3,3'-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells. - RIIP - Réseau International des Instituts Pasteur Access content directly
Journal Articles Genes and Cancer Year : 2015

3,3'-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells.

Abstract

We recently reported that novel ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. In this paper, we have focused on the mechanism(s) associated with ring-DIM-mediated cell death, and on identifying the specific intracellular target(s) of these compounds. The 4,4'- and 7,7'-dichloroDIMs and 4,4'- and 7,7'-dibromoDIMs induced the death of LNCaP, C42B and DU145 prostate cancer cells, but not that of immortalized normal human prostate epithelial (RWPE-1) cells. Ring-DIMs caused the early loss of mitochondrial membrane potential (MMP) and decreased mitochondrial ATP generation in prostate cancer cells. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore, inhibited ring-DIM-mediated cell death, and salubrinal, an inhibitor of ER stress, inhibited cell death mediated only by 4,4'-dihaloDIMs. We found that although salubrinal did not inhibit the onset of ER stress, it prevented 4,4'-dibromoDIM mediated loss of MMP. Salubrinal potentiated cell death in response to 7,7'-dihaloDIMs and DIM, and this effect concurred with increased loss of MMP. Using in silico 3-D docking affinity analysis, we identified Ca2+/calmodulin-dependent kinase II (CaMKII) as a potential direct target for the most toxic ring-DIM, 4,4'-dibromoDIM. An inhibitor of CaMKII, KN93, but not its inactive analog KN92, abrogated cell death mediated by 4,4'-dibromoDIM. The ring-DIMs induced ER stress and autophagy, but these processes were not necessary for ring-DIM-mediated cell death. Inhibition of autophagy with bafilomycin A1, 3-methyladenine or by LC3B gene silencing sensitized LNCaP and C42B, but not ATG5-deficient DU145 cells to ring-DIM- and DIM-mediated cell death. We propose that autophagy induced by the ring-DIMs and DIM has a cytoprotective function in prostate cancer cells.
Fichier principal
Vignette du fichier
60.pdf (4.86 Mo) Télécharger le fichier
Origin Publication funded by an institution
Loading...

Dates and versions

pasteur-01351189 , version 1 (02-08-2016)

Licence

Identifiers

Cite

Alexander A Goldberg, Hossam Draz, Diana Montes-Grajales, Jesus Olivero-Verbél, Stephen H Safe, et al.. 3,3'-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells.. Genes and Cancer, 2015, 6 (5-6), pp.265-80. ⟨10.18632/genesandcancer.60⟩. ⟨pasteur-01351189⟩

Collections

RIIP INRS-IAF
80 View
277 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More