learning algorithm, where the encoder layer
computed by an Autoencoder will be used as the input to another
Autoencoder layer. In practice, a logistic regression model may be better
than a NN for relatively small data sets and simple classification tasks,
where the classes are more or less linearly separable. Indeed, the latter
are more difficult to train, require more training samples and are more
prone to overfitting than logistic regression.

Logistic regression application to anscentry prediction dataset lead to
poor prediction accuracy, which is due to the large dimension of input
features and high nonlinear correlation between them, and to the genetic
similarity between some ethnic of groups of populations.

Training a NN with an Autoencoder reconstruction path improved the
results. However, training an Autoencoder in conjunction with the clas-
sification Network makes the high dimensional optimization problem
more difficult to solve than simply training the classification Network,
yielding in a higher classification error. To improve the results, regula-
rization techniques are used. One can notice that traditional regulariza-
tion technique's application has more improved the prediction accuracy
of the model compared to Dropout. This could be attributed to the fact
8

that Dropout is less effective than L1 and L2 regularization techniques
[58] when the training model is not complex (as for our model).
Combining Dropout with techniques such as Batch normation, Unit norm
constraint or Max norm enabled the training model to achieve its best
accuracy. The obtained results are compared to the results in Table 9
obtained by Ref. [64] on the same dataset. In Ref. [64], the authors
proposed auxiliary NNs to predict the parameters of the first hidden layer
of the classification NNs and different features embedding techniques
such as Random projection(RP), Per class histogram, and SNPtoVec have
also been proposed. Achieving such prediction accuracy obtained with
SNP data, these regularization techniques will allow us to face more
complicated problems in many domains such as preventive medicine.

8. Conclusion

In this work, we have explained stochastic gradient descent optimi-
zation technique with back-propagation in training DL algorithms. To
prevent overfitting problem, regularization techniques are studied and,
theoretical relationship between Dropout and L2 regularization is
established. Experimental results have shown that Dropout, when it is
combined with techniques such as batch normalization, max-norm or
unit-norm gives better performance than L1 and L2 regularization
techniques.

For future work, we expect to further study these regularization
techniques in DNN and use them to analyze gene expression profile data
with the aim of predicting rare diseases.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This project was partly funded by H3ABioNet, which is supported by
the National Institutes of Health Common Fund under grant number
U41HG006941.

Appendix

In this section, we report results obtained by Singh et al. [70](Table 8)
and those obtained by Romero et al. [64](Table 9).

Table 8
Logistic reg.vs SSAE.

Dataset Stacked Sparse Autoencoders Logistic regression

Breast-Kidney 98.4 99.01
Colon-Kidney 99.5 98.91
Breast-Colon 97.3 99.44
Colon-Prostate 99.7 98.59

Table 9
Reported results in Ref. [64].

Model & Embedding Mean Misclassif. Error.
(%)

of free
param.

Basic 8:31� 1:83 31.5 M
Raw end2end 8:88� 1:41 21.27K
Random Projection 9:03� 1:20 10.1K
SNP2Vec 7:60� 1:28 10.1K
Per class histograms 7:88� 1:40 7.9K
Basic with reconstruction 7:76� 1:38 63 M
Raw end2end with reconstruction 8:28� 1:92 227.3K
Random Projection with
reconstruction

8:03� 1:0:3 20.2K

SNP2Vec with reconstruction 7:88� 0:72 20.2K
Per class histograms with
reconstruction

7:44� 0:45 15.8K

H. Soumare et al. Array 11 (2021) 100068
References

[1] Akhtar N, Mian A. Threat of adversarial attacks on deep learning in computer
vision: a survey. IEEE Access 2018;6:14410–30. https://doi.org/10.1109/
ACCESS.2018.2807385.

[2] Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. Deeploc:
prediction of protein subcellular localization using deep learning. Bioinformatics
2017;33:3387–95. https://doi.org/10.1093/bioinformatics/btx431.

[3] Amari S. Backpropagation and stochastic gradient descent method.
Neurocomputing 1993;5:185–96. https://doi.org/10.1016/0925-2312(93)90006-
O.

[4] Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, Casper J,
Catanzaro B, Cheng Q, Chen G, et al. Deep speech 2: end-to-end speech recognition
in English and Mandarin. In: Inter. conf. on ML; 2016. p. 173–82. https://arxiv
.org/abs/1512.02595.

[5] Bacchi S, Oakden-Rayner L, Zerner T, Kleinig T, Patel S, Jannes J. Deep learning
natural language processing successfully predicts the cerebrovascular cause of
transient ischemic attack-like presentations. Stroke 2019;50:758–60. https://
doi.org/10.1161/STROKEAHA.118.024124.

[6] Baldi P, Sadowski PJ. Understanding dropout. In: NIPS; 2013. p. 2814–22. https://
doi.org/10.1016/j.artint.2014.02.004.

[7] Barrett T, Edgar R. [19] gene expression omnibus: microarray data storage,
submission, retrieval, and analysis. Meths. in enzy. 2006;411:352–69. doi:
S0076687906110198.

[8] Bilen M, Işik AH, Yi�git T. A hybrid artificial neural network-genetic algorithm
approach for classification of microarray data. In: 2015 23nd SPCA conf. (SIU),
IEEE; 2015. p. 339–42. https://doi.org/10.1109/SIU.2015.7129828.

[9] Bottou L. Stochastic gradient learning in neural networks. Proceedings of Neuro-
Nımes 1991;91:12.

[10] Bottou L. Stochastic gradient descent tricks. In: Neural networks: tricks of the trade.
Springer; 2012. p. 421–36.

[11] Cancer D. Openml; 2015. https://www.openml.org/search?type¼data. [Accessed 7
September 2020].

[12] Chatterjee S, Hadi AS. Sensitivity analysis in linear regression, vol. 327. John Wiley
& Sons; 2009.

[13] Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene expression inference with
deep learning. Bioinformatics 2016;32:1832–9. https://doi.org/10.1093/
bioinformatics/btw074.

[14] Collins FS, Brooks LD, Chakravarti A. A dna polymorphism discovery resource for
research on human genetic variation. Geno. research 1998;8:1229–31. https://
doi.org/10.1101/gr.8.12.1229.

[15] Collobert R, Weston J. A unified architecture for natural language processing: deep
neural networks with multitask learning. In: Proceed. of the 25th inter. conf. on ML;
2008. p. 160–7. https://doi.org/10.1145/1390156.1390177.

[16] Consortium GP, et al. A map of human genome variation from population-scale
sequencing. Nature 2010;467:1061. https://doi.org/10.1038/nature09534.

[17] Curry HB. The method of steepest descent for non-linear minimization problems.
Quart. of App. Maths. 1944;2:258–61. https://www.ams.org/journals/qam/1944-0
2-03/S0033-569X-1944-10667-3/S0033-569X-1944-10667-3.pdf.

[18] Denoeux T. Logistic regression, neural networks and dempster–shafer theory: a new
perspective. Knowl Base Syst 2019;176:54–67.
9

[19] Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network
classification models: a methodology review. J Biomed Inf 2002;35:352–9.

[20] Fakoor R, Ladhak F, Nazi Z, Huber M. Using deep learning to enhance cancer
diagnosis and classification. In: Proceed. of the inter. conf. on ML. New York, USA:
ACM; 2013. https://doi.org/10.1109/ICSCAN.2018.8541142.

[21] Fort G, Lambert-Lacroix S. Classification using partial least squares with penalized
logistic regression. Bioinformatics 2005;21:1104–11. https://doi.org/10.1093/
bioinformatics/bti114.

[22] Fu X, Wei Y, Xu F, Wang T, Lu Y, Li J, Huang JZ. Semi-supervised aspect-level
sentiment classification model based on variational autoencoder. Knowl Base Syst
2019;171:81–92.

[23] Gal Y, Ghahramani Z. Dropout as a bayesian approximation: representing model
uncertainty in deep learning. In: International conference on machine learning.
PMLR; 2016. p. 1050–9.

[24] Ganesan N, Venkatesh K, Rama MA, Palani AM. Application of neural networks in
diagnosing cancer disease using demographic data. Int J Chem Appl 2010;1:76–85.
https://doi.org/10.5120/476-783.

[25] Garbin C, Zhu X, Marques O. Dropout vs. batch normalization: an empirical study of
their impact to deep learning. Multimed Tool Appl 2020:1–39. https://doi.org/
10.1007/s11042-019-08453-9.

[26] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol. 1. MIT press
Cambridge; 2016. https://doi.org/10.1007/s10710-017-9314-z.

[27] Group, I.S.M.W., et al.. A map of human genome sequence variation containing 1.42
million single nucleotide polymorphisms. Nature 2001;409:928. https://doi.org/
10.1038/35057149.

[28] Guo J, He H, He T, Lausen L, Li M, Lin H, Shi X, Wang C, Xie J, Zha S, et al. Gluoncv
and gluonnlp: deep learning in computer vision and natural language processing.
J Mach Learn Res 2020;21:1–7. 1907.04433.

[29] Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S,
Sengupta S, Coates A, et al. Deep speech: scaling up end-to-end speech recognition.
arXiv preprint arXiv, 1412.5567; 2014. https://arxiv.org/abs/1412.5567.

[30] Hecht-Nielsen R. Theory of the backpropagation neural network. In: N. netw. for
percep. Elsevier; 1992. p. 65–93. https://doi.org/10.1016/B978-0-12-741252-
8.50010-8.

[31] Helmbold DP, Long PM. Surprising properties of dropout in deep networks. In:
Conference on learning theory. PMLR; 2017. p. 1123–46.

[32] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural
networks. science 2006;313:504–7. https://doi.org/10.1126/science.1127647.

[33] Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving
neural networks by preventing co-adaptation of feature detectors. 2012. arXiv
preprint arXiv, 1207.0580. http://arxiv.org/abs/1207.0580.

[34] Huang K, Hussain A, Wang QF, Zhang R. Deep learning: fundamentals, theory and
applications, vol. 2. Springer; 2019.

[35] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv, 1502.03167; 2015.

[36] Katuwal R, Suganthan PN. Stacked autoencoder based deep random vector
functional link neural network for classification. Appl Soft Comput 2019;85:
105854.

[37] Kendall A, Gal Y. What uncertainties do we need in bayesian deep learning for
computer vision?. In: NIPS; 2017. p. 5574–84. https://arxiv.org/pdf/1703.04977.
pdf.

[38] Keras T. Keras. 2015. https://www.tensorflow.org/guide/keras/overview.
[Accessed 7 September 2020].

[39] Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M. Logistic regression. Springer;
2002.

[40] Kone�cnỳ J, Richt�arik P. Semi-stochastic gradient descent methods. 2013. arXiv
preprint arXiv, 1312.1666.

[41] Le L, Patterson A, White M. Supervised autoencoders: improving generalization
performance with unsupervised regularizers. Adv Neural Inf Process Syst 2018;31:
107–17.

[42] Li F, Zurada JM, Liu Y, Wu W. Input layer regularization of multilayer feedforward
neural networks. IEEE Access 2017;5:10979–85.

[43] Li X, Chen S, Hu X, Yang J. Understanding the disharmony between dropout and
batch normalization by variance shift. In: Proceed. Of the IEEE conf. On CVPR;
2019. p. 2682–90. https://doi.org/10.1109/CVPR.2019.00279.

[44] Liao JG, Chin KV. Logistic regression for disease classification using microarray
data: model selection in a large p and small n case. Bioinformatics 2007;23:
1945–51. https://doi.org/10.1093/bioinformatics/btm287.

[45] Liu G, Bao H, Han B. A stacked autoencoder-based deep neural network for
achieving gearbox fault diagnosis. Mathematical Problems in Engineering 2018;
2018.

[46] Ma X, Gao Y, Hu Z, Yu Y, Deng Z, Hovy E. Dropout with expectation-linear
regularization. 2016. arXiv preprint arXiv, 1609.08017. https://arxiv.org/abs/1
609.08017.

[47] Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D. The stanford
corenlp natural language processing toolkit. In: Proceed. of 52nd ann. meet. of ACL:
system demonstrations; 2014. p. 55–60. https://doi.org/10.3115/v1/p14-5010.

[48] Maurya S, Singh V, Dixit S, Verma NK, Salour A, Liu J. Fusion of low-level features
with stacked autoencoder for condition based monitoring of machines. In: 2018
IEEE international conference on prognostics and health management (ICPHM),
IEEE; 2018. p. 1–8.

[49] Mianjy P, Arora R. On dropout and nuclear norm regularization. In: International
conference on machine learning. PMLR; 2019. p. 4575–84. https://arxiv.org/abs/1
905.11887.

[50] Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief. in bioinfo. 2017;18:
851–69. https://doi.org/10.1093/bib/bbw068.

https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1093/bioinformatics/btx431
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1016/0925-2312(93)90006-O
https://arxiv.org/abs/1512.02595
https://arxiv.org/abs/1512.02595
https://doi.org/10.1161/STROKEAHA.118.024124
https://doi.org/10.1161/STROKEAHA.118.024124
https://doi.org/10.1016/j.artint.2014.02.004
https://doi.org/10.1016/j.artint.2014.02.004
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref7
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref7
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref7
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref7
https://doi.org/10.1109/SIU.2015.7129828
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref9
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref9
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref10
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref10
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref10
https://www.openml.org/search?type=data
https://www.openml.org/search?type=data
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref12
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref12
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1101/gr.8.12.1229
https://doi.org/10.1101/gr.8.12.1229
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1038/nature09534
https://www.ams.org/journals/qam/1944-02-03/S0033-569X-1944-10667-3/S0033-569X-1944-10667-3.pdf
https://www.ams.org/journals/qam/1944-02-03/S0033-569X-1944-10667-3/S0033-569X-1944-10667-3.pdf
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref18
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref18
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref18
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref18
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref19
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref19
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref19
https://doi.org/10.1109/ICSCAN.2018.8541142
https://doi.org/10.1093/bioinformatics/bti114
https://doi.org/10.1093/bioinformatics/bti114
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref22
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref22
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref22
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref22
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref23
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref23
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref23
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref23
https://doi.org/10.5120/476-783
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1038/35057149
https://doi.org/10.1038/35057149
https://arxiv.org/abs/1412.5567
https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://doi.org/10.1016/B978-0-12-741252-8.50010-8
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref31
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref31
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref31
https://doi.org/10.1126/science.1127647
http://arxiv.org/abs/1207.0580
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref34
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref34
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref36
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref36
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref36
https://arxiv.org/pdf/1703.04977.pdf
https://arxiv.org/pdf/1703.04977.pdf
https://www.tensorflow.org/guide/keras/overview
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref39
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref39
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref41
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref41
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref41
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref41
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref42
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref42
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref42
https://doi.org/10.1109/CVPR.2019.00279
https://doi.org/10.1093/bioinformatics/btm287
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref45
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref45
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref45
https://arxiv.org/abs/1609.08017
https://arxiv.org/abs/1609.08017
https://doi.org/10.3115/v1/p14-5010
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref48
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref48
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref48
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref48
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref48
https://arxiv.org/abs/1905.11887
https://arxiv.org/abs/1905.11887
https://doi.org/10.1093/bib/bbw068

H. Soumare et al. Array 11 (2021) 100068
[51] Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis.
John Wiley & Sons; 2021.

[52] Ng A, et al. Sparse autoencoder. CS294A Lect. notes 72. 2011. p. 1–19. http
://ailab.chonbuk.ac.kr/seminar_board/pds1_files/sparseAutoencoder.pdf.

[53] Owen AB. A robust hybrid of lasso and ridge regression. Contemp Math 2007;443:
59–72. https://doi.org/10.1090/conm/443/08555.

[54] Ozanich E, Gerstoft P, Niu H. A feedforward neural network for direction-of-arrival
estimation. J Acoust Soc Am 2020;147:2035–48.

[55] Pal A, Lane C, Vidal R, Haeffele BD. On the regularization properties of structured
dropout. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition; 2020. p. 7671–9. https://arxiv.org/abs/1910.14186.

[56] Patel P, Thakkar A. The upsurge of deep learning for computer vision applications.
Int J Electr Comput Eng 2020;10:538. https://doi.org/10.11591/
ijece.v10i1.pp538-548.

[57] Pei J, Wang W, Osman MK, Gan X. Multiparameter optimization for the nonlinear
performance improvement of centrifugal pumps using a multilayer neural network.
J Mech Sci Technol 2019;33:2681–91.

[58] Phaisangittisagul E. An analysis of the regularization between l2 and dropout in
single hidden layer neural network. In: 2016 7th international conference on
intelligent systems, modelling and simulation (ISMS). IEEE; 2016. p. 174–9.

[59] Project, G., . 1000 Genome project datasets.
[60] project OE. Expression project for oncology. 2005. https://www.ncbi.nlm.nih

.gov/geo/query/acc.cgi?acc¼GSE2109. [Accessed 7 September 2020].
[61] Qi GJ, Zhang L, Lin F, Wang X. Learning generalized transformation equivariant

representations via autoencoding transformations. IEEE Transactions on Pattern
Analysis and Machine Intelligence; 2020.

[62] Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang G. Deep
learning for health informatics. IEEE JBHI 2016;21:4–21. https://doi.org/10.1109/
JBHI.2016.2636665.

[63] Reed R, MarksII RJ. Neural smithing: supervised learning in feedforward artificial
neural networks. Mit Press; 1999.

[64] Romero A, Carrier PL, Erraqabi A, Sylvain T, Auvolat A, Dejoie E, Legault MA,
Dub�e MP, Hussin JG, Bengio Y. Diet networks: thin parameters for fat genomics.
2016. arXiv preprint arXiv, 1611.09340.

[65] Rong D, Xie L, Ying Y. Computer vision detection of foreign objects in walnuts using
deep learning. Comput Electron Agric 2019;162:1001–10. https://doi.org/
10.1016/j.compag.2019.05.019.

[66] Sakurada M, Yairi T. Anomaly detection using autoencoders with nonlinear
dimensionality reduction. In: Proceed. Of the MLSDA 2014 2nd workshop MLS data
analysis; 2014. p. 4–11. https://doi.org/10.1145/2689746.2689747.

[67] Salimans T, Kingma DP. Weight normalization: a simple reparameterization to
accelerate training of deep neural networks. In: NIPS; 2016. p. 901–9. https://arxiv.
org/pdf/1602.07868.pdf.

[68] Schmidhuber J. Deep learning in neural networks: an overview. Neur. networ.
2015;61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

[69] Sharkawy AN. Principle of neural network and its main types. J. Adv. Appl.
Comput. Math. 2020;7:8–19.

[70] Singh V, Baranwal N, Sevakula RK, Verma NK, Cui Y. Layerwise feature selection in
stacked sparse auto-encoder for tumor type prediction. In: 2016 IEEE international
conference on Bioinformatics and biomedicine (BIBM). IEEE; 2016. p. 1542–8.

[71] Sit MA, Koylu C, Demir I. Identifying disaster-related tweets and their semantic,
spatial and temporal context using deep learning, natural language processing and
spatial analysis: a case study of hurricane irma. International Journal of Digital
Earth 2019. https://doi.org/10.1080/17538947.2018.1563219.

[72] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. JMLR 2014;15:1929–58.
https://dl.acm.org/doi/abs/10.5555/2627435.2670313.
10
[73] Stiglic G, Kokol P. Stability of ranked gene lists in large microarray analysis studies.
BioMed Res Int 2010;2010. https://doi.org/10.1155/2010/616358.

[74] Sutradhar R, Barbera L. Comparing an artificial neural network to logistic
regression for predicting ed visit risk among patients with cancer: a population-
based cohort study. J Pain Symptom Manag 2020;60:1–9.

[75] Suzuki T. Generalization bound of globally optimal non-convex neural network
training: transportation map estimation by infinite dimensional Langevin dynamics.
2020. arXiv preprint arXiv, 2007.05824.

[76] Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural
networks. Chemometr Intell Lab Syst 1997;39:43–62.

[77] Tian Y, Lu C, Zhang X, Tan KC, Jin Y. Solving large-scale multiobjective
optimization problems with sparse optimal solutions via unsupervised neural
networks. IEEE transactions on cybernetics 2020.

[78] Tikhonov AN. On the stability of inverse problems. In: Dokl. Akad. Nauk SSSR;
1943. p. 195–8. https://doi.org/10.1007/978-3-642-81472-3_5.

[79] Wager S, Wang S, Liang SP. Dropout training as adaptive regularization. In: NIPS;
2013. p. 351–9. https://arxiv.org/pdf/1307.1493.pdf.

[80] Wang Y, Yao H, Zhao S. Auto-encoder based dimensionality reduction.
Neurocomputing 2016;184:232–42. https://doi.org/10.1016/
j.neucom.2015.08.104.

[81] Wei C, Kakade S, Ma T. The implicit and explicit regularization effects of dropout.
In: International conference on machine learning. PMLR; 2020. p. 10181–92. htt
ps://arxiv.org/abs/2002.12915.

[82] Weisberg S. Applied linear regression, ume 528. John Wiley & Sons; 2005.
[83] Wen T, Zhang Z. Deep convolution neural network and autoencoders-based

unsupervised feature learning of eeg signals. IEEE Access 2018;6:25399–410.
[84] Werbos PJ. Generalization of backpropagation with application to a recurrent gas

market model. N. networ. 1988;1:339–56. https://doi.org/10.1016/0893-6080(88)
90007-X.

[85] Werbos PJ. Backpropagation through time: what it does and how to do it. Proc of
the IEEE 1990;78:1550–60. https://doi.org/10.1109/5.58337.

[86] Wright RE. Logistic regression. 1995.
[87] Xia Y, Qin T, Chen W, Bian J, Yu N, Liu TY. Dual supervised learning. In:

International conference on machine learning. PMLR; 2017. p. 3789–98.
[88] Xie F, Zhang J, Wang J, Reuben A, Xu W, Yi X, Varn FS, Ye Y, Cheng J, Yu M, et al.

Multifactorial deep learning reveals pan-cancer genomic tumor clusters with
distinct immunogenomic landscape and response to immunotherapy. Clin Canc Res
2020a;26:2908–20. https://doi.org/10.1158/1078-0432.CCR-19-1744.

[89] Xie Y, Wu X, Ward R. Linear convergence of adaptive stochastic gradient descent.
In: International conference on artificial intelligence and statistics. PMLR; 2020b.
p. 1475–85.

[90] Xin J, Embrechts MJ. Supervised learning with spiking neural networks. In:
IJCNN’01. International joint conference on neural networks. Proceedings (cat.
Noh01CH37222), IEEE; 2001. p. 1772–7.

[91] Yang J, Ma J. Feed-forward neural network training using sparse representation.
Expert Syst Appl 2019;116:255–64.

[92] Yang X, Deng C, Zheng F, Yan J, Liu W. Deep spectral clustering using dual
autoencoder network. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition; 2019. p. 4066–75.

[93] Zheng S, Zhao J. A new unsupervised data mining method based on the stacked
autoencoder for chemical process fault diagnosis. Comput Chem Eng 2020;135:
106755.

[94] Zingaretti LM, Gezan SA, Ferr~ao LFV, Osorio LF, Monfort A, Mu~noz PR,
Whitaker VM, P�erez-Enciso M. Exploring deep learning for complex trait genomic
prediction in polyploid outcrossing species. Front Plant Sci 2020;11:25. https://
doi.org/10.3389/fpls.2020.00025.

http://refhub.elsevier.com/S2590-0056(21)00016-3/sref51
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref51
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref51
http://ailab.chonbuk.ac.kr/seminar_board/pds1_files/sparseAutoencoder.pdf
http://ailab.chonbuk.ac.kr/seminar_board/pds1_files/sparseAutoencoder.pdf
https://doi.org/10.1090/conm/443/08555
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref54
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref54
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref54
https://arxiv.org/abs/1910.14186
https://doi.org/10.11591/ijece.v10i1.pp538-548
https://doi.org/10.11591/ijece.v10i1.pp538-548
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref57
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref57
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref57
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref57
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref58
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref58
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref58
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref58
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref61
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref61
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref61
https://doi.org/10.1109/JBHI.2016.2636665
https://doi.org/10.1109/JBHI.2016.2636665
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref63
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref63
https://doi.org/10.1016/j.compag.2019.05.019
https://doi.org/10.1016/j.compag.2019.05.019
https://doi.org/10.1145/2689746.2689747
https://arxiv.org/pdf/1602.07868.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://doi.org/10.1016/j.neunet.2014.09.003
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref69
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref69
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref69
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref70
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref70
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref70
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref70
https://doi.org/10.1080/17538947.2018.1563219
https://dl.acm.org/doi/abs/10.5555/2627435.2670313
https://doi.org/10.1155/2010/616358
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref74
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref74
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref74
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref74
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref76
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref76
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref76
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref77
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref77
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref77
https://doi.org/10.1007/978-3-642-81472-3_5
https://arxiv.org/pdf/1307.1493.pdf
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1016/j.neucom.2015.08.104
https://arxiv.org/abs/2002.12915
https://arxiv.org/abs/2002.12915
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref82
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref82
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref83
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref83
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref83
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1109/5.58337
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref86
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref87
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref87
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref87
https://doi.org/10.1158/1078-0432.CCR-19-1744
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref89
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref89
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref89
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref89
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref90
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref90
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref90
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref90
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref91
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref91
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref91
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref92
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref92
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref92
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref92
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref93
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref93
http://refhub.elsevier.com/S2590-0056(21)00016-3/sref93
https://doi.org/10.3389/fpls.2020.00025
https://doi.org/10.3389/fpls.2020.00025

	Deep learning regularization techniques to genomics data
	1. Introduction
	2. Deep Learning: Feedforward Neural Network(fnn)
	2.1. Supervised Neural Network
	2.2. Unsupervised Neural Network(Autoencoder)
	3. Gradient descent
	3.1. Stochastic gradient descent
	3.2. Backpropagation

	4. Regularization techniques
	4.1. L1 and L2 regularization techniques
	4.1.1. L2 regularization
	4.1.2. L1 regularization

	4.2. Dropout technique
	4.2.1. Dropout application to linear networks
	4.2.2. Dropout application to non linear networks
	4.2.3. Dropout with others regularization techniques

	5. Materials and methods
	5.1. Expression Project for Oncology(expO) cancer datasets
	5.2. 1000 Genomes Project dataset

	6. Experiments
	6.1. Cancer dataset classification using logistic regression
	6.2. Ancestry prediction using a multilayer perceptron (mlp)
	6.2.1. Classification with autoencoder
	6.2.2. Classification with regularization

	7. Discussion
	8. Conclusion
	Declaration of competing interest
	Acknowledgments
	AppendixAcknowledgments
	References

