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A B S T R A C T   

As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first 
epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle 
threshold (Ct) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-Ct value 
infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported 
incidence data and retrospectively from our own laboratory testing data across three administrative regions. We 
additionally demonstrate a statistically significant effect of duration of time since infection onset on Ct value, 
suggesting that Ct value can be used as a biomarker of the stage at which an individual is sampled in the course of 
an infection trajectory. As an extension, the population-level Ct distribution at a given timepoint can be used to 
estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently- 
developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level 
Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth 
rates from cross-sectional Ct distributions across three regions in Madagascar. We find that Ct-derived epidemic 
growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting 
delays in surveillance and case reporting. Our findings indicate that public reporting of Ct values could offer an 
important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending 
incidence peaks in regions with limited case reporting.   
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1. Introduction 

Madagascar reported its first case of coronavirus disease 2019 
(COVID-19) on 19 March 2020, in part with a government-sponsored 
surveillance platform testing all incoming international travelers (Ran
dremanana et al., 2021). Subsequent to this introduction, the first wave 
of the COVID-19 epidemic was geographically staggered, with early 
cases in May 2020 largely concentrated in the eastern city of Toamasina, 
part of the Atsinanana administrative region, followed by a more severe 
outbreak which peaked in July 2020 in the capital city of Antananarivo, 
part of the Analamanga administrative region. Test positive rates 
exceeded 50% at the epidemic peak for both regions and at the national 
level, indicating widespread underreporting (Chitwood et al., 2020), a 
common feature of COVID-19, for which some 20–40% of infections are 
thought to be entirely asymptomatic (Oran and Topol, 2020; Mizumoto 
et al., 2020; Nishiura et al., 2020; Treibel et al., 2020). Early reporting 
on the first epidemic wave in Madagascar indicated an extremely high 
(56.6%) proportion of asymptomatic cases, based on targeted surveil
lance of symptomatic patients and their contacts (Randremanana et al., 
2021). 

Madagascar closed its borders to international air travel on 20 March 
2020 and, subsequent to identification of the first case, implemented 
several non-pharmaceutical interventions aimed at curbing epidemic 
spread, including non-essential business closures, curfews, stay-at-home 
orders, and mandates for social distancing. These restrictions were 
relaxed after the first epidemic subsided in September 2020 but have 
since been re-implemented in the face of a second epidemic wave. In 
other regions of the globe, widespread efforts to estimate the effective 
reproduction number, Rt, for COVID-19 at national, regional, and local 
levels (Abbott et al., 2020b) have been used to inform public health 
interventions and retrospectively assess their effectiveness (Gostic et al., 
2020): disease transmission rates are increasing at Rt > 1 and decreasing 
at Rt < 1. Estimation of Rt, or its related counterpart, r, the epidemic 
growth rate (Wallinga and Lipsitch, 2007; Park et al., 2020), from 
available case count data is challenged by limitations or variability in 
surveillance, uncertainty surrounding the shape of disease parameter 
distributions, and delays in reporting (Gostic et al., 2020). Despite the 
enormity of these challenges in the limited surveillance settings common 
to many lower- and middle-income countries (LMICs), real-time esti
mation of Rt from COVID-19 case-counts has been attempted for most 
regions of the globe (Abbott et al., 2020b) and has been implemented 
locally in Madagascar (Rasambainarivo et al., 2020; Raherinirina et al., 
2021a,b; Narison and Maltezos, 2021). 

Recent methodological advances have introduced a new resource to 
the epidemiological toolkit by which to conduct real time estimation of 
epidemic trajectories (Hay et al., 2021), one that leverages the 
often-discarded cycle threshold, or Ct, value, that is returned as 
an-inverse log-10 measure of viral load from all RT-qPCR-based plat
forms (Tom and Mina, 2020). After observing that SARS-CoV-2 viral 
loads—and, as a consequence RT-qPCR Ct values—demonstrate a pre
dictable trajectory following the onset of infection (Chen and Li, 2020; 
Jacot et al., 2020; Borremans et al., 2020), Hay et al., 2021 showed that 
the Ct value can be used as a biomarker of time since infection and, 
consequently, be leveraged to back-calculate infection incidence, in a 
manner analogous to previous work leveraging serological titer infor
mation in other systems (Borremans et al., 2016; Hay et al., 2020; Salje 
et al., 2018). Probabilistically, a randomly-selected infection is more 
likely to be early in its infection trajectory when identified during a 
growing epidemic and later in its trajectory in a declining epidemic 
(Wallinga and Lipsitch, 2007; Rydevik et al., 2016), and as a conse
quence, the population-level distribution of Ct values for any viral 
infection is expected to shift across the duration of an epidemic. Indeed, 
low-Ct-high-viral-load infections have been observed to coincide with 
growing COVID-19 epidemics and high-Ct-low-viral-load infections with 
declining epidemics in several settings (Jacot et al., 2020; Moraz et al., 
2020; Walker et al., 2020). Exploiting this phenomenon, Hay et al. 

developed a method that embeds a within-host, viral kinetics model in a 
population-level disease transmission model to derive epidemic trajec
tories from cross-sectional Ct samples. Because this method depends on 
quantitative information captured in the biological sample itself, rather 
than the relationship between case count and reporting date, Ct value 
estimation more accurately predicts true epidemic trajectories than 
traditional incidence estimation in settings with uneven surveillance 
(Hay et al., 2021). 

During the early phase of the COVID-19 epidemic in Madagascar, the 
Virology Unit laboratory (National Influenza Centre) at the Institut 
Pasteur of Madagascar (IPM) processed the majority of all SARS-CoV-2 
testing samples derived from 114 districts across 6 major provinces in 
the country. Consistent with findings reported elsewhere (Jacot et al., 
2020; Moraz et al., 2020; Walker et al., 2020), we observed a 
population-level decline in Ct values derived from RT-qPCR-testing in 
our laboratory, coincident with the epidemic peak across the first wave 
of COVID-19 in Madagascar. We here adopt the methods presented by 
Hay et al. (2021) to estimate COVID-19 epidemic growth rates at the 
national level (2018 population ~ 26 million (INSTAT Madagascar., 
2018)) and in two major administrative regions of Madagascar: Atsi
nanana (east coast of Madagascar; 2018 population ~ 1.5 million 
(INSTAT Madagascar., 2018)) and Analamanga (including Antananar
ivo, capital city; 2018 population ~ 3.6 million (INSTAT Madagascar., 
2018)). We evaluate the robustness of this Ct-based method in com
parison with epidemic growth rates derived from more traditional 
case-count methods applied to the same regions and at the national 
level. Atsinanana and Analamanga comprised the geographic epicenter 
of the first COVID-19 wave in Madagascar but also the source of the 
majority of samples sent for testing. Given that vast majority of testing 
resources across the duration of the Madagascar pandemic have been 
concentrated in Antananarivo (Rakotonanahary et al., 2021), ‘national’ 
reported trends may belie temporally lagged disease dynamics in more 
rural regions of the country. We advocate for more widespread Ct 
reporting from rural areas, as our analysis indicates that Ct-based Rt 
estimation could be a particularly robust method of inferring epidemi
ological trajectories in low-surveillance settings. 

2. Materials and methods 

2.1. IPM SARS-CoV-2 Ct data 

Methods for collection, transport, and processing of SARS-CoV-2 
testing samples at IPM have been previously described (Randrema
nana et al., 2021). Briefly, nasopharyngeal and oropharyngeal swabs 
were collected at local administrative hospitals in viral transport me
dium and transported at 4 oC to our laboratory for testing. Between 18 
March and 30 September 2020, we conducted 34,563 RT-qPCR tests 
targeting the E, N, Orf1a/b, or S gene of SARS-CoV-2. These tests were 
carried out across 20,326 discrete samples (many of which were tested 
across multiple platforms targeting multiple genes), and 17,499 discrete 
patients, a subset of whom were tested at multiple timepoints. Earlier in 
March 2020, the Madagascar Ministry of Public Health screened all 
travelers entering the country in an effort to prevent the introduction of 
COVID-19 to Madagascar (Randremanana et al., 2021). Despite these 
efforts, the first infection with SARS-CoV-2 was first confirmed in 
Madagascar on 19 March 2020, after which testing efforts were refo
cused to screen contacts of confirmed cases, as well as any patients 
reporting to clinics or hospitals with symptoms aligned with pre-existing 
surveillance systems for influenza-like illness (ILI) and severe acute 
respiratory infection (SARI), following guidelines from WHO (WHO, 
2020). IPM has processed samples from ILI and SARI surveillance plat
forms in Madagascar for over a decade; in April 2020, we added 
SARS-CoV-2 to the routine screening of incoming specimens (Ran
dremanana et al., 2021; Rakotoarisoa et al., 2017; Guillebaud et al., 
2018). 

Due to a dearth of available reagents in the early stages of the 

S.F. Andriamandimby et al.                                                                                                                                                                                                                  



Epidemics 38 (2022) 100533

3

epidemic, our lab used seven different WHO-recommended kits and 
corresponding protocols (The World Health Organization (WHO), 2020) 
to assay infection in these samples (Randremanana et al., 2021): Charity 
Berlin (Corman et al., 2020), Hong Kong University (Chu et al., 2020), 
Da An gene (Da An Gene Co., Ltd. Sun Yatsen University, Guangzhou, 
China), LightMix® SarbeCoV E-gene plus EAV control (TIB Biolmol, 
Berlin, Germany), SarbeCoV TibMolBiol (TIB Biolmol, Berlin, Germany), 
TaqPath™ COVID- 19 Combo kit (Life Technologies Ltd, Paisley, UK), 
and GeneXpert (Cepheid, Sunnyvale, CA, USA). 

Some 9493 of those tests, corresponding to 5310 individuals, were 
RT-qPCR positive for SARS-CoV-2 infection based on the cut-off positive 
value for the test in question (Charity Berlin: <= 38; Hong Kong: <= 40; 
Da An: <= 40; LightMix SarbeCoV/SarbeCoV TibMolBiol <= 38; Taq
Path <= 37 for 2 of 3 targets; GeneXpert :<= 40). All analyses presented 
in this paper are derived from these positive test results, as Ct-values 
were not reliably recorded following negative results. We further subset 
our data as appropriate for each analysis of interest. 

2.2. Estimating growth rates from IPM case data 

We first sought to obtain an estimate of new daily cases reported 
from our laboratory to the Malagasy government between 18 March and 

30 September 2020. To this end, we reduced our dataset to include only 
sampling from the first reported positive test date for each unique pa
tient; we assumed that reinfection was unlikely within the short dura
tion of our study and that any subsequent positive tests were reflective of 
longer-duration infections in repeatedly sampled individuals. A patient 
was considered “positive” for SARS-CoV-2 infection if any test for any 
SARS-CoV-2 target was positive, and the results of the other samples 
were not inconsistent with this finding. We then summed cases by date 
at the national level and for two administrative regions (Atsinanana and 
Analamanga) that reported the majority of total cases across the study 
period overall. In total, 5276 cases were reported from our laboratory 
across the study period at the national level, 3505 in Analamanga region 
and 758 in Atsinanana. Daily cases for the two target regions and for the 
nation at large are summarized in Fig. 1. 

We applied the opensource R-package EpiNow2 (Abbott et al., 
2020a) to the daily incidence data to estimate the epidemic growth rate 
for COVID-19 across the study period. EpiNow2 builds on previous Rt 
estimation packages (Cori et al., 2013), using a non-stationary Gaussian 
process model to estimate the instantaneous time-varying reproduction 
number, Rt, and the corresponding time-varying epidemic growth rate, 
r, while incorporating uncertainty in the generation interval. Following 
best recommended practices (Gostic et al., 2020), we modeled the 

Fig. 1. Epidemic growth rate estimates from case count data across the first wave of COVID-19 in Madagascar. (A.) Map of Madagascar, colored by regions of case 
count tabulation, showing the Atsinanana region (orange), the Analamanga region (green), and the National region (blue); note that data analyzed at the National 
level includes data from both Atsinanana and Analamanga regions, as well as the rest of Madagascar. (B.) Time series of new case incidence lefthand y-axis) across the 
first wave of COVID-19 in Madagascar (18 March – 30 September 2020), across three focal regions. Darker shading shows data derived from the IPM RT-qPCR 
platform, while lighter shading depicts data nationally reported and consolidated on (Rasambainarivo et al., 2020). Righthand y-axis shows corresponding 
epidemic growth rate computed from case count data in EpiNow2 (Abbott et al., 2020a), with darker line corresponding to computation from IPM data and lighter 
line to computation from publicly reported data; background shading around each line depicts the corresponding 50% quantile by EpiNow2 (Abbott et al., 2020a). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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SARS-CoV-2 incubation period as a log-normal distribution with a mean 
of 1.621 days (sd = 0.064) and a standard deviation of 0.418 days (sd =
0.061) (Lauer et al., 2020) and the generation time interval as a gamma 
distribution with a mean of 3.635 (sd = 0.71) and a standard deviation 
of 3.075 (0.77) (Ganyani et al., 2020). Since the IPM testing data re
ported the actual date of sample collection, no reporting delay was 
incorporated in our growth rate estimation. 

2.3. Epidemic trajectories from publicly reported data 

To compare our laboratory-derived epidemic growth estimates with 
those undertaken in real time in Madagascar, we collaborated with 
colleagues who recorded data on the number of new PCR-confirmed 
cases reported daily on national television by the Ministry of Health of 
the Government of Madagascar across the duration of the first epidemic 
wave. From these daily case estimates, we used the EpiNow2 package 
(Abbott et al., 2020a) to again estimate the epidemic growth rate across 
the same study period, assuming the same incubation period and general 
time interval referenced above (Lauer et al., 2020; Ganyani et al., 2020). 
For these estimates, we followed methods outlined in (Abbott et al., 
2021), to additionally model a reporting delay from a log-normal dis
tribution fit to 100 subsamples with 1000 bootstraps from a publicly 
available linelist that collates data globally for COVID-19 cases for 
which both infection onset and notification dates are available (Xu et al., 
2020). 

2.4. Standardizing Ct values across tests and targets 

In our next series of analyses, we leveraged information captured in 
the individual Ct value returned from each positive test. To control for 
extensive variation in qPCR test and target (each of which reported 
varying thresholds for positivity), we carried out in vitro experiments 
using SARS-CoV-2 isolates from infected patients reporting similar Ct 
values on the TaqPath platform at the time of sampling. Briefly, three 
SARS-CoV-2 isolates (designated hCoV-19/Madagascar/IPM-00754/ 
2021, hCoV-19/Madagascar/IPM-01263/2021 and hCoV-19/ 
Madagascar/IPM-01315/2021) were obtained and cultured in Vero 
cells as previously described (Auerswald et al., 2021). Upon infection 
with SARS-CoV-2, the culture medium was replaced by infection me
dium containing DMEM, 5% FBS, antibiotics, 2.5 μg/ml Amphotericin B 
(Gibco) and 16 μg/ml TPCK-trypsin (Gibco). Virus-containing superna
tants, as determined by the presence of cytopathic effect (CPE), were 
harvested 7 days after infection by centrifugation at 1500 r.p.m. for 
10 min. RNA was subsequently extracted from supernatant and sub
jected to serial dilutions and subsequent testing on six of the seven 
RT-qPCR platforms used in our population-level dataset (LightMix Sar
beCoV and SarbeCoV TibMolBiol were considered equivalent and tested 
only using the current version of the kit: SarbeCoV TibMolBiol). We fit 
linear mixed effect regression models in the lme4 (Bates et al., 2015) 
package in R to the resulting Ct curves returned from each testing 
platform across the dilution series and used the fitted slope and 
y-intercept of each regression equation to reproject all Ct values in our 
dataset to correspond to results returned from the TaqPath N gene test. 
We report, analyze, and visualize these TaqPath N-corrected Ct values in 
all analyses. We selected the TaqPath N gene Ct as the basis for reporting 
because our laboratory adopted the TaqPath assay for exclusive use after 
supply chains stabilized nine months into the pandemic; of the three 
targets returned from the TaqPath assay, the N-gene is the most common 
target across other SARS-CoV-2 diagnostic platforms (Kubina and 
Dziedzic, 2020). 

2.5. Generalized additive modeling of the longitudinal Ct distribution by 
region 

After observing a population-level dip in the average Ct value 
recovered from our testing platform, roughly coincident with the 

epidemic peak in the three regions of interest, we asked the broad 
question, what is the population level time-trend of SARS-CoV-2 C t values 
across these three regions? To address this question, we compiled all 
positive tests from the first date of positive testing for each patient, 
recording the date, region, test, and target that corresponded to each 
corrected Ct value, in addition to the numerical ID and the symptom 
status (asymptomatic, symptomatic, or unknown) of the patient from 
which it was derived. Symptom statuses were recorded by medical staff 
at the timepoint of sampling and merely indicated whether or not the 
patient presented with symptoms; thus, ‘asymptomatic’ classification 
did exclude the possibility that the same patient reported symptoms at 
later or earlier timepoints across the course of infection. The resulting 
data consisted of 8055 discrete Ct values, corresponding to 5280 pa
tients, most of whom were tested using multiple tests and/or gene tar
gets of interest. Ct values for these positive test results ranged from 6.36 
to 39.91. When reprojected to TaqPath N levels, the range shifted from 
7.82 to 39.99, such that 507Ct values classed as “positive” by the cutoff 
thresholds on other platforms exceeded the Ct <= 37 threshold for 
positivity on the TaqPath platform. These samples were nonetheless 
retained for generalized additive modeling (GAM) of longitudinal Ct 
trends but GAM-projected Ct values still exceeding the TaqPath cutoff 
were later excluded in mechanistic modeling of transmission trends 
fitted to positive data. 

Using the mgcv package (Wood, 2001) in the R statistical program, 
we next fit a GAM in the gaussian family to the response variable of 
corrected Ct value, incorporating a numerical thinplate smoothing pre
dictor of date, and random effects on the categorical variables of test 
(Charity Berlin, Hong Kong, Da An, LightMix SarbeCoV, SarbeCoV 
TibMolBio, TaqPath, or GeneXpert), target (E,N,Orf1a/b, or S), and in
dividual patient ID. We refit the model to three different subsets of the 
data, encompassing the Atsinanana and Analamanga regions, as well as 
the entire National data as a whole. We then used the resulting fitted 
GAMs to simulate population-level Ct distributions for each date in our 
dataset, excluding the effects of test and target in the predict.gam 
function from mgcv. This produced a test- and target-controlled average 
Ct estimate for each positive patient at the timepoint of sampling. We 
used these GAM-simulated Ct distributions to carry out mechanistic 
model fitting in subsequent analyses, as described below, excluding 15 
patients with Ct projections > 37, which exceeded the positive threshold 
for the TaqPath N gene assay. 

2.6. Generalized additive modeling of Ct value since time of infection 
onset 

To validate observations from the literature which indicate that the 
viral load and corresponding Ct value follow a predictable trajectory 
after the onset of SARS-CoV-2 infection (Chen and Li, 2020; Jacot et al., 
2020) within our own study system, we next concentrated analyses on a 
subset of 4822 Ct values (corresponding to 2842 unique samples derived 
from 2404 unique patients), for which the timing of symptom onset was 
also recorded. For each of these samples, we randomly drew a corre
sponding incubation time from the literature-derived log-normal dis
tribution above (Lauer et al., 2020) to approximate the timing of 
infection onset. To answer the question, how does Ct vary with time since 
symptom onset?, we fit a GAM in the gaussian family to the resulting data 
with a response variable of Ct and a numerical thinplate smoothing 
predictor of days since infection onset, as well as random effects of test, 
target, and patient ID. After fitting, we used the predict.gam function 
from the mgcv package, excluding the effects of target and test, to 
produce a distribution of Ct values corresponding to times since symp
tom onset (one per each unique patient ID). We used these Ct trajectories 
to estimate parameters for the within-host viral kinetics model described 
in final methods section below. 
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2.7. Generalized additive modeling of the relationship between Ct value 
and symptom status 

We next asked the question, does Ct value vary in symptomatic vs. 
asymptomatic cases? 

Our first investigation of this question required only reconsideration 
of the individual trajectory GAM described above to include additional 
predictor variables of age and symptom status, in addition to days since 
infection onset, target, and test. Since symptom status was recorded only 
at the first timepoint of sampling for each individual, we limited our 
individual trajectory dataset to a 4072 datapoint subset of Ct values 
from 2404 discrete patients reporting both date of symptom/infection 
onset and symptom status at the timepoint of sampling; as mentioned 
previously, ‘asymptomatic’ classification in our dataset included pa
tients reporting symptoms from earlier or later timepoints prior to or 
following the sampling date. Thus, this GAM tested whether symptom 
status and Ct value interacted merely as a function of the timing since 
symptom onset (e.g. high Ct values were recovered from patients either 
very early or late in their infection trajectory), or whether independent 
interactions between symptomatic vs. asymptomatic infections and Ct 
were also present, while also controlling for age. 

After observing results, we extended this analysis by applying 
another GAM in the gaussian family to a 7937 datapoint subset of the 
data used to model longitudinal Ct trajectories at the National level, 
which additionally reported symptom status (symptomatic vs. asymp
tomatic) at the timepoint of first sampling for 5202 unique patients. 
Corrected Ct values in this data subset ranged between 7.82 and 39.99. 
This GAM incorporated a response variable of Ct and random effects 
predictor smoothing terms of symptom status, test, target, and patient 
ID, as well as a numerical smoothing predictor for age of the infected 
patient. 

2.8. Estimating epidemic growth rates from cross-sectional Ct values 

Finally, following newly-developed methods (Hay et al., 2021), we 
sought to estimate the epidemic growth rate across our three regions of 
interest using cross-sectional Ct distributions and compare these results 
against estimates derived from the case count methods described above. 
In their original paper, Hay et al. (2021) applied two population-level 
models (a Susceptible-Exposed-Infectious-Recovered [SEIR] model and 
a more flexible Gaussian process [GP] model) to a time-series of infected 
cases from the Brigham and Women’s Hospital, Boston, MA, each 
reporting a quantitative estimate of viral load by Ct value. Rather than 
assuming all infectious (“I” class) individuals contributed equally to 
onward transmission, as is standard in compartmental modeling, Hay 
et al. (2021) nested a separate within-host viral kinetics model 
describing the mean trajectory a SARS-CoV-2-infected patient’s viral 
load (as indicated by Ct-value) across the timecourse of infection within 
their infectious (I) class. By fitting this within-host model to the quan
titative data encapsulated in a Ct-value datapoint, the authors were able 
to back-infer the duration of time since the original infection occurred 
and the trajectory of viral load-dependent infectiousness for each posi
tive patient, allowing for accurate estimation of epidemic trajectories 
independent of delays and biases in reporting (Hay et al., 2021). 

To this end, we adopted the method developed in Hay et al. (2021), 
first fitting the within-host viral kinetics model to the test- and 
target-controlled Ct values produced from the above GAM describing Ct 
as a function of time since infection. We used the resulting parameter 
estimates as informed priors (Table S1) which we next incorporated into 
the same two population-level SARS-CoV-2 transmission models defined 
by Hay et al (2021), here applied to our time series data across the three 
Madagascar regions: a compartmental SEIR model and a GP model, 
which makes no assumptions about the specific mechanisms underlying 
an epidemic trajectory beyond the correlation of cases from one time
step to the next. Given uncertainty in the epidemiology underlying 
COVID-19 dynamics in Madagascar and other parts of Africa (Evans 

et al., 2020), we anticipated that the GP model would offer the most 
flexible fit to the data. Beyond the viral kinetics parameters, we adopted 
less-constrained priors from the original paper (Hay et al., 2021) for 
other epidemiological parameters included in both population-level 
models (Table S1), then re-fit both transmission models in turn to 
cross-sectional weekly Ct distributions derived from the Atsinanana, 
Analamanga, and National-level datasets. We fit both models to each 
dataset using an MCMC algorithm derived from lazymcmc R-package 
(Hay, 2020), as described in the original paper (Hay et al., 2021), 
applying the default algorithm to the GP fit and a parallel tempering 
algorithm able to accurately parse multimodal posterior distributions to 
the SEIR fit. Four MCMC chains were run for 500,000 iterations in the 
case of the GP model and three MCMC chains for 80,000 iterations each 
in the case of the SEIR model, then evaluated for convergence via 
manual inspection of the resulting trace plots and verification that, the 
potential scale reduction factor, had a value < 1.1 and the effective 
population size had a value > 200 for all parameters estimated. 

After confirming chain convergence, we computed epidemic growth 
rates from the resulting estimated infection time series and compared 
results with those derived using more traditional case count methods 
outlined above. Code and supporting datasets needed to reproduce all 
analyses are available for download on our opensource GitHub re
pository at: github.com/carabrook/Mada-Ct-Distribute. 

3. Results 

3.1. Epidemic trajectories from case count data 

The first wave of COVID-19 infections in Madagascar, between 
March and September 2020, was characterized by two subsequent out
breaks: one early, May 2020 peak centered in the eastern port city of 
Toamasina (region Atsinanana), followed by a second peak in July 
centered in the capital city of Antananarivo (region Analamanga) 
(Fig. 1) (Randremanana et al., 2021). Estimation of the epidemic growth 
rate showed broad agreement in trends at both the national and regional 
levels, whether computed from IPM testing data assuming perfect 
reporting of testing date, or from publicly reported national data, 
including a reporting delay parameterized from a global opensource 
database (Fig. 1) (Xu et al., 2020). Since IPM data comprised just over 
30% of nationally reported data throughout the first six months of the 
Madagascar epidemic, this concurrence in growth rates was unsurpris
ing but nonetheless validates the applicability of the globally parame
terized reporting delay for use in Madagascar. In both datasets, we 
estimated the national level epidemic growth rate to be increasing in the 
months preceding the two epidemic sub-peaks (in April and in June) and 
declining beginning in mid-July after the last peak in national case 
counts (Fig. 1). When IPM data were considered at the regional level, we 
discovered the April peak to be concentrated in Atsinanana, preceding 
the Toamasina outbreak and the June peak to be concentrated in Ana
lamanga preceding the Antananarivo outbreak. Growth rate estimation 
from publicly reported data confirmed this pattern for Analamanga but 
was not possible for the Atsinanana region due to a lack of clarity in 
regional reporting; indeed, nearly 70% of nationally reported data in the 
public dataset were derived from the Analamanga region. 

3.2. Standardizing Ct values across tests and targets 

All RT-qPCR platforms used in our laboratory demonstrated in
creases in Ct value corresponding to 10-fold dilutions of RNA extracted 
from the original virus isolate (Table S2), though the estimated slope 
and y-intercept of each regression varied across the tests and targets 
considered, with the steepest slope recovered from GeneXpert N-gene 
tests and the shallowest from the Hong Kong ORF1a/b kits (Fig. S1, 
Table S3). We used the corresponding slope and y-intercept for each test 
and platform to transform Ct values in all subsequent analyses into 
values predicted for a TaqPath N-gene platform. 
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3.3. Longitudinal population-level trends in SARS-CoV-2 Ct values across 
the epidemic wave 

We observed a population-level dip in Ct values obtained from our 
SARS-CoV-2 RT-qPCR platform concurrent with the regional peak in 
cases in May for Atsinanana and June for Analamanga, with both peaks 
observable in the National data (Fig. 2A). GAMs fit to Atsinanana, 
Analamanga, and National data subsets explained, respectively, 98.8%, 
98.9%, and 98.9% of the deviation in the data (Table S4). All three 
GAMs demonstrated statistically significant effects of date, test, and 
individual patient ID, which contributed to the total deviance capture by 
each model. GAMs fit to the Analamanga and National data subsets 
showed an additional significant effect of target on the Ct value. Partial 
effects plots were computed from the resulting GAMs (Fig. S2) following 
methods described in (Mollentze and Streicker, 2020) and demonstrated 
no significant effects of any particular test or target gene. In general, 
most variation in Ct value beyond that of the individual patient was 
driven by the significant effect of date across all regions (Table S4). 

3.4. Individual trends in SARS-CoV-2 Ct values across the trajectory of 
infection 

The SARS-CoV-2 Ct value also demonstrated a predictable trajectory 
from the timing of onset of infection. Our GAM fit to data reporting a 
date of symptom onset (which we converted to a date of infection onset) 
and incorporating a predictor smoothing term of days since infection 
onset, and random effects of test, target, and patient ID explained 92.7% 
of the deviance in the data and demonstrated statistically significant 

effects of all predictor variables, including days since infection onset 
(Table S5). These findings confirmed that Ct value can be used as a 
biomarker of time since infection, validating the applicability of 
methods outlined in (Hay et al., 2021) for our Madagascar data. 

3.5. Relationship between symptom status and SARS-CoV-2 Ct value 

As an extension of the individual trajectory analysis, we hypothe
sized that Ct value would likely be linked to symptom status, since many 
infection trajectories begin with a brief presymptomatic phase, progress 
to symptom presentation, then become asymptomatic during recovery 
(Chen and Li, 2020; Jacot et al., 2020). The first GAM we employed to 
address this question considered age and symptom status as additional 
predictor variables in our individual trajectory analysis. This final GAM 
explained 98.5% of the deviation in the data and included significant 
effects of days since infection onset, symptom status, test, target, and 
patient ID (Table S5). Despite the significance of symptom status as a 
predictor variable in the GAM overall, partial effects plots demonstrated 
no significant association between asymptomatic status and high Ct 
values or symptomatic status and low Ct values, while controlling for age 
(Fig. 2B–D). These results suggest that, in our dataset, Ct value varies 
predictably with an individual’s infection trajectory regardless of 
symptom classification or age of the patient, further validating its 
adoption as a robust biomarker of time since infection (Table S5). 

We additionally extended this analysis to our National-level Ct 
dataset, including a predictor variable of symptom status, in addition to 
test, target, patient age, and patient ID in longitudinal GAMs. This model 
explained 98.9% of the deviation witnessed in the data, including 

Fig. 2. RT-qPCR SARS-CoV-2 Ct value as a biomarker of population-level epidemic pace and individual infection trajectory. (A.) Population-level SARS-CoV-2 
corrected Ct values from IPM RT-qPCR platform across three Madagascar regions from March-September 2020. Ct values are colored by the test and shaped by the 
target from which they were derived (legend), though note that all Ct values were first corrected to TaqPath N gene range. The vertical, black line gives the date of 
peak case counts per region in the IPM dataset, from which these Ct values were derived (May 20, 2020 for Atsinanana and July 22, 2020 for both Analamanga and 
National). The black, horizontal curve gives the output from a gaussian GAM fit to these data (Table S4), excluding the effects of target and test, which were also 
included as predictors in the model; 95% confidence intervals by standard error are shown in translucent shading. Partial effects of each predictor are visualized in 
Fig. S2. Righthand plots visualize partial effects of (B.) days since infection, (C.) patient age, and (D.) patient symptom status on Ct value from our individual 
trajectory GAM (Table S5). Significant predictors are depicted in light blue and non-significant in gray (Table S5). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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significant effects of test, target, patient ID, and symptom status 
(Table S6). Test and target were here included as control variates only 
and cannot be considered for prediction, as both co-varied with date, 
which was not used as a predictor in this model. In this model, partial 
effects plots indicated a significant association of asymptomatic status 
with high Ct values and symptomatic status with low Ct values (Fig. S3), 
even when controlling for effects of age; as this larger dataset did not 
report date of symptom/infection onset, it is likely that this association 
co-varied with the timing of infection onset, suggesting that previous 
reports of a high proportion of asymptomatic infections in Madagascar 
(Randremanana et al., 2021) could reflect a high proportion of pre- or 
post-symptomatic infections. 

3.6. Epidemiological dynamics inferred from cross-sectional Ct 
distributions 

After confirming the predictable pattern of Ct value across an in
dividual’s infection trajectory, and the predictable decline in 
population-level Ct in conjunction with the epidemic peak, we used our 
individual trajectory GAM to simulate a distribution of Ct values across a 
50-day duration of infection and fit the within-host viral kinetics model 
described in (Hay et al., 2021) to the resulting data (Fig. S4). The model 
demonstrated a good fit to the data, and estimated posterior distribu
tions for viral kinetics parameters were largely on par with those used 
previously in models of SARS-CoV-2 dynamics in Massachusetts, though 
the modal Ct value at peak viral load was slightly lower in our 
Madagascar dataset (Fig S4; Table S1). 

After fitting the within-host model, we next used longitudinal 
population-level GAMs (Fig. S2) to generate weekly cross-sectional Ct 

distributions, controlled for test and target, across our three regions of 
interest. As expected, weekly cross-sectional Ct distributions demon
strated a shift across the duration of the epidemic wave; with lower Ct 
values temporally correlated with high growth rates estimated from case 
count data (Fig. 3). 

Finally, we used the viral kinetics posterior distributions resulting 
from the within-host viral kinetics model fit as prior inputs into SEIR and 
GP population-level epidemiological models, which we fit to the weekly 
cross-sectional Ct data. MCMC chains generated in the fitting process 
demonstrated good convergence (Fig. S5, Tables S7 and S8) and pro
duced posterior distributions for all parameters on par with those esti
mated in previous work (Table S1, Fig. S6), which effectively recaptured 
cross-sectional Ct value histograms across the target timeseries in all 
three regions (Figs. 3, S7–S9) (Hay et al., 2021). From the resulting fitted 
models, we simulated epidemic incidence curves, which we used to 
compute growth rate estimates across the duration of the first epidemic 
wave in each of the three regions (Fig. 4). We compared these estimates 
to growth rates inferred from case count data; patterns from both SEIR 
and GP models were largely complementary, though, as expected, the 
more flexible GP model demonstrated less extreme variation in epidemic 
growth rate. Both Ct-model fits demonstrated similar patterns to 
epidemic trajectories estimated from incidence data, with increasing 
growth rates in the months preceding both epidemic sub-peaks (April 
and June) and decreasing growth rates beginning in July. Nonetheless, 
growth rate estimates derived from the Ct model slightly preceded those 
estimated from case count data. The Ct model fits further predicted 
uncertainty in growth rate directionality towards the end of the study 
period for the Analamanga and National-level data, while incidence 
estimation projected decreasing cases at this time. This finding suggests 

Fig. 3. Population-level Ct distribution reflects epidemic dynamics of the first wave of COVID-19 across three Madagascar regions. (A.) Simulated weekly Ct dis
tributions by Madagascar region, derived from population-level longitudinal GAMs (Fig. 2A), excluding random effects of test and target. (B.) Higher skew and lower 
median Ct from each cross-sectional Ct distribution in (A.) were loosely associated with higher epidemic growth rates from the corresponding week, here derived 
from EpiNow2 estimation from IPM case count data (Fig. 1B.) (C.) Cross-sectional Ct distributions from Analamanga time series in (A.) were fit via Gaussian process 
(GP) and SEIR mechanistic models incorporating a within-host viral kinetics model. Modeled Ct distributions are shown as solid lines (GP = red; SEIR = purple), with 
95% quantiles in surrounding sheer shading. Both models effectively recapture the shape of the Ct histogram as it changes (skews left) across the duration of the first 
epidemic wave. Model fits to the full time series of Ct histograms across all three regions are visualized in Figs. S7–S9. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

S.F. Andriamandimby et al.                                                                                                                                                                                                                  



Epidemics 38 (2022) 100533

8

that cross-sectional Ct distributions indicated a possible epidemic 
resurgence which was overlooked by growth rates estimated from 
declining incidence. If incidence declined in part due to declining sur
veillance, as was the reality at the end of Madagascar’s first epidemic 
wave (Randremanana et al., 2021), only the Ct method remained robust 
to the possibility of epidemic renewal. 

4. Conclusions 

Real-time estimation of epidemiological parameters, including the 
time-varying effective reproduction number, Rt, and the related 
instantaneous epidemic growth rate, r, has played an important role in 
guiding public health interventions and policies across many epidemic 
outbreaks, including COVID-19 (Cauchemez et al., 2006; Kucharski 
et al., 2020; Pan et al., 2020). In Madagascar, an opensource platform 
(Rasambainarivo et al., 2020) was developed shortly after the intro
duction of COVID-19 in March 2020, to collate and visualize publicly 
reported data and estimate Rt using traditional methods applied to daily 
reported incidence (Abbott et al., 2020a; Cori et al., 2013). We here 
compare the results from this platform applied to the first epidemic 
wave in Madagascar, with new estimates of the time-varying epidemic 
growth rate applied to our own laboratory data across the first epidemic 
wave—including those derived using a novel method based on the 
cross-sectional Ct value distribution at the time of sampling (Hay et al., 
2021). 

We find our new estimates to be largely congruent with those pre
dicted from publicly reported data, demonstrating a pattern of 
increasing epidemic growth rates prior to a peak in cases, which 
occurred first in May 2020 in the Atsinanana region, followed by a 

second outbreak in July 2020 in the Analamanga region. Critically, our 
growth rate estimates derived using novel methods applied to the Ct 
distribution over time slightly precede those estimated from incidence 
data. As previous work has demonstrated Ct estimation to offer a more 
robust approximation of true dynamics under limited surveillance sce
narios (Hay et al., 2021), these findings suggest that incidence-based 
methods to estimate epidemic trajectories in Madagascar may be 
underestimating the true pace of the epidemic, likely as a result of 
underreporting. Additionally, Ct-based methods adopted by a single 
laboratory allow for estimation of epidemic growth rates even in the 
absence of publicly reported case counts: in October 2020, the Malagasy 
Ministry of Health shifted its daily COVID-19 case notifications to 
weekly, interfering with incidence-based approaches to estimate 
epidemic trajectories (Rasambainarivo et al., 2020). Ct-based ap
proaches, instead, should be robust to this variation in reporting, of
fering a powerful tool for public health efforts in low surveillance 
settings. Indeed, our analysis demonstrates that Ct-based epidemic 
growth rates show uncertain directionality towards the end of the first 
wave of COVID-19 in Madagascar, presaging eventual epidemic resur
gence, while incidence-based rates categorically declined due to both 
truly declining cases and declining surveillance. Incidence-based growth 
rate estimation ceased during the continued limited surveillance period 
from October 2020 through March 2021 (Rasambainarivo et al., 2020); 
had Ct-based methods been available at the time, it is possible that the 
current second wave could have been predicted and mitigated by earlier 
rollout of public health interventions. 

Statistical analysis of our Ct data indicates that Ct values vary pre
dictably with days since onset of infection, allowing viral kinetics data to 
be leveraged for population-level estimation of epidemiological 

Fig. 4. Epidemic growth rate estimates from mechanistic model fits to population-level Ct distributions across the first wave of COVID-19 in three Madagascar 
regions. (A.) Comparison of COVID-19 epidemic growth rates from March-September 2020, estimated from IPM (blue) and publicly reported (gray) case count data 
using EpiNow2 (Abbott et al., 2020a) with estimates derived from Gaussian process (GP; red) mechanistic model fit to the time series of Ct distributions (Fig. 3A). 
Median growth rates are shown as solid lines, with 50% quantile on case-based estimates and 95% quantile of the posterior distributions from Ct-based estimates in 
corresponding sheer shading. (B.) Growth rate estimates from individual SEIR Ct-model fits to each Ct-distribution shown in Fig. 3A; median growth rates are given as 
horizontal dashes, with the 95%, 70%, 50%, and 20% of the posterior distribution indicated by progressively darker coloring. Estimates > 0 (indicating growing 
epidemics) are depicted in gold and < 0 (indicating declining epidemics) in purples. (C.) Raw case count data from the time series (dark = IPM data; light = publicly 
reported data) is shown for reference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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patterns. In our system, this pattern held even after controlling for the 
effects of age and symptom status on the Ct trajectory, further validating 
the applicability of Ct value as an indicator of time since infection. 
Nonetheless, in future work, it may be possible to fit unique viral ki
netics trajectories for different classes of people; for example, older age 
cohorts or cohorts of people infected with more transmissible variants 
may be better represented by lower average Ct trajectories than the 
population as a whole (Jacot et al., 2020; Kidd et al., 2021). Our 
application of generalized additive models to both individual infection 
trajectory and population-level Ct distributions offers an effective means 
by which to control for variation in test and target across diverse 
RT-qPCR platforms to generate Ct values for epidemiological inference 
which represent a reliable average of population-level patterns overall. 

We acknowledge the limitations of our current method, especially as 
it relates to testing biases. Nearly two-thirds of both case data and Ct- 
value data were derived from Madagascar’s Analamanga region, 
including the capital city of Antananarivo; as such, national trends are 
strongly influenced by the Antananarivo epidemic and may belie more 
time-lagged dynamics in more rural, less connected regions of the 
country. Nonetheless, these biases are unlikely to seriously impact 
inference from the early stages of the Madagascar epidemic, which 
began with an introduction event in Antananarivo (Randremanana 
et al., 2021), and despite the concentration of testing resources in the 
Analamanga (Rakotonanahary et al., 2021), our Ct-based estimation 
methods applied to the national dataset were nonetheless able to detect 
the epidemic in the Atsinanana region, too. During the earliest phases of 
the epidemic in Madagascar, testing resources were limited in our lab
oratory, which may have additionally biased sample intake towards 
high-viral-load, low-Ct-value cases that could bias epidemiological 
inference towards increasing growth rates even after the epidemic has, 
in reality, already begun to decline. As the epidemic ensued, however, 
the Madagascar Ministry of Health focused sampling on symptomatic 
patients and their suspected contacts, leading to a high proportion 
(56.6%) of reported asymptomatic infections in our dataset (Ran
dremanana et al., 2021), which may have instead prematurely biased 
inference towards a declining epidemic. Nonetheless, our Ct-based 
projections of epidemic trajectories do not appear to underestimate 
realized trends, suggesting that our method was robust to these 
inconsistencies. 

We apply a novel method leveraging within-host viral load data that 
is currently largely overlooked in the epidemiological literature to 
describe the dynamics of the first wave of COVID-19 in Madagascar. Our 
approach validates an important new tool for epidemiological inference 
of ongoing epidemics, particularly applicable to limited surveillance 
settings characteristic of many lower- and middle- income countries. We 
advocate for public release of real time data describing the Ct value 
distribution, in addition to daily case counts, to improve epidemiolog
ical inference to guide public health response and intervention. 
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