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Abdelmajid Abid1,4, Afef Bahlous5, Abdelhamid Barakat3, Henda Jamoussi1,4, Sonia Abdelhak1,6 and 
Rym Kefi1,6*  

Abstract 

Background: Variants in the Hepatocyte Nuclear Factor 1 Alpha gene (HNF1A) are associated with lipoproteins 
levels and type 2 diabetes. In this study, we aimed to assess the association of HNF1A gene and haplotypes with the 
metabolic syndrome (MetS) and its components through an association study in the Tunisian population as well as by 
a meta-analysis.

Methods: A total of 594 Tunisian individuals were genotyped for three variants (rs1169288, rs2464196 and rs735396) 
located in HNF1A gene using KASPar technology. Statistical analyses were performed with R software. The association 
was furthermore evaluated through a meta-analysis of our results with those obtained in a Moroccan population.

Results: Our results showed no association between HNF1A variants and MetS in the Tunisian population. However, 
a significant association was observed between the variant rs735396 and a higher waist circumference. The stratified 
analysis according to the sex highlighted a significant association between the variant rs1169288 and high cholesterol 
levels only in women. Similarly, Haplotype analysis showed an association between the HNF1A minor haplotype and 
high total cholesterol mainly in women. Finally, our meta-analysis showed no association between HNF1A variants 
and MetS.

Conclusions: Our findings exclude the involvement of the three HNF1A variants rs1169288, rs2464196 and rs735396 
in the susceptibility to MetS in our studied Tunisian population but emphasize the role of these variants in the choles-
terol homeostasis with sex-specific differences, which may serve to rise clinical consideration to early statin therapy in 
women carrying these genetic variants.
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Introduction
Metabolic syndrome (MetS) is characterized by the clus-
tering of risk factors for heart disease and type 2 diabetes 
(T2D). These risk factors include central obesity, hyper-
glycemia, hypertension, and altered lipid profile [1, 2].

The prevalence of MetS has reached levels comprised 
between 20 and 40% across populations in the last two 

Open Access

Diabetology &
Metabolic Syndrome

*Correspondence:  rym.kefi@pasteur.utm.tn; Rym.Kefi@pasteur.tn
1 Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur 
in Tunis, BP 74, 13 Place Pasteur, Belvedere, 1002 Tunis, Tunisia
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8801-5781
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13098-022-00794-0&domain=pdf


Page 2 of 11Dallali et al. Diabetology & Metabolic Syndrome           (2022) 14:25 

decades [3]. In Tunisia, the prevalence is 30% of the pop-
ulation according to the last epidemiological study car-
ried out in 2013 [4]. Consequently, MetS represents a 
heavy burden on the human public health system both in 
developing and developed countries. MetS is a complex 
multifactorial syndrome. Environmental factors such as 
low physical activity and hypercaloric diet are potential 
determinants of MetS [4, 5]. The genetic component is 
also crucial since MetS incidence is significantly higher in 
individuals with family history [6, 7].

Genome wide association studies (GWAS) have identi-
fied loci associated with MetS as an overall entity, or with 
some of its phenotypic traits or its complications [8, 9]. 
In 2009, Kathiresan et al. conducted genome wide asso-
ciation screens in 19,840 individuals and replication in up 
to 20,623 individuals in order to investigate the polygenic 
basis of the dyslipidemia traits. They highlighted single 
nucleotide polymorphisms (SNPs) in 30 loci associated 
with lipoproteins and triglycerides levels, of which 11 loci 
reaching genome wide significance (p < 5.10–8) for the 
first time. These 11 loci include genes such as Hepatocyte 
Nuclear Factor 1 Alpha (HNF1A) [10].

HNF1A (MIM*142410) is located on chromosome 
12q24.2 and counts 10 exons. The protein encoded by this 
gene is a transcription factor required for the expression 
of at least 222 liver-specific genes that are essential in 
the carbohydrate synthesis and storage as well as in lipid 
metabolism (synthesis of cholesterol and lipoproteins) 
[11]. Defects in HNF1A gene are known to cause matu-
rity onset diabetes of the young type 3 (MIM#600496). 
This form of diabetes has an autosomal dominant inher-
itance, and it is characterized by severe hyperglycemia 
caused by beta cells insulin secretion deficit, and an age 
of onset generally younger than 25 years [12].

Some studies were carried out to test the association 
of HNF1A gene variants with metabolic disorders. In 
2011, Avery et  al. conducted a GWAS including 19,486 
European American and 6287 African American and 
they detected the association of a HNF1A variant with 
a phenotypic cluster consisting of atherogenic dyslipi-
demia, vascular inflammation and prothombotic state 
[9]. Other studies have detected associations of HNF1A 
variants with some MetS components including altered 
lipid profile and its complications in different populations 
[13–22].

Among these reported variants, we selected for our 
study three SNPs: rs1169288 located in the exon 1 also 
known as I27L, rs2464196 located in the exon 7 also 
called S487N, and rs735396 located in the intron 9.

The main goals of the present study are: (1) to investi-
gate the association of HNF1A gene variants (rs1169288, 
rs2464196 and rs735396) and haplotypes with the sus-
ceptibility to MetS and its components in the Tunisian 

population, (2) to perform a meta-analysis of the associa-
tion between HNF1A variants and MetS. Our study is the 
third to test association of HNF1A variants with MetS, 
and it includes the first meta-analysis to date of this asso-
ciation. These variants were previously associated with 
MetS, altered lipoproteins levels and type 2 diabetes [15, 
16, 18, 20, 23, 24].

Materials and methods
Study subjects
This study is conducted in the frame of MEDIGENE 
project, that was approved by the Ethical committee of 
Institut Pasteur in Tunis (Reference IPT/LR11-05/Etude 
04/2013) [25]. A total of 594 participants (299 controls 
and 295 MetS patients), aged between 35 and 75  years, 
were recruited and clinically characterized as previously 
described [26, 27].

Genetic analysis
Genomic DNA was isolated from the whole blood. Geno-
typing of SNPs was performed by KASPar® technology 
(KBioscience, UK) using the LightCycler 480® system 
(Roche Diagnostics, Switzerland) [28]. A random of 10% 
sample set was re-tested with the same method to con-
firm genotype accuracy.

Statistical analysis
The power analysis of the case–control study was per-
formed using PS: Power and Sample Size Calculations 
software version (3.1.2) [29].

The measured clinical features were expressed as 
means ± standard deviations, and differences between 
groups were assessed with Student Test.

The Hardy Weinberg equilibrium (HWE) was checked 
for each of the genotyped SNPs. Allelic and genotypic 
frequencies for the three SNPs were calculated in the 
studied population. The associations of the genotyped 
SNPs with MetS were estimated using multivariate logis-
tic regression model after adjustment for age, sex and 
body mass index (BMI). Linear regression analysis was 
performed to identify the associations between the vari-
ants and the measured quantitative traits. The associa-
tion tests were performed under three different genetic 
models: codominant, dominant and recessive models of 
inheritance. Results were expressed as nominal p-values, 
odds ratios (OR), and 95% confidence intervals (CI). A 
p-value < 0.05 was considered statistically significant for 
statistical tests. The p-values were corrected with the 
Bonferroni correction by multiplying with the number of 
comparisons. Statistical analyses were performed using 
SNPassoc R package [30].

Linkage disequilibrium (LD) statistics was computed 
using  r2 coefficient by Haploview software (version 4.2) 
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[31]. Haplotype frequencies and associations with MetS 
were estimated using PLINK software (version 1.07) [32]. 
In addition, we explored the haplotype associations with 
the measured quantitative traits using a generalized lin-
ear model from the haplo.score function incorporated in 
the haplo.stats R package [33].

Meta‑analysis
Relevant studies, evaluating the associations between 
HNF1A polymorphisms and MetS, were identified 
by searching HuGe navigator (https:// phgkb. cdc. gov/ 
PHGKB/ hNHome. action) and PubMed (https:// www. 
ncbi. nlm. nih. gov/ pubmed/) databases. We used different 
combinations of the following keywords: “HNF1A”, “met-
abolic syndrome”, “association” and “polymorphism”. The 
references of retrieved studies were inspected to identify 
any other relevant studies.

Association studies included in our meta-analysis had 
to meet the following criteria: (1) the MetS was defined 
according to the International Diabetes Federation cri-
teria; (2) evaluation of association of HNF1A polymor-
phisms with MetS in at least two studies; (3) use of a 
case–control design; (4) the given information was suf-
ficient to calculate the pooled odds ratio (OR), either a 
contingency table containing the number of controls 
and MetS cases with the different genotypes levels of the 
studied polymorphisms, or the raw genotyping data.

Statistical heterogeneity across studies was evaluated 
by using the chi-square based Q test and the  I2 statistics 
[34]. If there is no heterogeneity across studies (Q test 
p-value > 0.1 or  I2 < 50%), the fixed effects model of Man-
tel–Haenszel was conducted for the meta-analysis [35]. 
Otherwise, the random effects model of DerSimonian 
and Laird was used [36].

Statistical tests were performed using GWAMA soft-
ware (version 2.2.2) [37]. The R library “rmeta” was 
used to draw the forest plots [38]. Publication bias was 
checked by using Begg’s test computed with the meta-
phor R package [39].

Results
Characteristics of the studied population
The biochemical and clinical data of the studied popula-
tion are presented in Table 1.

The BMI, WC, TG, low density lipoprotein cholesterol 
(LDL), FPG, diastolic and systolic blood pressure were 
significantly higher in MetS patients compared to con-
trols. An opposite result was observed only with HDL 
levels.

Association with MetS
Based on the minor allele frequency of the genotyped 
SNPs in EXAC database (http:// exac. broad insti tute. org/), 

the power analysis demonstrated that our study sample 
size (299 controls/295 cases) is sufficient to detect odds 
ratios ≃ 1.6, 1.603 and 1.592 for rs1169288, rs2464196 
and rs735396 respectively with 80% of power at p < 0.05.

Genotypic success rates were 99.32% for rs1169288, 
100% for rs2464196 and 99.5% for rs735396. The gen-
otypic and allelic distribution of HNF1A variants 
(rs1169288, rs2464196 and rs735396) and the result of 
the association with MetS are shown in the Additional 
File 1. The three genotyped SNPs did not deviate from 
HWE, and their genotype distributions are not signifi-
cantly different between MetS patients and controls in 
our Tunisian cohort.

In addition, we performed an association analysis after 
stratification of the studied population according to the 
sex. Our results showed no association with MetS neither 
for men nor for women (Additional file 2).

The whole sample was stratified into Northern and 
Southern groups in order to investigate the impact of the 
geographic origin on the genotype distribution of HNF1A 
variants. Association analyses of the three HNF1A variants 
with MetS performed for each group separately showed no 
significant associations under any genotypic model (Addi-
tional file 3). Furthermore, we did not find any significant 
difference in the distribution of HNF1A genotypes after 
stratification of the whole sample according to the sex and 
to the geographic origin (Additional file 4).

Association with quantitative traits
The association analyses results of the HNF1A variants 
with different quantitative traits are shown in Table 2. We 
applied the recessive model since it has the lowest Akaike 
Information Criterion (AIC) value as shown in the addi-
tional file 1.

Table 1 Clinical and biochemical characteristics of the studied 
Tunisian population

BMI Body Mass Index, DBP diastolic blood pressure, FPG fasting plasma 
glucose, HDL high density lipoprotein cholesterol, LDL low density lipoprotein 
cholesterol, SBP systolic blood pressure, TC total cholesterol, TG triglycerides, WC 
waist circumference. Data are presented as mean ± standard deviation (SD)

Controls (n = 299) Mets (n = 295) p‑value

Age (years) 52.56 ± 10.09 56.58 ± 8.56  < 0.001

WC (cm) 97.07 ± 11.87 106.50 ± 9.94  < 0.001

BMI (Kg/m2) 28.41 ± 4.83 31.53 ± 5.12  < 0.001

FPG (mmol/l) 6.13 ± 2.51 9.52 ± 4.28  < 0.001

TC (mmol/l) 5.08 ± 0.92 5.16 ± 1.01 0.28

HDL (mmol/l) 1.48 ± 0.41 1.13 ± 0.34  < 0.001

LDL (mmol/l) 3.12 ± 0.89 3.16 ± 1.34 0.049

TG (mmol/l) 1.29 ± 0.56 2.02 ± 0.93  < 0.001

DBP (mmHg) 7.74 ± 1.26 8.35 ± 1.40  < 0.001

SBP (mmHg) 13.20 ± 1.97 14.6 ± 2.1  < 0.001

https://phgkb.cdc.gov/PHGKB/hNHome.action
https://phgkb.cdc.gov/PHGKB/hNHome.action
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
http://exac.broadinstitute.org/
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The carriers of two copies of the rs735396 minor allele 
had significantly higher WC than the carriers of the 
reference and the heterozygous genotypes. This asso-
ciation remained significant after Bonferroni correction 
(p-value = 0.039).

The genotype distribution of the variant rs2464196 
showed a significant difference between controls and 
MetS patients for WC (p-value = 0.035) and HDL levels 
(p = 0.037) after adjustment for age, sex and BMI. How-
ever, these associations were lost after Bonferroni cor-
rection. Regarding the variant rs1169288, we did not find 
any significant association with any trait of the MetS.

We investigated also the association of the three 
HNF1A variants with quantitative traits in the group of 
women and men. Our results showed that the female 
carriers of the rs1169288 CC minor genotype had 
higher cholesterol levels (mean = 5.58  mmol/l) com-
pared to the female carriers of AA + AC genotypes 
(mean = 5.14  mmol/l). This association remains signifi-
cant after Bonferroni correction (Additional file 5).

Haplotype association analysis
The analysis of LD pattern showed low to medium cor-
relations between the three genotyped SNPs in our study 
(0.38 <  =  r2 <  = 0.68) (Fig. 1).

The haplotype analysis of the three genotyped SNPs 
(rs1169288, rs2464196 and rs735396) showed no signifi-
cant association with MetS neither in total cohort nor in 
stratified groups according to the sex (Additional files 6 & 
7). However, a significant association was found between 

the minor haplotype CAC and higher cholesterol levels in 
the women group (Additional file 8).

Table 2 Association of HNF1A variants with metabolic syndrome traits in the studied Tunisian population

Data are presented as means. Linear regression, adjusted for age, sex and BMI, was used to assess genotype phenotype correlations under the recessive model of 
inheritance

BMI Body Mass Index, DBP diastolic blood pressure, FPG fasting plasma glucose, HDL high density lipoprotein cholesterol, LDL low density lipoprotein cholesterol, SBP 
systolic blood pressure, TC total cholesterol, TG Triglycerides, WC waist circumference
a Indicated a significant result

p-value*: p-values after Bonferroni correction

For the Bonferroni correction, p-values were multiplied by 3 (the number of SNPs in our study)

Calculations were performed using SNPassoc R package

rs1169288 rs2464196 rs735396

AA + AC CC p‑value p‑value* GG + GA AA p‑value p‑value* TT + TC CC p‑value p‑value*

WC (cm) 101.6 102.3 0.65 1 101.6 105.3 0.035a 0.105 101.5 104.3 0.013a 0.039a

BMI (kg/m2) 30.05 30.17 0.99 1 29.93 30.68 0.1 0.3 29.94 30.35 0.35 1

FPG (mmol/l) 7.81 8.68 0.1 0.3 7.8 8.36 0.47 1 7.9 7.88 0.85 1

SBP (mmHg) 14.01 13.81 0.48 1 13.95 14.11 0.62 1 13.98 13.95 0.72 1

DBP (mmHg) 8.08 8.08 0.99 1 8.07 8.08 0.61 1 8.11 7.97 0.27 0.81

TC (mmol/l) 5.09 5.31 0.056 0.168 5.08 5.30 0.056 0.168 5.11 5.13 0.83 1

HDL (mmol/l) 1.30 1.38 0.07 0.21 1.3 1.37 0.037a 0.111 1.29 1.36 0.08 0.24

LDL (mmol/l) 3.24 3.31 0.61 1 3.23 3.34 0.45 1 3.24 3.25 0.9 1

TG (mmol/l) 1.66 1.76 0.5 1 1.66 1.71 0.96 1 1.66 1.69 0.8 1

Fig. 1 Linkage disequilibrium (LD) plot for the three genotyped 
HNF1A polymorphisms in the Tunisian study sample. Each number 
in the squares refers to the  r2 coefficient of LD between the 
correspondent SNPs multiplied by 100. The LD plot was generated 
using the Haploview software (version 4.2)
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Meta‑analysis
Following our inclusion criteria, we identified only one 
study investigating the association of three HNF1A poly-
morphisms (rs1169288, rs2464196, rs735396) with the 
Mets in the Moroccan population (Table 3).

The study conducted by Morjane et  al. in the Moroc-
can population reported an association of rs1169288 
and rs2464196 with the risk of MetS under codominant 
and dominant genetic models, which was not the case 
in the study conducted in our Tunisian cohort. Regard-
ing rs735396, the two studies suggested the absence of 
its association with MetS in both populations. Begg’s test 
showed that there is no publication bias for the three pol-
ymorphisms (all P > 0.05).

The meta-analysis results of both fixed and random 
effects models are summarized in Table 4. There was no 
significant association between any of the three studied 
HNF1A polymorphisms and the MetS risk.

The results of the association of the HNF1A poly-
morphisms with MetS after stratification following the 

sex in the Moroccan study sample are available in the 
Additional File 9. The meta-analysis stratified by the sex 
showed a significant association of rs1169288 with MetS 
only in the women group, under the codominant and 
dominant genetic models (Additional file  10 & Fig.  2). 
This signal was found in the fixed effects model. How-
ever, the Cochrane’s Q test p-value and  I2 values indicate 
the presence of significant heterogeneity between the 
findings of the two studies for this polymorphism in the 
women group, which led us to use the result obtained in 
the random effects model denying the significant signal 
observed in the fixed effect model.

Discussion
In the present study, we screened the association of 
HNF1A gene with the MetS, through the genotyping of 
three of its polymorphisms (rs1169288, rs2464196 and 
rs735396) in a Tunisian case/control cohort.

The activity of the HNF1A transcription factor depends 
on three functional domains. Variations occurring within 

Table 3 Characteristics of the studies included in the meta-analysis

Study Population Group Subjects Average age (years) rs1169288 rs2464196 rs735396

AA AC CC GG GA AA TT TC CC

Morjane et al. (2017) Morocco Controls 137 50.6 ± 10.34 82 38 10 53 57 25 39 70 26

Cases 104 57.59 ± 11.57 39 44 14 27 44 27 39 42 23

Present study Tunisia Controls 299 52.56 ± 10.09 116 136 44 107 141 51 79 140 79

Cases 295 56.4 ± 8.50 106 151 37 98 151 46 77 149 67

Table 4 Results of meta-analysis using different genetic models

OR Odds ratio, CI Confidence interval

SNP Genetic model Fixed effects model Random effects model Heterogeneity

OR (95% CI) p‑value OR (95% CI) p‑value P‑value I2 (%)

rs1169288 AC vs AA 1.27 (0.91–1.79) 0.15 1.42 (0.68–2.95) 0.33 0.047 74.47

A > C CC vs AA 1.14 (0.68–1.90) 0.61 1.36 (0.46–3.99) 0.57 0.058 72.16

AC + CC vs AA 1.26 (0.91–1.73) 0.14 1.43 (0.64–3.20) 0.37 0.018 81.88

CC vs AC + AA 1.01 (0.19–0.63) 0.94 1.12 (0.52–2.41) 0.76 0.149 51.76

rs2464196 GA vs GG 1.21 (0.85–1.71) 0.28 1.28 (0.75–2.18) 0.35 0.164 48.13

G > A AA vs GG 1.19 (0.75–1.88) 0.44 1.39 (0.42–4.55) 0.57 0.013 83.45

GA + AA vs GG 1.19 (0.86–1.66) 0.28 1.35 (0.65–2.82) 0.41 0.042 75.65

AA vs GA + GG 1.07 (0.71–1.61) 0.73 1.16 (0.49–2.78) 0.72 0.039 76.52

rs735396 TC vs TT 0.84 (0.58–1.21) 0.35 0.82 (0.52–1.28) 0.39 0.234 29.18

T > C CC vs TT 0.81 (0.53–1.24) 0.34 0.81 (0.53–1.24) 0.34 0.958 0

TC + CC vs TT 0.83 (0.59–1.63) 0.28 0.83 (0.59–1.16) 0.28 0.389 0

CC vs TC + TT 0.89 (0.61–1.67) 0.53 0.89 (0.61–1.27) 0.53 0.548 0
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these domains may have the biggest potential to alter its 
activity. The two missense genotyped variants rs1169288 
and rs2464196 occur in the dimerization domain and the 
transactivation domain respectively. The third variant 

rs735396, occurring in intron 9, is localized in a tran-
scription regulatory region [40]. The transactivation 
domain contains binding sites for other transcription 
coregulators that are important for the regulation of 

Fig. 2 Forest plots showing the meta-analysis results of the association between rs1169288 (A > C) and MetS in women. a Genetic model: AC vs 
AA, b Genetic model: CC vs AA, c Genetic model: AC + CC vs AA, d Genetic model: CC vs AA + AC. The forest plots were generated using “rmeta” R 
library
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the target genes expression. The dimerization domain 
is responsible of the protein quaternary structure [41]. 
Hence, the combination of minor alleles of these three 
variants may have a major effect on HNF1A protein 
structure and function.

Our results showed no significant association of the 
genotyped SNPs with MetS in the studied sample even 
after stratification of the cohort following the sex and 
the geographic origin. The power analysis demonstrated 
that our study sample size (299 controls/295 cases) does 
not affect the detection of significant association. Indeed, 
we have previously identified significant associations of 
APOA5 polymorphisms with the MetS in two studies 
performed on the same cohort of the present work [26, 
27].

To our knowledge, only two studies have investigated 
the association of HNF1A gene with MetS [23, 42]. Pollex 
et al., reported the association of the variant G319S with 
MetS in the Canadian Oji-Cree isolated population [42]. 
However, the investigation of this variant with MetS was 
not replicated in other populations. The three HNF1A 
gene variants (rs1169288, rs2464196 and rs735396) were 
selected on the basis of several previous studies reporting 
the association of these SNPs with T2D and cardiovascu-
lar diseases which are related to MetS as being a compo-
nent or a complication [13–20]. Our finding is different 
from that observed in the study performed by Morjane 
et  al. who reported that the variants rs1169288 and 
rs2464196 in the HNF1A gene conferred an increased 
risk to MetS in a Moroccan population [23]. This differ-
ence may be explained by the heterogeneity of the popu-
lations’ ethnic origins.

In the second part of our work, we investigated the 
association of the HNF1A gene variants (rs1169288, 
rs2464196 and rs735396) with MetS quantitative traits 
such as FPG, BMI, LDL, HDL, SBP, DBP, TG and WC 
in order to assess the involvement of these variants in 
the MetS components. Our results showed a significant 
association between the variant rs735396 and higher 
WC after Bonferroni correction, which is in agreement 
with Morjane et al. study [23]. This finding suggests that 
rs735396 may represent a genetic susceptibility to the 
obesity and can lead to the alteration of some metabolic 
and inflammatory pathways markers such as C-reactive 
protein levels, as it was mentioned in previous studies 
[18, 19]. In this context, it is noteworthy to mention that 
obesity and altered CRP levels were associated with an 
increased risk for liver cancer [43, 44]. Furthermore, Jiang 
et  al. had recently reported significant associations of 
this variant with the development of liver cancer, mainly 
through altering HNF1A gene expression in various 
stages of carcinogenesis. They suggested that rs735396, 
which is located in an enhancer regulatory region, might 

modulate HNF1A expression through affecting the tem-
poral interaction between different trans-acting factors 
and the HNF1A enhancer [45]. Besides association with 
cancers, it was previously reported that elevation of CRP 
levels was associated with increased risk of ischemic 
stroke [46]. Therefore, effect of rs735396 on the suscep-
tibility of ischemic stroke is worthwhile to be further 
investigated.

The stratified analysis, according to the sex, showed a 
strong association of rs1169288 genotypes with higher 
cholesterol levels only in the group of women. This result 
was not reported in the literature, and it may suggest 
the role of some sex-specific hormonal pathways, regu-
lated by the HNF1A transcriptional machinery, in the 
metabolism of lipids. In this context, a recent study dem-
onstrated that rs1169288 minor genotype is associated 
with an increased risk of preeclampsia, a pregnancy com-
plication characterized by high blood pressure and signs 
of damage in liver [47]. Interestingly, Lee et al. reported 
an increased cholesterol biosynthesis and accumulation 
in the women with preeclampsia [48]. Subsequently, an 
in-depth investigation by Silva et  al. demonstrated that 
inflammation intensification, resulting from an accu-
mulation of cholesterol crystals, is the main pathway 
leading to preeclampsia [49]. Taking into account these 
points as well as the high expression of HNF1A in the 
liver, our findings may emphasize the potential impact 
of rs1169288 minor genotype in altering the cholesterol 
homeostasis in women. Accordingly, a previous study 
reported a sex-specific difference for the association of 
the FTO gene polymorphisms to MetS components in 
the Tunisian population [50].

Knowing that the genetic landscape of the Tunisian 
population is a mosaic due to successive invasions and 
migratory flows since the prehistoric period [51], we 
investigated the impact of the geographic origin on the 
genotype distribution of HNF1A variants (rs2464196, 
rs735396 and rs1169288). As a result, we did not find 
a significant association with MetS under any geno-
typic model neither for the Northern nor for the South-
ern region. In our previous study on the association of 
APOA5 gene variants with MetS, we emphasized an 
inter-regional variation within the Tunisian population 
since the variant rs651821 was significantly associated 
with MetS only for individuals originating from Northern 
Tunisia [26]. This is not the case for HNF1A variants. The 
sample size does not influence the result since the two 
studies were performed on the same Tunisian cohort.

When investigating the haplotype association with 
MetS quantitative traits, we found a significant associa-
tion between the minor haplotype and higher choles-
terol levels mainly in the women group. In this context, 
Hu et  al. have recently demonstrated that HNF1A 
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modulated the cholesterol homeostasis by activating 
the expression of microRNA-122 (miR-122), which 
is an abundant liver specific microRNA that regulates 
hepatocyte differentiation and proliferation as well as 
lipid metabolism. In addition, they found that loss of 
HNF1A function led to an abnormal cholesterol metab-
olism by altering HNF1A binding to miR-122 gene 
promotor and downregulating its expression [52]. Simi-
larly, Huang et  al. reported low circulating miR-122 
levels in diabetic patients carrying HNF1A variants, 
and they suggested that this observation might partially 
explain the increased risk for abnormal lipid metabo-
lism [53]. In this context, recent studies reported that 
serum miR-122 is associated with insulin resistance, 
obesity, and MetS [54, 55]. Therefore, these findings are 
in agreement with our results since the genotyped SNPs 
rs1169288 and rs2464196 are located within functional 
domains of the HNF1A protein, which may affect its 
binding to miR-122 promotor, resulting in the altera-
tion of the cholesterol homeostasis. In another study, 
Zhou et al. have demonstrated that both rs1169288 and 
rs2464196 were significantly associated with serum 
lipid levels in controls as well as in coronary artery 
disease patients [24]. Indeed, Willer et  al. found that 
genetic loci associated with cholesterol levels were also 
associated with the risk of coronary artery disease [56]. 
Furthermore, a genetic variant in HNF1A was involved 
in a genetic score that is able to identify individuals at 
high risk of coronary heart disease, and with the larg-
est relative and absolute clinical benefit with statin 
therapy, which is widely used for decreasing cholesterol 
levels [57]. Thus, our findings may potentially provide 
more insights into the study of the sex-specific biologi-
cal pathways mediating lipid metabolism and involv-
ing HNF1A transcriptional machinery, which would 
identify potential therapeutic targets for the treatment 
of patients with lipid metabolism disorders. Particu-
larly, it may be interesting to further explore the path-
ways affected by the statin treatment, and regulated by 
HNF1A. In fact, besides the effect of statin on reducing 
miR-122 serum levels, Li et  al. have recently demon-
strated that therapeutic targeting of a novel long non-
coding RNA regulating HNF1A expression, might be 
an effective approach to enhance the effect of statin on 
cholesterol levels in clinics [53, 58].

Regarding the meta-analysis performed with the 
study carried in the Moroccan population, we did not 
find an association between the three HNF1A polymor-
phisms (rs1169288, rs2464196, rs735396) and the MetS. 
This result was expected for rs735396, since both stud-
ies have reported the same result. For the other two 
polymorphisms, although the study conducted in the 

Moroccan population reported their association with 
MetS in codominant and dominant models, this out-
come was denied when combined with our replication 
study conducted in the Tunisian population. To the best 
of our knowledge, this is the first meta-analysis of the 
association of HNF1A polymorphisms with MetS. In 
fact, published meta-analyses reported especially sig-
nificant signals of HNF1A association with T2D and 
diabetes related serum biomarkers [59, 60]. In North 
Africa, a previous meta-analysis grouping two studies 
from Morocco and Tunisia reported the association of 
one HNF1A variant with T2D, and ruled out the asso-
ciation of another variant seen only in the Moroccan 
study, which is similar to the outcome of our meta-anal-
ysis [61].

Our study has some possible limitations. Firstly, 
although the power analysis demonstrated that the 
sample size does not affect the detection of a significant 
association, it is relatively small to provide sufficient 
power in order to confirm the non-association between 
MetS and HNF1A genetic variants. Secondly, the strati-
fication of the sample according to the geographic ori-
gin further decreases statistical power. Thirdly, only two 
studies have investigated the association of the three 
HNF1A variants (rs1169288, rs2464196, rs735396) with 
MetS, which did not allow to gain a great statistical 
power in the meta-statistical analysis.

Conclusions
So far at the exception of two studies, no association 
studies have been conducted between HNF1A gene 
variants and MetS. Our results showed a significant 
association between the variant rs735396 and waist 
circumference and a significant association between 
the variant rs1169288 and high cholesterol level only 
in women. At haplotypic scale, a significant associa-
tion was found between the minor haplotype and total 
cholesterol mainly in women. Our findings exclude the 
involvement of the three HNF1A variants rs1169288, 
rs2464196 and rs735396 in the susceptibility to MetS in 
Tunisia, but they emphasize the role of these polymor-
phisms in the metabolism of lipids with sex-specific 
differences. Nevertheless, due to the few number of 
studies, further case–control studies and meta-analyses 
are required in order to confirm the role of HNF1A pol-
ymorphisms in the genetic predisposition to MetS.
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